首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Immunogold labeling was used to study the time of appearance and distribution of a nodule-specific form of uricase (EC 1.7.3.3) in developing nodules of soybean (Glycine max (L.) Merr.) inoculated with Bradyrhizobium japonicum. The enzyme was detected in thin sections of tissue embedded in either L R White acrylic resin or Spurr's epoxy resin, by employing a polyclonal antibody preparation active against a subunit of soybean nodule uricase. Antigenicity was better preserved in L R White resin, but ultrastructure was better maintained in Spurr's. Uricase was first detectable with protein A-gold in young, developing peroxisomes in uninfected cells, coincident with the release of Bradyrhizobium bacteroids from infection threads in adjacent infected cells. As the peroxisomes enlarged, labeling of the dense peroxisomal matrix increased. Gold particles were never observed over the paracrystalline inclusions of peroxisomes, however. Despite a close association between enlarging peroxisomes and tubular endoplasmic reticulum, uricase was not detectable in the latter. In mature nodules, labeling of uricase was limited to the large peroxisomes in uninfected cells. Small peroxisome-like bodies present in infected cells did not become labeled.Abbreviations BSA bovine serum albumin - Da dalton - ER endoplasmic reticulum - IgG immunoglobulin G  相似文献   

2.
Summary Ultrastructural studies were conducted on root nodules of soybean (Glycine max) inoculated as seeds withRhizobium japonicum. The development of the large peroxisomes and abundant tubular endoplasmic reticulum (ER) characteristic of the uninfected interstitial cells was followed during nodule growth and maturation. Quantitative data on differences between the uninfected and infected cells in volumes and numbers of peroxisomes, plastids and mitochondria were analyzed statistically. The peroxisomes are 60 times greater in volume per unit cytoplasm in the uninfected cells than the small presumptive peroxisomes in the infected cells. Plastids are about equal in volume in the two types of cells. Mitochondria have 4 × the volume and 3 × the number of profiles per unit cytoplasm in the infected cells than in the uninfected. The observations are discussed in relation to published evidence that several enzymes involved in ureide production are localized in organelles of the uninfected cells. The uninfected cells are viewed as essential components in the symbiotic relationship between host and bacterium.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum  相似文献   

3.
Summary The possibility that cells in the inner cortex of determinate root nodules participate in ureide production from recently fixed N2, as do the uninfected (interstitial) cells of the infected central region, has been investigated in soybean (Glycine max) inoculated as seeds withBradyrhizobium japonicum. Like the interstitial cells, cells of the three innermost cortical layers produce enlarged peroxisomes and a meshwork of tubular ER during differentiation. These changes are most pronounced in the innermost cortical layer, are successively less so in the 2nd and 3rd layers, and are usually undetectable in more distant layers. Peroxisomes in the inner three layers are stained in the DAB (3,3-diaminobenzidine) test for uricase (EC 1.7.3.3) activity, indicative of the potential for ureide formation, but peroxisomes in more distant cortical cells are not stained. A nodulespecific uricase also is demonstrable in the inner three cortical layers by immunogold labeling enhanced with silver for visualization in the light microscope. The observations suggest that with respect to ureide production the cells of the inner layers of the cortex are functionally similar to the interstitial cells of the infected region despite the apparent distinctiveness of the two regions anatomically.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum  相似文献   

4.
Cowpea (Vigna unguiculata (L.) Walp.) nodules have been investigated by means of cytochemical and immunocytochemical procedures at the ultrastructural level in order to assess the role of the uninfected cells in ureide biogenesis. Uricase activity in the nodules was shown by cytochemical methods to be localized exclusively in the numberous large peroxisomes confined to the uninfected cells; the small peroxisomes in the infected cells did not stain for uricase. Uricase was also localized in the peroxisomes of uninfected cells by immunogold techniques employing polyclonal antibodies against nodule-specific uricase of soybean. There was no labeling above background of any structures in the infected cells. The results indicate that the uninfected cells are essential for ureide biogenesis in cowpea. Although tubular endoplasmic reticulum, the presumptive site of allantoinase, increases greatly in the uninfected cells during nodule development, it virtually disappears as the nodules mature. The inconsistency between the disappearance of the tubular endoplasmic reticulum from older nodules and the high allantoinase activity reported for older plants remains to be explained.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum - GARG goat anti-rabbit immunoglobulin G - IgG immunoglobulin G - kDa knodalton - Mr apparent molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

5.
The anatomy of Macrozamia communis L. Johnson lateral roots and nodules was studied following axenic culture in light and darkness. Pointed lateral roots from dark cultures had an open apical organization similar to that of other cycads and gymnosperms. A distinct protoderm-derived epidermis was not observed. At the apex, the dermis was formed by the outer root capcortical cell layer. Subapically, the outer cortex formed the dermis. No evidence of an algal zone was observed in these roots. The stele was bounded by a distinct endodermis and contained an exarch, diarch xylem. Apogeotropic nodules which developed at the root-shoot junction in darkness, branched dichotomously and had rounded tips covered by tangentially-enlarged root cap cells. The root cap was reduced to a few cell layers and was confined to the extreme nodule apex. The central region of the apical meristem was enlarged, and meristematic cells contained differentiated amyloplasts. A presumptive algal zone was present in some but not all nodules and divided the cortex into inner and outer regions. Stelar anatomy was similar to that observed in pointed, dark-grown lateral roots, except that there was greater xylem differentiation. Nodules which developed in the light were similar to dark-formed nodules, except that root cap cells were radially enlarged and extended over the flanks of the nodule forming a persistent root cap. The heteromorphic lateral roots of M. communis formed a developmental continuum not a heterorhizic root system.  相似文献   

6.
The vascular anatomy of soybean nodules [Glycine max (L.) Merr.] suggests that export of solutes in the xylem should be dependent on influx of water in the phloem. However, after severing of stem xylem and phloem by shoot decapitation, export of ureides from nodules continued at an approximately linear rate for 5h. This result was obtained with decapitated roots remaining in the sand medium, but when roots were disturbed by removal from the rooting medium prior to shoot decapitation, export of ureides from nodules was greatly reduced. Stem exudate could not be collected from disturbed roots, indicating that flow in the root xylem had ceased. Thus, ureide export from nodules appeared to be dependent on a continuation of flow in the root xylem. When seedlings were fed a mixture of 3H2O and 14C-inulin for periods of 14–21 min, nodules had higher 3H/14C ratios than roots from which they were detached. The combined results are not consistent with the proposal that export of nitrogenous compounds from nodules is dependent on import of water via the phloem. The results do support the view that a portion of the water required for xylem export from soybean nodules is supplied via a symplastic route from root cortex to nodule cortex to the nodule vascular apoplast.  相似文献   

7.
Summary In the apical meristem of the adventitious root ofAllium cepa, all pericycle cells show a marked increase in cross-sectional area between 400 and 800 m behind the tip, this transversal growth ceasing in the 1,200–1,400 m interval. However, different pericycle cell types (opposite xylem, intervening and opposite phloem) show different transversal growth kinetics. Along the meristem, the opposite xylem cells are narrower than both the intervening and opposite phloem cells, and these latter are similar in cross-sectional area. Another relevant difference is in the polarity of the transversal expansion, which in turn gives rise to changes in cell shape. In fact, in apical most portions of the meristem, the opposite phloem cells mainly expand tangentially, while the intervening cells do so radially, and the opposite xylem cells undergo a similar tangential and radial expansion. By contrast, in basal most portions of the meristem, radial expansion continues in the opposite phloem cells when it has ceased in the intervening cells. These latter expand tangentially once again when tangential expansion has ceased in the opposite phloem cells. As a consequence of this transversal growth, the opposite xylem cells, which can initiate lateral root primordia, retain their isodiametric transversal shape along the meristem, whereas the transversal shape of the opposite phloem and intervening cells initially changes from isodiametric to markedly enlarged tangentially (opposite phloem) or radially (intervening), after which both cell types tend to become more rounded in shape.  相似文献   

8.
Uricase (urate oxidase, EC 1.7.3.3) activity and nodule-specific uricase II (nodulin-35) were detected in the nodules from a number of legume: Rhizobium symbioses ( Vigna unguiculata (L.) Walp., Phaseolus vulgaris L., and Kennedia coccinea Vent.) in the Phaseoleae, as well as in those of Robinia pseudoacacia L. which belongs to the tribe Robineae. Neither uricase activity nor nodulin-35 was detected in nodules from Lupinus angustifolius L., an amide-forming symbiosis of the tribe Genisteae. Nodules of R. pseudoacacia also showed high levels of allantoinase (EC 3.5.2.5) activity but activity of enzymes earlier in the pathway of ureide synthesis (xanthine dehydrogenase, EC 1.2.1.37; inosine monophosphate dehydrogenase, EC 1.2.1.14; and xanthosine nucleosidase, EC 3.2.2.1) could not be detected. Analysis of transport fluids (xylem, phloem and nodule exudates) from R. pseudoacacia found that asparagine, and, to a lesser extent, glutamine were the major translocated nitrogenous solutes. Ureides accounted for, at most, 2.6% of the N in transport fluids (tracheal xylem sap) and in nodule exudate, 0.1%. In common with nodules of the ureide-forming symbioses, those of R. pseudoacacia contained a high proportion of uninfected interstitial cells (53.7 ± 2.3%) in the central N2-fixing tissue whereas in L. angustifolius only 2.5 ± 0.4% of cells in this tissue were uninfected. These data have been interpreted to indicate that expression of nodule-specific uricase is related to the differentiation of uninfected interstitial cells in nodules and not to the synthesis of ureides.  相似文献   

9.
Developing tissues such as meristem with low transpiration require high Zn levels for their active growth, but the molecular mechanisms underlying the preferential distribution to these tissues are poorly understood. We found that a member of the ZIP (ZRT, IRT‐like protein), OsZIP3, showed high expression in the nodes of rice (Oryza sativa). Immunostaining revealed that OsZIP3 was localized at the xylem intervening parenchyma cells and xylem transfer cells of the enlarged vascular bundle in both basal and upper nodes. Neither OsZIP3 gene expression nor encoded protein was affected by either deficiency or toxic levels of Zn. Knockdown of OsZIP3 resulted in significantly reduced Zn levels in the shoot basal region containing the shoot meristem and elongating zone, but increased Zn levels in the transpiration flow. A short‐term experiment with the 67Zn stable isotope showed that more Zn was distributed to the lower leaves, but less to the shoot elongating zone and nodes in the knockdown lines compared with the wild‐type rice at both the vegetative and reproductive growth stages. Taken together, OsZIP3 located in the node is responsible for unloading Zn from the xylem of enlarged vascular bundles, which is the first step for preferential distribution of Zn to the developing tissues in rice.  相似文献   

10.
Abstract The ureide content of soybean (Glycine max (L.) Merr.) nodules was unaffected by variations in the transpirational rate, while whole plant manipulations designed to decrease phloem supply to nodules resulted in lower rates of nitrogenase activity and an increase in the ureide content of the nodules. The rate of ureide export from the nodule was estimated from the exponential rate of decrease in the pool size of ureides in nodules, following exposure to an N2-free atmosphere (Ar:O2). Export was greatly reduced under treatments which reduced phloem supply to the nodule. A water budget for nodules suggested that the delivery of water to the nodule via mass flow in the phloem was comparable to that required for export of ureides from the nodule in the xylem from the nodule. Therefore, we suggest that xylem export from nodules is related to the phloem supply to the nodule rather than to the transpirational flux in the parent root. This suggestion is related to the reported decreases in nodule permeability to gases under conditions of phloem deprivation.  相似文献   

11.
Actin localization and function in higher plants   总被引:18,自引:0,他引:18  
Summary Two different cytochemical methods were used to study the localization of uricase (EC 1.7.3.3) and catalase (EC 1.11.1.6) in developing root nodules of soybean (Glycine max) inoculated as seeds withBradyrhizobium japonicum. One of the methods employs DAB (3,3-diaminobenzidine) and detects uricase activity indirectly by coupling it to endogenous catalase activity. The other method utilizes cerium chloride to detect uricase activity directly. These methods were modified to obtain not only a strong staining reaction but also improved ultrastructural preservation. With the indirect DAB method, intense staining indicative of both uricase and catalase activity was obtained in the enlarged peroxisomes of older uninfected cells. Similar staining was observed in enlarging peroxisomes of younger uninfected cells, and in the material of associated sacs whose bounding membranes appear to arise as distensions of the ER. The observations are discussed in relation to the controversial role of the ER in peroxisome biogenesis. Although the small peroxisome-like organelles of infected cells did not give a clearly positive reaction in the indirect DAB method, they reacted positively in the cerium chloride method, and are considered to be peroxisomes.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum  相似文献   

12.
白鲜根的发育解剖学研究   总被引:1,自引:0,他引:1  
应用半薄切片、常规石蜡切片并结合离析法,对药用植物白鲜(Dictamnus dasycarpus Turcz.)根的发生发育过程进行了研究。结果表明:白鲜根的发生发育过程包括4个阶段,即原分生组织阶段、初生分生组织阶段、初生结构阶段以及次生结构阶段。原分生组织位于根冠内侧及初生分生组织之间,衍生细胞分化为初生分生组织。初生分生组织由原表皮、基本分生组织以及中柱原组成。原表皮分化为表皮,基本分生组织分化为皮层,中柱原分化为维管柱,共同组成根的初生结构;在初生结构中,部分表皮细胞外壁向外延伸形成根毛,皮层中分布有油细胞,内皮层有凯氏带,初生木质部为二原型或偶见三原型,外始式;根初生结构有髓或无。次生结构来源于原形成层起源的维管形成层的活动以及中柱鞘起源的木栓形成层的活动;白鲜次生韧皮部宽广,其中多年生根中可占根横切面积的85%,另外除基本组成分子外,还分布有油细胞;周皮发达,木栓层厚;初生皮层、次生木质部和次生韧皮部薄壁细胞中常充满丰富的淀粉粒。  相似文献   

13.
Collings DA  Harper JD  Vaughn KC 《Planta》2003,218(2):204-216
We have investigated changes in the distribution of peroxisomes through the cell cycle in onion (Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek (Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the -oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.Abbreviations BDM 2,3-butanedione monoxime - DAPI 4,6-diamidino-2-phenylindole - ER endoplasmic reticulum - GFP green fluorescent protein  相似文献   

14.
桔梗根的发育解剖学研究   总被引:1,自引:0,他引:1  
以桔梗(Platycodon grandiflorum A.DC)根为材料,运用石蜡切片和半薄切片法对其根的发育过程及结构进行解剖学观察,并对不同年限根的结构进行了比较。结果表明:桔梗根的结构发育过程包括原生分生组织、初生分生组织、初生生长和次生生长4个阶段。其原生分生组织由3群原始细胞组成,表现出典型分生组织的细胞学特征;初生分生组织包括根冠原、表皮原、皮层原和中柱原;初生结构由表皮、皮层和中柱组成,其中皮层薄壁细胞占主要地位,初生木质部为二原型;次生生长主要依靠维管形成层和木栓形成层的活动来完成,其次生结构从外到内由周皮和次生维管组织组成,次生维管组织占主导地位,其中以薄壁细胞为主,维管分子少量,分散在薄壁组织中。不同年限的根的结构基本相同,但它们在主根长度和直径、周皮厚度、木质部与韧皮部面积之比等方面存在差异。  相似文献   

15.
Summary Spontaneous nodules were formed on the primary roots of alfalfa plants in the absence ofRhizobium. Histologically, these white single-to-multilobed structures showed nodule meristems, cortex, endodermis, central zone, and vascular strands. Nodules were devoid of bacteria and infection threads. Instead, the larger cells were completely filled with many starch grains while smaller cells had very few or none. Xylem parenchyma and phloem companion cells exhibited long, filiform and branched wall ingrowths. The characteristic features of both types of transfer cells were polarity of wall ingrowths, high cytoplasmic density, numerous mitochondria, abundant ribosomes, well-developed nucleus and nucleolus, and vesicles originated from rough endoplasmic reticulum. These results were compared with normal nodules induced byRhizobium. Our results suggest that xylem parenchyma and phloem companion transfer cells are active and probably involved in the short distance transport of solutes in and out of spontaneous nodules. Since younger nodules showed short, papillate, and unbranched wall ingrowths, and older tissue showed elongated, filiform and branched wall ingrowths, the development of wall ingrowths seemed to be gradual rather then abrupt. The occurrence of both type-A and -B wall ingrowths suggests that phloem companion transfer cells may be active in loading and unloading of sieve elements. Since there were no symbiotic bacteria and thus no fixed nitrogen, it is tempting to speculate that xylem parenchyma transfer cells may be re-transporting accumulated carbon from starch grains to the rest of the plant body by loading xylem vessels. Fusion of ER-originated vesicles with wall ingrowth membrane indicated the involvement of ER in the membrane formation for elongating wall ingrowths. Since transfer cells were a characteristic feature of both spontaneous andRhizobium-induced nodules, their occurrence and development is controlled by the genetic make-up of alfalfa plant and not by a physiological source or sink emanating from symbiotic bacteria.Abbreviations ATP adenosine triphosphate - ATPase adenosine triphosphatase - EH emergent root hair - EM electron microscope - Nar nodulation in the absence of Rhizobium - RT root tip - RER rough endoplasmic reticulum - YEMG yeast extract mannitol-gluconate  相似文献   

16.
The vegetative shoot apical meristem of tomato (Lycopersicon esculentum Mill.) was examined at the ultrastructural level. The meristem consisted of a surface layer that was different from the rest of the meristem and was unique among the dicotyledonous species. The cells of the surface layer contained large distal vacuoles with relatively large electron-dense inclusions, proplastids with membrane-bound inclusions (MB), and differentiating chloroplasts. In addition, periclinal and oblique divisions were observed in the surface layer cells along with anticlinal divisions. The cells of the subsurface layers contained small vacuoles with fewer inclusions as well as proplastids of various shapes but without MB. Differentiating chloroplasts were not observed in these cells, but autophagic vacuoles at various stages of development were present. The normal complement of cell inclusions, e.g., the mitochondria, golgi bodies, endoplasmic reticulum (ER), ribosomes, and microtubules were observed in subsurface layers, and in many cells the ER was observed to be continuous with the outer membrane of the nuclear envelope and with the plasmalemma. Further below in the meristem, cells contained both the proplastids and differentiating chloroplasts with MB. In the latter, the outer membrane of the MB was found to be continuous with the developing lamellae, suggesting that MB probably serve as the storage centers for lamellae membranes. Near the base of the meristem, in the pith-rib meristem, enlarged cells containing large vacuoles and differentiated chloroplasts were present.  相似文献   

17.
The ureides, allantoin and allantoic acid, represented major fractions of the soluble nitrogen pool of nodulated plants of cowpea (Vigna unguiculata [L.] Walp. cv. Caloona) throughout vegetative and reproductive growth. Stem and petioles were the principal sites of ureide accumulation, especially in early fruiting.

Labeling studies using 14CO2 and 15N2 and incubation periods of 25 to 245 minutes indicated that synthesis of allantoin and allantoic acid in root nodules involved currently delivered photosynthate and recently fixed N, and that the ureides were exported from nodule to shoot via the xylem. From 60 to 80% of xylem-borne N consisted of ureides; the remainder was glutamine, asparagine, and amino acids. Allantoin predominated in the soluble N fraction of nodules and fruits, allantoin and allantoic acid were present in approximately equal proportions in xylem exudate, stems, and petioles.

Extracts of the plant tissue fraction of nitrogen-fixing cowpea nodules contained glutamate synthase (EC 2.6.1.53) and glutamine synthetase (EC 6.3.1.2), but little activity of glutamate dehydrogenase (EC 1.4.1.3). High levels of uricase (EC 1.7.3.3) and allantoinase (EC 3.5.2.5) were also detected. Allantoinase but little uricase was found in extracts of leaflets, pods, and seeds.

Balance sheets were constructed for production, storage, and utilization of ureide N during growth. Virtually all (average 92%) of the ureides exported from roots was metabolized on entering the shoot, the compounds being presumably used as N sources for protein synthesis.

  相似文献   

18.
Summary Three pericycle cell types (opposite xylem, opposite phloem and intervening) distinguished by their location in relation to different elements of the vascular system were studied in the adventitious root ofAllium cepa L. Changes in cell length and mitotic index were analysed in these cells along the apical meristem and elongation zone of the root. The opposite phloem and intervening pericycle cells are significantly shorter than the opposite xylem pericycle cells in the apical half of the meristem. Between 1,200 and 1,400 m behind the tip, length became similar in all three pericycle cell types, while in more proximal zones the opposite phloem cells were significantly longer. These results suggest that the number of transverse divisions is different in the three types of pericycle cells. In the apical half of the meristem, mitotic index increased in intervening and opposite xylem cells but remained unchanged in opposite phloem cells, a fact likely to account for the relative lengthening of the latter. In the proximal half of the meristem, mitotic index fell in all three cell types until cell division had ceased. However, mitotic index in opposite xylem cells remained high for longer than in the other two cell types, implying that increase of the mean cell length in the former was slower. These results suggest that differences in mean cell length between the three pericycle cell types are due to different rates of proliferation.  相似文献   

19.
There are conflicting reports in the literature of the possible role of the ureides, allantoin and allantoic acid, in the nitrogen economy of Arachis species. Therefore, xylem sap composition in food peanut ( Arachis hypogaea L.), and two forage peanuts ( A. pintoi L. and A. glabrata Benth.) has been studied in detail. Xylem saps were collected from peanuts grown under different nutritional regimes and environmental conditions in the glasshouse and field in Australia, Malaysia and Indonesia, and the N-containing solutes analysed. The relative amounts and concentrations of ureides in these peanut exudates were compared with those of soybean ( Glycine max [L.] Merr.) – a species known to export ureides in its xylem stream as the major product of N2 fixation.
Xylem concentrations of ureides in soybean were high in N2-fixing plants (2.9 to 3.7 μmol ml−1), representing 60 to 88% of xylem solute nitrogen, but it contributed only 9% (0.7 μmol ml−1) if plants were unnodulated and supplied nitrate. In all species of peanut, concentrations of ureides measured in xylem sap were generally much smaller (0.02 to 0.37 μmol ml−1; 1–7% of xylem nitrogen) and were unaffected by peanut species or cultivar, rhizobial strain, plant size, growth rate, or stage of development, and were not related to N2 fixation (less than 0.1% of currently fixed nitrogen exported as ureides) or the assimilation of nitrate. Apparently high levels of ureides in sap from some field-grown plants were shown to be due to interference with the ureide colorimetric assay by some contaminating compound rather than represent increased ureides per se.  相似文献   

20.
Several anatomical characters in leaves were described, and their distribution determined, for 153 species ofPolygonum, mostly from herbarium specimens. Structures surveyed were epidermal (glandular and nonglandular trichomes, nodules, specialized parenchyma, stomatal apparatus) and internal (cavities, crystals, laticifer-like cells, nodules, subepidermal fibers). Cleared leaves were supplemented by resin-embedded sections and SEM preparations of selected species. No feature defines any taxonomic section, but some features occur only within one section. Laticifer-like cells, epidermal and internal nodules, resin cups, and unique epidermal and subepidermal cavities seem to be unknown elsewhere; other features (invaginated epidermal cells; enlarged crystal cells confined to paraveinal layer) are rare among angiosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号