首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Effect of Poxvirus Infection on Host Cell Deoxyribonucleic Acid Synthesis   总被引:8,自引:3,他引:5  
Deoxyribonucleic acid (DNA) synthesis was studied in poxvirus-infected cells by measuring (14)C-thymidine incorporation into viral and host cell DNA. A complete separation of the two species of DNA was achieved by combining the previously used "Dounce method" with a separation method based on different reannealing properties of viral and vertebrate DNA. Shortly after infection of HeLa cells with poxviruses, a burst of viral DNA synthesis occurred in the cytoplasm, but a rapid inhibition of host-cell DNA synthesis in the nucleus was observed. This inhibition of cellular DNA synthesis was also found if an accumulation of viral DNA was prevented. At high multiplicites, ultraviolet-irradiated virus inhibited host-cell DNA synthesis to the same extent as fully infectious poxvirus. Under the same conditions, heating at 60 C for 15 min caused a decrease in the ability of cowpox virus to inhibit host-cell DNA synthesis, but did not produce the same effect on vaccinia virus strain WR.  相似文献   

2.
3.
4.
The experiments described in this paper were part of an attempt to determine the mechanisms involved in the isomerization of the pseudorabies virus genome. To this end, [(14)C]thymidine-labeled parental virus DNA that was transferred to progeny virions produced by cells incubated in medium containing bromodeoxy-uridine was analyzed in neutral and alkaline CsCl density gradients. The buoyant density of the (14)C-labeled DNA indicated that the parental DNA strands had retained their integrity and had not undergone breakage and reunion with progeny DNA strands; neither massive intermolecular nor intramolecular recombination had occurred after replication of the DNA. Whereas breakage and reunion between parental and progeny virus DNA strands were not detectable, these processes were observed between differentially density-labeled parental DNAs. Furthermore, the frequency of recombination between progeny DNAs accumulating in the cells was low. These results indicate that in pseudorabies virus-infected rabbit kidney cells recombination occurs mainly between parental genomes and precedes DNA replication. An analysis of the kinetics of appearance of recombinants between pairwise combinations of temperature-sensitive mutants also indicated that recombination is an early event. The ratio between the number of recombinant virions and the number of temperature-sensitive mutant virions produced by the cells remained the same throughout infection. Since the relative amounts of viral DNAs synthesized early and late during the infective process that were integrated into virions were approximately the same, it appears that late viral DNA did not experience an increased number of recombinational events compared with early viral DNA. These results, which reinforce the conclusion reached from the results of the analysis of the behavior of the parental DNA molecules in density shift experiments, indicate that recombination is an early event.  相似文献   

5.
alpha-Amanitin-resistant vaccinia virus mutants were isolated after serial viral passages in BSC-40 cells that were carried out in the presence of inhibitory levels (6 micrograms/ml) of alpha-amanitin. One such mutant, alpha-27, was highly refractory (greater than 95%) to alpha-amanitin-mediated inhibition and was selected for further study. In the absence of drug, the phenotypes of alpha-27 and wild-type vaccinia virus were indistinguishable with respect to growth kinetics. DNA synthesis, protein synthesis, and morphogenesis. Infections in the presence of alpha-amanitin revealed two striking differences, however. First, wild-type virus was unable to catalyze proteolytic processing of the two major capsid proteins VP62 and VP60, whereas alpha-27 was most efficient at this process. Second, wild-type viral morphogenesis within the infected cells was arrested by alpha-amanitin at an apparently analogous step to that previously described for enucleated cells. This observation was supported by the ability of alpha-27 virus to replicate in enucleated BSC-40 cells. Restriction enzyme analyses of alpha-27 versus wild-type genomes revealed that a XhoI cleavage site was altered in the alpha-27 DNA molecule, suggesting a possible location for the alpha-amanitin resistance locus.  相似文献   

6.
The relationship between replication of simian virus 40 (SV40) DNA and the various periods of the host-cell cycle was investigated in synchronized CV(1) cells. Cells synchronized through a double excess thymidine procedure were infected with SV40 at the beginning or the middle of S, or in G(2). The first viral progeny DNA molecules were in all instances detected approximately 20 h after release from the thymidine block, independent of the time of infection. The length of the early, prereplicative phase of the virus growth cycle therefore depended upon the period of the cell cycle at which the cells were infected. Infection with SV40 was also performed on cells obtained in early G(1) through selective detachment of cells in metaphase. As long as the cells were in G(1) at the time of infection, the first viral progeny DNA molecules were detected during the S period immediately following, whereas if infection took place once the cells had entered S, no progeny DNA molecule could be detected until the S period of the next cell cycle. These results suggest that the infected cell has to pass through a critical stage situated in late G(1) or early S before SV40 DNA replication can eventually be initiated.  相似文献   

7.
T Stacy  M Chamberlain    C N Cole 《Journal of virology》1989,63(12):5208-5215
Simian virus 40 (SV40) deletion mutants dlA2459 and dlA2475 express T antigens that lack the normal carboxy terminus. These mutants are called host range/helper function (hr/hf) mutants because they form plaques at 37 degrees C on BSC-1 and Vero monkey kidney cell lines but not on CV-1p monkey kidney cells. Wild-type SV40 can provide a helper function to permit growth of human adenoviruses in monkey kidney cells; the hr/hf mutants cannot. Progeny yields of hr/hf mutants are also cold sensitive in all cell lines tested. Patterns of viral macromolecular synthesis in three cell lines (Vero, BSC-1, and CV-1) at three temperatures (40, 37, and 32 degrees C) were examined to determine the nature of the growth defect of hr/hf mutants. Mutant viral DNA replication was similar to that of the wild type in all three cell lines, indicating that the mutations affect late events in the viral lytic cycle. In mutant-infected Vero cells, in which viral yields were highest, late mRNA levels were similar to those observed during wild-type infection. Levels of viral late mRNA from mutant-infected CV-1 and BSC-1 cells at 32 and 37 degrees C were reduced relative to those of wild-type-infected cells. The steady-state level of the major viral capsid protein, VP1, in mutant-infected CV-1 cells was reduced to the same extent as was late mRNA. The synthesis of agnoprotein could not be detected in mutant-infected CV-1 cells but was readily detected in CV-1 cells infected by wild-type SV40. Primer extension analyses indicated that most late mRNAs from mutant-infected CV-1 cells utilize start sites downstream from the major wild-type cap site (nucleotide 325) and the agnoprotein initiation codon (nucleotide 335). These results indicate that deletion of the carboxyl-terminal domain of T antigen affects viral late mRNA production, both quantitatively and qualitatively. The agnoprotein is detected late in the wild-type SV40 lytic cycle and is thought to play a role in the assembly or maturation of virions. Reduced hr/hf progeny yields could result from decreased capsid protein synthesis and, in the absence of detectable levels of agnoprotein, from inefficient use of available capsid proteins.  相似文献   

8.
Species C human adenovirus mutants that fail to express open reading frame 3 of early region 4 (E4orf3) are phenotypically indistinguishable from the wild-type virus when evaluated in cells cultured in vitro. However, E4orf3 gene function has been productively studied in the context of additional viral mutations. This study identifies diverse roles for the E4orf3 protein that are evident in the absence of early region 1B 55-kDa protein (E1B-55K) function. In an E1B-55K-deficient background, the E4orf3 protein promotes viral replication by increasing both the burst size and the probability that an infected cell will produce virus. Early viral gene expression is not impaired in E1B-55K/E4orf3 double mutant virus-infected cells. Cells infected with the double mutant virus accumulated concatemers of viral DNA. However, the E1B-55K/E4orf3 double mutant virus did not replicate any better in MO59J cells, in which viral DNA concatemers did not accumulate, than in MO59K cells, in which viral DNA concatemers were produced, suggesting that viral DNA concatenation is not the primary growth defect of the E1B-55K/E4orf3 double mutant virus. Accumulation of viral mRNA in the nucleus and cytoplasm of E1B-55K/E4orf3 double mutant virus-infected cells was severely reduced compared to that on wild-type virus-infected cells. Thus, in an E1B-55K mutant background, the E4orf3 protein promotes the accumulation of late viral RNA and enhances late gene expression. Finally, within the context of an E1B-55K mutant virus, the E4orf3 protein acts to suppress host cell translation and preserve the viability of cells at moderately late times of infection.  相似文献   

9.
The growth of vaccinia virus in monolayers of BSC-1 cells enucleated by centrifugation in the presence of cytochalasin B has been studied. No evidence for the production of infectious virus in these cells was obtained, and the production of virus particles was reduced to 8.3% compared with the yield from cytochalasin-treated, uncentrifuged cells. Virus DNA and early and late polypeptides were synthesized with normal timing in enucleate cells, but in reduced amounts; cleavage of structural polypeptide precursors P4a and Px also occurred in enucleate cells. Factories containing immature virus particles were demonstrated in enucleate cells by electron microscopy; these factories were reduced in number and size compared with those found in cytochalasin-treated, uncentrifuged cells.  相似文献   

10.
Phosphonoacetate (PAA), at concentrations of 200 micrograms/ml or more, prevented growth of vaccinia virus in HeLa and BSC-1 cells. Spontaneous vaccinia virus mutants, selected at high PAA levels, were resistant to the antiviral effects of the drug. The action of PAA was directed toward an early viral function, since the drug was inhibitory only during the first 4 h of the approximately 15-h growth cycle. Conversely, significant reversal of the antiviral effects was obtained only when the drug was removed at or before the fourth hour of infection. Incorporation of [3H]thymidine into cytoplasmic viral DNA was severely inhibited in cells infected with wild-type virus but not in cells infected with mutant virus. Virus-induced DNA polymerase isolated from the cytoplasm of cells infected with wild-type or mutant virus had indistinguishable chromatographic properties on DEAE-cellulose and phosphocellulose columns. However, the wild-type enzyme was inhibited by relatively low concentrations of PAA, whereas 10-fold higher concentrations were needed for equivalent inhibition of the mutant enzyme. Kinetic analysis indicated that PAA inhibition was noncompetitive with deoxyribonucleoside triphosphates; Ki values for wild-type and mutant DNA polymerases were approximately 25 and 300 microM, respectively. Inhibition of wild-type DNA polymerase was immediate and complete even when PAA was added after initiation of DNA synthesis in vitro, suggesting that chain elongation was affected. These results established that the DNA polymerase is a target of the antiviral action of PAA and provided genetic evidence that this enzyme is virus encoded.  相似文献   

11.
12.
13.
The simian virus 40 agnoprotein is a 61-amino-acid, highly basic polypeptide that is coded within the 5' leader of late 16S mRNAs. To better understand agnoprotein function and to more effectively differentiate cis-from trans-acting effects of an agnogene mutation, we constructed a mutant virus that carries a single-base-pair substitution and fails to produce agnoprotein. pm 1493 contains a T/A to A/T transversion at sequence position 335. This mutation converts the agnoprotein initiation codon from ATG to TTG, preventing synthesis of the protein. The mutant displays only a modest growth defect in CV-1P and AGMK cells and no defect in BSC-1 cells. Early-gene expression, DNA replication, synthesis of late viral products, and the kinetics of virion assembly all appear normal in pm 1493-infected CV-1P cells. Immunofluorescent studies, however, indicate that localization of the major capsid polypeptide VP1 is different in mutant- than wild-type virus-infected cells. Furthermore, the lack of agnoprotein led to inefficient release of mature virus from the infected cell. Agnogene mutants could be severely compromised in their ability to propagate in monkeys given their reduced capacity for cell-to-cell spread.  相似文献   

14.
A comparative study of simian virus 40 (SV40) lytic infection in three different monkey cell lines is described. The results demonstrate that viral deoxyribonucleic acid (DNA) synthesis and infectious virus production begin some 10 to 20 hr earlier in CV-1 cells and primary African green monkey kidney (AGMK) cells than in BSC-1 cells. Induction of cellular DNA synthesis by SV40 was observed in CV-1 and AGMK cells but not with BSC-1 cells. Excision of large molecular weight cellular DNA to smaller fragments was easily detectable late in infection of AGMK cells. Little or no excision was observed at comparable times after infection of CV-1 and BSC-1 cells. The different kinds of responses of these three monkey cell lines during SV40 lytic infection suggest the involvement of cellular functions in the virus-directed induction of cellular DNA synthesis and the excision of this DNA from the genome.  相似文献   

15.
《Autophagy》2013,9(12):1434-1447
The interactions between viruses and cellular autophagy have been widely reported. On the one hand, autophagy is an important innate immune response against viral infection. On the other hand, some viruses exploit the autophagy pathway for their survival and proliferation in host cells. Vaccinia virus is a member of the family of Poxviridae which includes the smallpox virus. The biogenesis of vaccinia envelopes, including the core envelope of the immature virus (IV), is not fully understood. In this study we investigated the possible interaction between vaccinia virus and the autophagy membrane biogenesis machinery. Massive LC3 lipidation was observed in mouse fibroblast cells upon vaccinia virus infection. Surprisingly, the vaccinia virus induced LC3 lipidation was shown to be independent of ATG5 and ATG7, as the atg5 and atg7 null mouse embryonic fibroblasts (MEFs) exhibited the same high levels of LC3 lipidation as compared with the wild-type MEFs. Mass spectrometry and immunoblotting analyses revealed that the viral infection led to the direct conjugation of ATG3, which is the E2-like enzyme required for LC3-phosphoethanonamine conjugation, to ATG12, which is a component of the E3-like ATG12–ATG5-ATG16 complex for LC3 lipidation. Consistently, ATG3 was shown to be required for the vaccinia virus induced LC3 lipidation. Strikingly, despite the high levels of LC3 lipidation, subsequent electron microscopy showed that vaccinia virus-infected cells were devoid of autophagosomes, either in normal growth medium or upon serum and amino acid deprivation. In addition, no autophagy flux was observed in virus-infected cells. We further demonstrated that neither ATG3 nor LC3 lipidation is crucial for viral membrane biogenesis or viral proliferation and infection. Together, these results indicated that vaccinia virus does not exploit the cellular autophagic membrane biogenesis machinery for their viral membrane production. Moreover, this study demonstrated that vaccinia virus instead actively disrupts the cellular autophagy through a novel molecular mechanism that is associated with aberrant LC3 lipidation and a direct conjugation between ATG12 and ATG3.  相似文献   

16.
Four strains of herpes simplex virus tested all showed inability to form plaques in chick embryo fibroblasts (CEF) at 40 C, while no such suppression of growth was observed with WEE, vaccinia or JE virus in the same cells. The suppression was not due to a complete inhibition of viral growth, because virus-infected CEF bottle cultures consistently showed a small but definite increase of virus titer in 24 hr. When CEF monolayers adsorbing herpes virus were placed at 40 C, the number of infective centers decreased gradually; however, this decrease was much slower than the degradation of free virus at this temperature. Transfer of virus-infected CEF bottle cultures from 35 C to 40 C at any time during a one step growth cycle promptly slowed down subsequent virus replication. When virus-infected CEF bottles were incubated first at 40 C for 24 hr and then transferred to 35 C, a new increase in virus titer took place following a short lag. What stage of virus replication is suppressed at 40 C remains yet to be determined.  相似文献   

17.
The interactions between viruses and cellular autophagy have been widely reported. On the one hand, autophagy is an important innate immune response against viral infection. On the other hand, some viruses exploit the autophagy pathway for their survival and proliferation in host cells. Vaccinia virus is a member of the family of Poxviridae which includes the smallpox virus. The biogenesis of vaccinia envelopes, including the core envelope of the immature virus (IV), is not fully understood. In this study we investigated the possible interaction between vaccinia virus and the autophagy membrane biogenesis machinery. Massive LC3 lipidation was observed in mouse fibroblast cells upon vaccinia virus infection. Surprisingly, the vaccinia virus induced LC3 lipidation was shown to be independent of ATG5 and ATG7, as the atg5 and atg7 null mouse embryonic fibroblasts (MEFs) exhibited the same high levels of LC3 lipidation as compared with the wild-type MEFs. Mass spectrometry and immunoblotting analyses revealed that the viral infection led to the direct conjugation of ATG3, which is the E2-like enzyme required for LC3-phosphoethanonamine conjugation, to ATG12, which is a component of the E3-like ATG12–ATG5-ATG16 complex for LC3 lipidation. Consistently, ATG3 was shown to be required for the vaccinia virus induced LC3 lipidation. Strikingly, despite the high levels of LC3 lipidation, subsequent electron microscopy showed that vaccinia virus-infected cells were devoid of autophagosomes, either in normal growth medium or upon serum and amino acid deprivation. In addition, no autophagy flux was observed in virus-infected cells. We further demonstrated that neither ATG3 nor LC3 lipidation is crucial for viral membrane biogenesis or viral proliferation and infection. Together, these results indicated that vaccinia virus does not exploit the cellular autophagic membrane biogenesis machinery for their viral membrane production. Moreover, this study demonstrated that vaccinia virus instead actively disrupts the cellular autophagy through a novel molecular mechanism that is associated with aberrant LC3 lipidation and a direct conjugation between ATG12 and ATG3.  相似文献   

18.
19.
M Merchlinsky  B Moss 《Cell》1986,45(6):879-884
The junctions, separating unit-length genomes in intracellular concatemeric forms of vaccinia virus DNA, are duplex copies of the hairpin loops that form the ends of mature DNA molecules present in infectious virus particles. Circular E. coli plasmids with palindromic junction fragments were replicated in vaccinia virus-infected cells and resolved into linear minichromosomes with vector DNA in the center and vaccinia virus DNA hairpins at the two ends. Resolution did not occur when the concatemer joint was less than 250 bp or when plasmids were transfected into uninfected cells, indicating requirements for a specific DNA structure and viral trans-acting factors. These studies indicate that concatemers can serve as replicative intermediates and account for the generation of flip-flop sequence variation of the hairpins at the ends of the mature vaccinia virus genome.  相似文献   

20.
The expression of the interferon-induced antiviral state was studied in heterokaryons and cytoplasmic hybrids (cybrids). An autoradiographic assay for the antiviral state, in which the percentage of cells containing vaccinia viral DNA factories was determined, was used. The expression of the antiviral state was dominant in homokaryons and heterokaryons formed by fusion of interferon-treated cells with untreated cells. Cytoplasts derived from treated cells conferred resistance to virus growth on cybrids formed by fusing such cytoplasts with untreated cells. Treatment of L cell x HeLa cell heterokaryons with human interferon or mouse interferon was much less effective in inducing a detectable antiviral state than was similar treatment of parental cells with homospecific interferon. The antiviral state was fully induced when heterokaryons were treated simultaneously with both types of interferon. Cybrids formed by fusing L cell cytoplasts with HeLa cells or HeLa cytoplasts with L cells did not enter a detectable antiviral state after treatment with interferon specific for the cell type of the enucleated parent. However, treatment of cybrids with interferon specific for the cell type of the nucleated parent was effective in inducing a detectable antiviral state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号