首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three distinct groups of monoamine (MA)-containing nerve cell bodies have been visualized in the hypothalamus and preoptic area of the cat by means of the Falck-Hillarp fluorescence histochemical technique. First, numerous small-sized catecholamine (CA) type neurons were disclosed within the ventral half of the periventricular area in the supraoptic and middle hypothalamic regions. The round to oval neurons of this medio-ventral group were more especially abundant around the base of the third ventricle, within the arcuate and supraopticus diffusus nuclei. Numerous medium-sized CA perikarya identified as the dorsal group, were also mapped out in the dorsal and posterior hypothalamic areas. Finally, a small population of both CA and serotonin (5-hydroxytryptamine, 5-HT)-containing neurons was disclosed within the lateral area of the middle and mammillary hypothalamic regions. These multipolar or elongated neurons which compose the lateral group were lying either along the ventrolateral surface of the hypothalamus or around the ventrolateral aspect of the fornix. In addition to these three MA cell groups, a few cells displaying a fluorescence of the CA type were also visualized in the so-called “dorsal chiasmatic nucleus” after α-methyl-dopa treatment. High density of CA axon terminals were found, on the other hand, in the external layer of the median eminence, in the dorsomedial, paraventricular, supraoptic and suprachiasmatic nuclei, and also within nucleus interstitialis of stria terminalis. In the present study, however, it was not possible to identify with certainty any concentration of 5-HT axon terminals in the cat hypothalamus. Therefore, except for the lateral cell group which could be peculiar to the cat, the topographical distribution of MA nerve cell bodies and axon terminals in the hypothalamus of the cat appears similar to the morphological organization of the MA neuronal elements in the hypothalamus of the rat.  相似文献   

2.
The hypothalamic suprachiasmatic nucleus is centrally involved in generation of several circadian rhythms. Neurons of the mammalian suprachiasmatic nucleus express a number of neuropeptides including vasopressin. The suprachiasmatic nucleus of the mink (Mustela vison) is easily distinguished from neighbouring hypothalamic areas and the underlying optic chiasm as a small nucleus containing densely packed parvocellular neurons. A dorsal and ventral subdivision were clearly recognized within the midportion and caudal part of the nuclcus. Using immunohistochemistry, we have identified vasopressin-, neurophysin-, and vasoactive intestinal peptide-immunoreactive neuronal elements in the hypothalamus of the mink. Vasoactive intestinal peptide-immunoreactive neurons can be observed in the ventral aspect of the suprachiasmatic nucleus, but to our surprise, no vasopressin immunoreactive perikarya are found within the suprachiasmatic nucleus, this absence being independent of the experienced annual cycle. The hypothalamic paraventricular and supraoptic nuclei contain large numbers of vasopressin-, neurophysin-and vasoactive intestinal peptide-immunoreactive magnocellular neurons with extensive projections towards the infundibulum and neurohypophysis. A comparative analysis of the distribution of vasopressin-immunoreactive elements in a number of conventional laboratory animals has demonstrated that, in contrast to the rat, golden hamster and Mongolian gerbil, neither vasopressin-containing perikarya in the suprachiasmatic nucleus nor fine calibered immunoreactive fibres entering the adjacent subparaventricular zone are present in the mink. The mink is a photodependent seasonal breeder, and thus vasopressin-immunoreactive neurons in the suprachiasmatic nuclei may not be essential for the photoperiodic regulation of reproduction and seasonal events experienced by this species.  相似文献   

3.
Our immunocytochemical investigation of the magnocellular neuroendocrine cells in the cat hypothalamus reveals a mixture of vasopressin (VP)- and oxytocin (OT)-containing neurons in the supraoptic (NSO), the paraventricular (NPV) and in five accessory nuclei (NAC). We describe the lateral hypothalamic nucleus (NLH), a new accessory nucleus, lying at the junction of the internal capsule and pallidum, and possibly involved in drinking behavior. Previously characterized incompletely in mammals, the four other accessory nuclei consist of the circularis (NC), anterior fornical (NAF), posterior fornical (NPF) and retrochiasmatic (NRC). The two peptidergic cell types, VP and OT, are equally mixed in the NPV and the NAC, but in the NSO VP neurons predominate. The perikarya of these VP and OT neurons do not show distinct morphological differences at the level of light microscopy. The organization of magnocellular neuroscretory neurons in the cat hypothalamus closely resembles that described in other mammals with the exception of the unique presence of the lateral hypothalamic accessory nucleus.  相似文献   

4.
Summary The presence and distribution of CRF-immunoreactive cells and nerve fibers were studied in the mammillary body of the rat, 12 days after placing various types of lesions within the hypothalamus. Anterior and anteriolateral cuts, placed in the midhypothalamus immediately behind the paraventricular nuclei resulted in an almost complete disappearance of CRF-immunoreactive fibers from the median eminence and simultaneous appearance of CRF-containing neurons in the mammillary body. Posterior or postero-lateral hypothalamic cuts carried out in front of the mammillary body caused the accumulation of CRF-immunoreactive material in neurons and neural processes located behind the cut-line. This type of intervention had no effect on the quantity of CRF fibers in the median eminence. A cut running through the central part of the mammillary body in the frontal plane resulted in appearance of CRF neurons only in the posterior half of the mammillary region. Placing a cut behind and over the mammillary body, CRF-immunoreactive neurons became detectable below the superior cut-line. No immunoreactive neurons were observed in the mammillary body when the frontal cut reached the base of the brain at the posterior border of the nucleus, leaving intact its anterior and superior connections. In all these cases when the mammillo-thalamic tract was transected, CRF neurons became detectable in the mammillary body.  相似文献   

5.
The distribution of proopiomelanocortin (POMC)-immunoreactive neurons was examined in the forebrains of nine sexually mature female pigs by indirect biotin-avidin horseradish peroxidase immunocytochemistry. Primary antiserum against ovine beta-endorphin (Bioflex #BF-EP-3-1) yielded positive staining of neuronal perikarya and processes. Adjacent control sections treated either with primary antiserum preabsorbed with beta-endorphin or substituted with normal rabbit serum lacked specific staining. POMC-immunoreactive cells were located in the anterior and intermediate lobe of the pituitary gland. POMC-immunoreactive perikarya were located in the arcuate nucleus and periarcuate area. The pituitary stalk/median eminence contained sparsely distributed POMC-immunoreactive fibers, which were confined to the zona interna. POMC-immunoreactive fibers were located in the arcuate nucleus and extended rostrally from the arcuate nucleus into the telencephalon coursing adjacent to the wall of the third ventricle as well as through the anterior hypothalamus, suprachiasmatic, supraoptic nuclei and preoptic areas to the nucleus accumbens, diagonal band of Broca, olfactory tubercle, bed nucleus of the stria terminalis and the ventro-lateral aspect of the septum. Caudal projections extended along the wall of the third ventricle to the level of the mammillary bodies and also coursed dorsally, passing through the periventricular, paraventricular, and dorsal medial nuclei of the hypothalamus to the midline thalamic nuclei and habenular nucleus. Lateral projections extended from the arcuate nucleus along the dorsal aspect of the optic tract and terminated in the amygdaloid complex. The distribution of POMC-immunoreactive perikarya and fibers is similar to that of the luteinizing hormone-releasing hormone (LHRH) fiber network. Therefore the opportunities exist, anatomically, for interactions between the POMC and the LHRH systems.  相似文献   

6.
Summary The distribution of VIP- and TRH-immunoreactivity in neurons and processes within the hypothalamus of the pigeon was investigated with light-microscopic immunocytochemical techniques. Most of the VIP-containing neurons are concentrated in the middle and caudal parts of the hypothalamus, with the greatest concentration of perikarya occurring in the medial and lateral part of the ventromedial hypothalamic nucleus and the infundibular nucleus. These cells give rise to axons that seem to extend into the median eminence. An extensive network of VIP-immunoreactive fibers and varicosities occupy the external layer of the median eminence. The majority of TRH-containing neurons is found in the anterior hypothalamus with the greatest concentration of cells in the magnocellular preoptic, medial preoptic, suprachiasmatic and paraventricular nuclei. TRH-immunoreactive fibers and varicosities form a dense arborization in the external layer of the median eminence. Lactation seems to induce substantial changes in VIP as well as in TRH-immunostaining in the median eminence and other hypothalamic regions as compared to control, sexually active animals. Furthermore, TRH-immunoreactivity decreased in the median eminence following 60-min exposure to cold. These results suggest that VIP- and TRH-containing pathways in the pigeon hypothalamus are involved in the mediation of neuroendocrine responses.  相似文献   

7.
The distribution of gonadal steroid (estrogen, progesterone) receptors in the brain of the adult female mink was mapped by immunocytochemistry. Using a monoclonal rat antibody raised against human estrogen receptor (ER), the most dense collections of ER-immunoreactive (IR) cells were found in the preoptic/anterior hypothalamic area, the mediobasal hypothalamus (arcuate and ventromedial nuclei), and the limbic nuclei (amygdala, bed nucleus of the stria terminalis, lateral septum). Immunoreactivity was mainly observed in the cell nucleus and a marked heterogeneity of staining appeared from one region to another. A monoclonal mouse antibody raised against rabbit uterine progesterone receptor (PR) was used to identify the PR-IR cells in the preoptic/anterior hypothalamic area and the mediobasal hypothalamus (arcuate and ventromedial nuclei). This study also focused on the relationship between cells containing sex-steroid receptors and gonadotropin-releasing hormone (GnRH) neurons on the same sections of the mink brain using a sequential double-staining immunocytochemistry procedure. Although preoptic and hypothalamic GnRH neurons were frequently in close proximity to perikarya containing ER or PR, they did not themselves possess receptor immunoreactivity. The present study provides neuroanatomical evidence that GnRH cells are not the major direct targets for gonadal steroids and confirms for the first time in mustelids the results previously obtained in other mammalian species.  相似文献   

8.
The development of the hypothalamic melanin-concentrating hormone (MCH) system of the teleost Sparus auratus has been studied by immunocytochemistry using an anti-salmon MCH serum. Immunoreactive perikarya and fibers are found in embryos, larvae, and juvenile specimens. In juveniles, most labeled neurons are present in the nucleus lateralis tuberis; some are dispersed in the nucleus recessus lateralis and nucleus periventricularis posterior. From the nucleus lateralis tuberis, MCH neurons project a conspicuous tract of fibers to the ventral hypothalamus; this penetrates the pituitary stalk and reaches the neurohypophysis. Most fibers end close to the cells of the pars intermedia, and some reach the adenohypophysial rostral pars distalis. Immunoreactive fibers can also be seen in extrahypophysial localizations, such as the preoptic region and the nucleus sacci vasculosi. In embryos, MCH-immunoreactive neurons first appear at 36 h post-fertilization in the ventrolateral margin of the developing hypothalamus. In larvae, at 4 days post-hatching, perikarya can be observed in the ventrolateral border of the hypothalamus and in the mid-hypothalamus, near the ventricle. At 26 days post-hatching, MCH perikarya are restricted to the nucleus lateralis tuberis. The neurohypophysis possesses MCH-immunoreactive fibers from the second day post-hatching. The results indicate that MCH plays a role in larval development with respect to skin melanophores and cells that secrete melanocyte-stimulating hormone. Received: 4 April 1995 / Accepted: 17 July 1995  相似文献   

9.
The distribution of luteinizing hormone-releasing hormone (LHRH)-immunostained perikarya and processes was examined in the forebrains of six sexually mature female pigs by use of indirect biotin-avidin horseradish peroxidase immunocytochemistry. Two primary antisera (Drs. Y.F. Chen and V.D. Ramirez CRR11B73 and Miles-Yeda UZ-4) yielded positive staining. Adjacent sections treated either primary antiserum preabsorbed with LHRH or with normal rabbit serum substituted for primary antiserum lacked positive staining. The greatest proportion of LHRH-immunostained perikarya were found in the medial preoptic area adjacent to the organum vasculosum of the lamina terminalis. The LHRH-immunostained perikarya were also scattered rostrally in the diagonal band of Broca, and within the lateral hypothalamic area, paraventricular nucleus, periventricular zone, suprachiasmatic nucleus, and medial basal hypothalamus. LHRH-immunostained processes, which extended from the medial preoptic area, coursed either along the ventral surface to the median eminence or medially and ventrally along the third ventricular wall ventrally to the median eminence and caudally to the level of the mammillary bodies. Extrahypothalamic processes were located adjacent to the lateral ventricular floor and the third ventricle from the lateral septal area (stria terminalis) to the level of the habenular nucleus. LHRH-immunostained neurons were unipolar, bipolar, and multipolar. Close associations between individual LHRH-immunostained neurons were observed.  相似文献   

10.
Summary A system of somatostatin-immunoreactive neurons was demonstrated in the brains of the eel, Anguilla anguilla, the European minnow, Phoxinus phoxinus, and the rainbow trout, Salmo gairdneri, by means of the light-microscopic indirect immunoperoxidase technique.In the anterior periventricular nucleus, somatostatin-immunoreactive cerebrospinal fluid (CSF)-contacting neurons display intensely stained intraventricular dendritic protrusions, perikarya, and axonal processes. The latter taper into a somatostatin-immunoreactive fiber plexus extending to the infundibulum, the proximal neurohypophysis, and the lateral and mammillary recesses.In addition, somatostatin-immunoreactive neurons were demonstrated in the magnocellular preoptic, entopeduncular and dorsolateral thalamic nuclei, further in the pretectal area and the ventrolateral tegmentum. Somatostatin-immunoreactive fiber bundles project via the stria medullaris toward the habenular nucleus; they also course in the dorsomedial-ventrolateral direction at the level of the pretectal-tegmental area, and within the ventral and dorsal tegmentum.The presence of somatostatin in a variety of different neurons of the teleost brain is discussed in connection with their tentative inhibitory function. The CSF-contacting neurons of the anterior periventricular nucleus are supposed to function as sensors that pass information from the CSF to the somatostatin system of the hypothalamus and/or other components of the neuroendocrine apparatus.Dedicated to Professor Helmut Leonhardt, Kiel, on the occasion of his 65th birthdayThis investigation was supported by grants from the Deutsche Forschungsgemeinschaft to A.O. (Ok 1/25-3) and H.W.K. (Ko 758/2-2)On leave of absence from the second Department of Anatomy, Semmelweis OTE, Budapest, Hungary  相似文献   

11.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

12.
Prolactin (PRL)- and growth-hormone (GH)-containing perikarya and fibers independent of the anterior pituitary gland have been reported to exist in the central nervous system of several mammalian species. The specific distributions of PRL- or GH-like neurons in the avian forebrain and midbrain, however, have not been reported. The objective of the study was to identify GH- and PRL-containing neurons in the hypothalamus and a few extrahypothalamic areas of two avian species. Brain and peripheral blood samples were collected from laying and broody turkey hens and ring doves. Broody turkey hens and doves had significantly higher plasma PRL concentrations compared with laying hens. Coronal brain sections were prepared and immunostained using anti-turkey GH and anti-chicken synthetic PRL antibodies. In turkey hens, the most dense GH-immunoreactive (ir) perikarya and fibers were found in hippocampus (Hp), periventricular hypothalamic nucleus, paraventricular nucleus, inferior hypothalamic nucleus, infundibular hypothalamic nucleus, medial and lateral septal area, and external zone of the median eminence (ME). In the ring dove, a similar pattern of distribution of GH-ir neurons was noticed at the brain sites listed above except that GH-ir fibers and granules were found only in the internal zone of ME and not in the external zone. In both turkeys and doves, the most immunoreactive PRL-ir perikarya and fibers were found in the medial and lateral septal area, Hp (turkey only), and bed nucleus of the stria terminalis pars magnocellularis. There were no apparent differences in the staining pattern of GH- or PRL-ir neurons between the laying and broody states in either species. However, the presence of GH-ir- and PRL-ir perikarya and fibers in several hypothalamic nuclei indicates that GH and PRL may influence parental behavior, food intake, autonomic nervous system function, and/or reproduction.  相似文献   

13.
Correlation between morphology and function in the hippocampus and hypothalamus was studied by electrophysiological and morphological techniques. Single unit responses were recorded extracellularly in the arcuate and medial preoptic nuclei of the hypothalamus to application of single stimuli to the hippocampus. Phasic responses and primary inhibition predominated in the arcuate nucleus, whereas both phasic and tonic responses were observed in the medial preoptic nucleus. In the morphological experiments horseradish peroxidase was injected into the same region of the hippocampus. Stained cells were found in the nuclei of the mammillary body, mediobasal hypothalamus, and medial preoptic nucleus. Groups of stained neurons were discovered at the periphery of the ventro- and dorsomedial and also in the lateral and mammillary nuclei of the hypothalamus. Besides fusiform and triangular neurons, reticular neurons also were found in all structures except the medial mammillary nucleus. The results are discussed from the standpoint of interaction between hypothalamus and hippocampus.A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 427–434, September–October, 1979.  相似文献   

14.
Summary The corticotropin-releasing factor (CRF)-containing neurons were investigated in the brain of the domestic fowl by means of the peroxidase-antiperoxidase technique at the light-microscopic level. The detection of CRF-immunoreactivity was facilitated by silver intensification. CRF-containing perikarya were found in the paraventricular, preoptic and mammillary nuclei of the hypothalamus and in some extrahypothalamic areas (nuclei dorsomedialis and dorsolateralis thalami, nucleus accumbens septi, lobus parolfactorius, periaqueductal gray of the mesencephalon, nucleus oculomotorius ventralis). Immunoreactive nerve fibers and terminals were demonstrated in the external zone of the median eminence and the organum vasculosum of the lamina terminalis. These results indicate that an immunologically demonstrable CRF-neurosecretory system also exists in the avian central nervous system.  相似文献   

15.
The distribution of somatostatinlike immunoreactive (SLI) perikarya, axons, and terminals was mapped in subcortical areas of the brain of the little brown bat, Myotis lucifugus, using light microscopic immunocytochemistry. A preponderance of immunoreactivity was localized in reticular, limbic, and hypothalamic areas including: 1) in the forebrain: the bed nucleus of the stria terminalis; lateral preoptic, dorsal, anterior, lateral and posterior hypothalamic areas; amygdaloid, periventricular, arcuate, supraoptic, suprachiasmatic, ventromedial, dorsomedial, paraventricular, lateral and medial mammillary, and lateral septal nuclei; the nucleus of the diagonal band of Broca and nucleus accumbens septi; 2) in the midbrain: the periaqueductal gray, interpeduncular, dorsal and ventral tegmental, pretectal, and Edinger-Westphal nuclei; and 3) in the hindbrain: the superior central and parabrachial nuclei, nucleus incertus, locus coeruleus, and nucleus reticularis gigantocellularis. Other areas containing SLI included the striatum (caudate nucleus and putamen), zona incerta, infundibulum, supramammillary and premammillary nuclei, medial and dorsal lateral geniculate nuclei, entopeduncular nucleus, lateral habenular nucleus, central medial thalamic nucleus, central tegmental field, linear and dorsal raphe nuclei, nucleus of Darkschewitsch, superior and inferior colliculi, nucleus ruber, substantia nigra, mesencephalic nucleus of V, inferior olivary nucleus, inferior central nucleus, nucleus prepositus, and deep cerebellar nuclei. While these results were similar in some respects to those previously reported in rodents, they also provided interesting contrasts.  相似文献   

16.
Neuronal morphology and dendritic architecture of the tuberal and mammillary regions in the hypothalamus of the quail (Coturnix coturnix japonica) were investigated by means of classical neuroanatomical methods (Bodian silver impregnation, Luxol-fast blue, cresyl violet, toluidine blue, rapid Golgi method). The tuberal region is characterized by isodendritic neurons, in particular: a) pyriform and bipolar neurons, occasionally arranged diagonally to the ventricular surface; b) CSF-contacting neurons, located subependymally or more deeply in the periventricular gray, which are especially abundant in the paraventricular organ and in the proximity of the median eminence; c) numerous multipolar neurons, endowed with stout, almost unbranched dendritic processes, occupying generally the medio-lateral areas of the hypothalamus. Some multipolar neurons display somata, pyramidal or ovoidal in shape, almost imperceptibly tapering into three or more dendritic trunks. These relatively straight and long dendrites are rich in dendritic spines. In the mammillary region, Golgi impregnation shows multipolar neurons of medium size, most likely belonging to the lateral mammillary nucleus.  相似文献   

17.
Human intestinal trefoil factor hITF, a polypeptide of the P-domain family, was found to occur in hypothalamic neurons. With combined immunofluorescence and immunoperoxidase technique we investigated the coexistence of hITF with the neurohypophysial peptide oxytocin and the associated neurophysin I in sections of the human hypothalamus. In the supraoptic nucleus, 39.2% of magnocellular oxytocinergic perikarya show hITF immunoreactivity. A similar distribution was observed in perivascular hypothalamic oxytocinergic neurons, whereas in the paraventricular nucleus, 99% of the oxytocinergic neurons show hITF coexpression. In the periventricular nucleus (PEV), single, scattered neurons with both immunoreactivities occur. Our findings indicate that hITF and oxytocin are coexpressed in a portion of the magnocellular neurons in the human hypothalamus, and that hITF is among the neurohypophysial peptides.  相似文献   

18.
Y K Ng  Y D Xue  P T Wong 《Nitric oxide》1999,3(5):383-392
The distribution of nitric oxide synthase-containing neurons was studied in the rat and mouse hypothalamus by immunohistochemistry and NADPH-diaphorase histochemistry. Immunostaining and NADPH-diaphorase staining of hypothalamic neurons were comparable in all hypothalamic nuclei of either species except in the arcuate nucleus that stained positive for nitric oxide synthase immunoreactivity but negative for NADPH-diaphorase reactivity. The presence of nitric oxide synthase-immunopositive neurons in the arcuate nucleus was confirmed by nitric oxide synthase immunofluorescence viewed under the confocal microscope at 1 microm thickness. Cross-species comparison showed that, in general, the number and intensity of nitric oxide synthase-containing neurons were much higher in the rat than in the mouse hypothalamus. Differences in the distribution of nitric oxide synthase-containing neurons between these two rodents were found in most hypothalamic nuclei. In particular, two dense clusters of nitric oxide synthase-containing neurons were found in the paraventricular and supraoptic nuclei of the rat hypothalamus in contrast to their scarcity in the same nuclei of the mouse hypothalamus.  相似文献   

19.
Summary Using a specific antiserum raised against synthetic neuropeptide Y, we examined the localization of immunoreactivity in the brain and hypophysis of the cloudy dogfish, Scyliorhinus torazame, by the peroxidase-antiperoxidase method. Immunoreactive perikarya were demonstrated in the ganglion of the nervus terminalis, the dorsocaudal portions of the pallium dorsale, the basal telencephalon, and the nucleus lateralis tuberis and the nucleus lobi lateralis in the hypothalamus. Labeled perikarya were also found in the tegmentum mesencephali, the corpus cerebelli, and the medulla oblongata. Some of the immunoreactive neurons in the hypothalamus were of the CSF-contacting type. The bulk of the labeled fibers in the nervus terminalis ran toward the basal telencephalon, showing radial projections and ramifications. Large numbers of these fibers coursed into the nucleus septi caudoventralis and the nucleus interstitialis commissurae anterioris, where they became varicose and occasionally formed fine networks or invested immunonegative perikarya. In the diencephalon, immunoreactive fibers were observed throughout the hypothalamus, e.g., in the pars neurointermedia of the hypophysis, the subependymal layer of the lobus inferior hypothalami, and in the neuropil of the posterior (mammillary) recess organ. Labeled fibers were scattered throughout the rest of the brain stem and were also seen in the granular layer of the cerebellum. These results suggest that, in the dogfish brain, neuropeptide Y or a related substance is involved in a variety of physiological processes in the brain, including the neuroendocrine control of the hypophysis.  相似文献   

20.
In in vivo and in vitro experiments there have been shown different mechanisms of regulation of hypothalamic vasopressinergic neurons, including regulation due to changes of activity level of brain catecholaminergic and NPY-ergic neurons innervating hypothalamic vasopressinergic cells. We demonstrated in in vitro experiments that dopamine and noradrenaline had no effects on vasopressin expression, but inhibited its release from cell perikarya in supraoptic and paraventricular nuclei of hypothalamus. Besides, activity of vasopressinergic neurons might probably be regulated via activation of synthesis of these neurotransmitters in vasopressinergic cells themselves in the supraoptic and paraventricular nuclei. To activate synthesis of various neurotransmitters, in our case, catecholamines and NPY, in vasopressinergic neurons, different stimuli adequate to trigger or activate synthesis of these substances are required. Synthesis of catecholamines in vasopressinergic cells of supraoptic and paraventricular nuclei was revealed after immobilization stress and adrenalectomy. NPY is synthesized in neurons of hypothalamic neurosecretory centers in norm, and its synthesis increases at disturbances of NPY-ergic innervation of vasopressinergic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号