首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although most of pharmacological therapies for cancer utilize the apoptotic machinery of the cells, the available anti-cancer drugs are limited due to the ability of prostate cancer cells to escape from the anti-cancer drug-induced apoptosis. A human prostate cancer cell line PC3 is resistant to camptothecin (CPT). To elucidate the mechanism of this resistance, we have examined the involvement of sphingosine kinase (SPHK) and sphingosine 1-phosphate (S1P) receptor in CPT-resistant PC3 and -sensitive LNCaP cells. PC3 cells exhibited higher activity accompanied with higher expression levels of protein and mRNA of SPHK1, and also elevated expression of S1P receptors, S1P(1) and S1P(3), as compared with those of LNCaP cells. The knockdown of SPHK1 by small interfering RNA and inhibition of S1P receptor signaling by pertussis toxin in PC3 cells induced significant inhibition of cell growth, suggesting implication of SPHK1 and S1P receptors in cell proliferation in PC3 cells. Furthermore, the treatment of PC3 cells with CPT was found to induce up-regulation of the SPHK1/S1P signaling by induction of both SPHK1 enzyme and S1P(1)/S1P(3) receptors. These findings strongly suggest that high expression and up-regulation of SPHK1 and S1P receptors protect PC3 cells from the apoptosis induced by CPT.  相似文献   

2.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that has novel dual actions. S1P is the ligand for a family of G protein-coupled receptors known as S1PRs that mediate various physiological functions. Growth factors rapidly activate sphingosine kinase type 1 (SPHK1) resulting in phosphorylation of sphingosine to form S1P, which plays important roles in cell growth regulation and protection from apoptosis. However, little is known of the mechanism(s) by which SPHK activity is regulated. Using a yeast two-hybrid screening approach, we cloned a 3-kb cDNA encoding a SPHK1-interacting protein (SKIP). BLAST analysis revealed that SKIP corresponded to the C-terminal region of a larger ( approximately 7 kb) cDNA that encoded a protein with a high degree of similarity to a family of protein kinase A anchor proteins (AKAP). In confirmation of the yeast two-hybrid assay, glutathione S-transferase (GST)-SPHK1 specifically pulled down SKIP, whereas GST did not. Moreover, immunoprecipitation of in vitro translated SPHK1 and SKIP revealed that SKIP and SPHK1 are tightly associated. Furthermore, SKIP overexpression in NIH 3T3 fibroblasts reduced SPHK1 activity and interfered with its biological functions. The apoptotic-sparing effect of SPHK1 against serum deprivation was reduced when co-transfected with SKIP. In addition, SPHK1-enhanced cell proliferation was also abolished by SKIP, with a corresponding decrease in activation of ERK. Taken together, these results indicate that SKIP is a novel protein likely to play a regulatory role in the modulation of SPHK1 activity.  相似文献   

3.
Sphingosine kinase (SPHK) catalyzes sphingosine phosphorylation to form a bioactive lipid mediator, sphingosine-1-phosphate (S1P). In the current study, we report the presence of SPHK-1 in mouse spermatozoa. SPHK-1 was localized to the acrosomes of spermatozoa, and its expression was proven by RT-PCR and Western blot analysis. SPHK activity of mouse spermatozoa was 18.1 pmol/min/mg protein. Furthermore, we identified the presence of the S1P receptors S1P1, S1P2, S1P3, and S1P5, in mouse spermatozoa by RT-PCR. These results suggest that S1P produced by SPHK-1 would play a role in the acrosomal reaction through S1P receptors.  相似文献   

4.
The plasma lysophospholipid mediator sphingosine-1-phosphate (S1P) is produced exclusively by sphingosine kinase (SPHK) 1 and SPHK2 in vivo, and plays diverse biological and pathophysiological roles by acting largely through three members of the G protein-coupled S1P receptors, S1P(1), S1P(2) and S1P(3). S1P(1) expressed on endothelial cells mediates embryonic vascular maturation and maintains vascular integrity by contributing to eNOS activation, inhibiting vascular permeability and inducing endothelial cell chemotaxis via Gi-coupled mechanisms. By contrast, S1P(2), is expressed in high levels on vascular smooth muscle cells (VSMCs) and certain types of tumor cells, inhibiting Rac and cell migration via a G(12/13)-and Rho-dependent mechanism. In rat neointimal VSMCs, S1P(1) is upregulated to mediate local production of platelet-derived growth factor, which is a key player in vascular remodeling. S1P(3) expressed on endothelial cells also mediates chemotaxis toward S1P and vasorelaxation via NO production in certain vascular bed, playing protective roles for vascular integrity. S1P(3) expressed on VSMCs and cardiac sinoatrial node cells mediates vasopressor and negative chronotropic effect, respectively. In addition, S1P(3), together with S1P(2) and SPHK1, is suggested to play a protective role against acute myocardial ischemia. However, our recent work indicates that overexpressed SPHK1 is involved in cardiomyocyte degeneration and fibrosis in vivo, in part through S1P activation of the S1P(3) signaling. We also demonstrated that exogenously administered S1P accelerates neovascularization and blood flow recovery in ischemic limbs, suggesting its usefulness for angiogenic therapy. These results provide evidence for S1P receptor subtype-specific pharmacological intervention as a novel therapeutic approach to cardiovascular diseases and cancer.  相似文献   

5.
Sphingosine-1-phosphate(S1P) is a potent pleotropic bioactive lipid mediator involved in immune cell trafficking, cell survival,cell proliferation, cell migration, angiogenesis and many other cellular processes. S1 P either activates S1 P receptors(S1PR1-5) through "inside-out signaling" or acts directly on intracellular targets to regulate various cellular processes. In the past two decades, much progress has been made in exploring S1 P signaling and its pathogenic roles in diseases as well as in developing modulators of S1 P signaling, including S1 P agonists, S1 P antagonists and sphingosine kinase(SphK) inhibitors.Ceramide and S1 P have been defined as reciprocal regulators of cell fate, and S1 P signaling has been shown to be crucial for the pathogenesis of various diseases, including autoimmune diseases, inflammation and cancer; therefore, targeting S1 P signaling may curtail the process of pathogenesis and serve as a potential therapeutic target for the treatment of these diseases. In this review, we describe recent advances in our understanding of S1 P signaling in cancer development(particularly in inflammationassociated cancer) as well as in innate and adaptive immunity, and we also discuss modulators of S1 P signaling in cancer treatment.  相似文献   

6.
In the search for bioactive sphingosine 1-phosphate (S1P) receptor ligands, a series of 2-amino-2-heterocyclic-propanols were synthesized. These molecules were discovered to be substrates of human-sphingosine kinases 1 and 2 (SPHK1 and SPHK2). When phosphorylated, the resultant phosphates showed varied activities at the five sphingosine-1-phosphate (S1P) receptors (S1P1–5). Agonism at S1P1 was displayed in vivo by induction of lymphopenia. A stereochemical preference of the quaternary carbon was crucial for phosphorylation by the kinases and alters binding affinities at the S1P receptors. Oxazole and oxadiazole compounds are superior kinase substrates to FTY720, the prototypical prodrug immunomodulator, fingolimod (FTY720). The oxazole-derived structure was the most active for human SPHK2. Imidazole analogues were less active substrates for SPHKs, but more potent and selective agonists of the S1P1 receptor; additionally, the imidazole class of compounds rendered mice lymphopenic.  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator generated from sphingosine by sphingosine kinase (SPHK). S1P acts both extracellularly and intracellularly as a signaling molecule, although its intracellular targets are still undefined. Intracellular level of S1P is under strict regulatory control of SPHK regulation, S1P degradation, and S1P dephosphorylation. Therefore, clarifying the mechanisms regulating SPHK activity may help us understand when and where S1P is generated. In this study, we performed yeast two-hybrid screening to search for SPHK1a-binding molecules that may be involved in the regulation of the kinase localization or activity. Platelet endothelial cell adhesion molecule-1 (PECAM-1) was identified as a protein potentially associating with SPHK1a. Their association was confirmed by co-immunoprecipitation analysis using HEK293 cells overexpressing PECAM-1 and SPHK1a. Moreover, the kinase activity appeared to be reduced in stable PECAM-1-expressing cells. PECAM-1 is expressed on the cell surface of vascular cells, and several stimuli are known to induce phosphorylation of its tyrosine residues. We found that such phosphorylation attenuated its association with SPHK1a. This association/dissociation of SPHK with PECAM-1, regulated by the phosphorylated state of the membrane protein, may be involved in the control of localized kinase activity in certain cell types.  相似文献   

8.
血管生成是指在原有血管的基础上形成新血管的过程。病理性血管生成是癌症、心血管类疾病和视网膜病变等一系列疾病的标志。1-磷酸鞘氨醇(sphingosine-1-phosphate,S1P)是一种信号脂质,由鞘氨醇激酶(sphingosine kinases,SPHK)合成,通过5种G蛋白偶联受体(sphingosine-1-phosphate receptors,S1PR1-5)发挥其不同的生物学和病理生理作用,并通过激活受体启动各种信号级联反应,影响细胞命运、血管张力、内皮功能和完整性以及淋巴细胞的运输等。其产生和信号的失衡与内皮功能障碍和异常血管生成等病理过程密切相关。越来越多的证据表明, SPHK-S1P轴在血管生成中发挥重要作用,尤其在癌症的发生发展与肿瘤微环境、动脉粥样硬化、心肌梗死等心血管类疾病,以及糖尿病和视网膜病变中具有重要意义。研究其相关作用与功能,可为治疗血管生成相关疾病提供新见解和药物治疗靶点。本文就SPHK-S1P轴通过SPHK以及S1PR1-5影响内皮细胞和平滑肌增殖、内皮细胞迁移以及由内皮细胞、周细胞和平滑肌细胞等形成管腔的分子机制进行阐述,同时进一步阐述SPHK-S1P轴如何通过鞘氨醇激酶以及S1PR1-5影响肿瘤、心血管类疾病、糖尿病以及视网膜病变中血管生成,旨在通过理解SPHK-S1P轴在血管生成中的分子机制为相关疾病提供新的治疗思路。  相似文献   

9.
In mammalian cells sphingosine-1-phosphate (S1P) is a well-established messenger molecule that participates in a wide range of signalling pathways. The objective of the work reported here was to investigate the extent to which phosphorylated long-chain sphingoid bases, such as sphingosine-1-phosphate and phytosphingosine-1-phosphate (phytoS1P) are used in plant cell signalling. To do this, we manipulated Arabidopsis genes capable of metabolizing these messenger molecules. We show that Sphingosine kinase1 (SPHK1) encodes an enzyme that phosphorylates sphingosine, phytosphingosine and other sphingoid long-chain bases. The stomata of SPHK1-KD Arabidopsis plants were less sensitive, whereas the stomata of SPHK1-OE plants were more sensitive, than wild type to ABA. The rate of germination of SPHK1-KD was enhanced, whereas the converse was true for SPHK1-OE seed. Reducing expression of either the putative Arabidopsis S1P phosphatase (SPPASE) or the DPL1 gene, which encodes an enzyme with S1P lyase activity, individually, had no effect on guard-cell ABA signalling; however, stomatal responses to ABA in SPPASEDPL1 RNAi plants were compromised. Reducing the expression of DPL1 had no effect on germination; however, germination of SPPASE RNAi seeds was more sensitive to applied ABA. We also found evidence that expression of SPHK1 and SPPASE were coordinately regulated, and discuss how this might contribute to robustness in guard-cell signalling. In summary, our data establish SPHK1 as a component in two separate plant signalling systems, opening the possibility that phosphorylated long-chain sphingoid bases such as S1P and phytoS1P are ubiquitous messengers in plants.  相似文献   

10.
Sphingosine-1-phosphate (S1P) is a lipid mediator that exerts multiple cellular functions through activation of a subfamily of G-protein-coupled receptors. Although there is evidence that S1P plays a role in the developing and adult CNS, little is known about the ability of brain parenchyma to synthesize this lipid. We have therefore analyzed the brain distribution of the enzymatic activity of the S1P synthesizing enzyme, sphingosine kinase (SPHK) [EC:2.7.1.91], as well as mRNA distribution for one of the two isoforms of this enzyme, sphingosine kinase 2. SPHK activity, measured by the conversion of [(3)H]sphingosine to [(3)H]S1P, is highest in cerebellum, followed by cortex and brainstem. Lowest activities were found in striatum and hippocampus. Sensitivity to 0.1% Triton-X suggests that this activity is accounted for by SPHK2. RT-PCR and in situ hybridization studies show that mRNA for this isoform has a distribution similar to that of SPHK activity. In vivo and in vitro ischemia increase SPHK activity and SPHK2 mRNA levels. These results indicate that SPHK2 is the predominant S1P-synthesizing isoform in normal brain parenchyma. Its heterogeneous distribution, in particular laminar distribution in cortex, suggests a neuronal localization and a possible role in cortical and cerebellar functions, in normal as well as ischemic brain.  相似文献   

11.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), formed by phosphorylation of sphingosine, has been implicated in cell growth, suppression of apoptosis, and angiogenesis. In this study, we have examined the contribution of intracellular S1P to tumorigenesis of breast adenocarcinoma MCF-7 cells. Enforced expression of sphingosine kinase type 1 (SPHK1) increased S1P levels and blocked MCF-7 cell death induced by anti-cancer drugs, sphingosine, and TNF-alpha. SPHK1 also conferred a growth advantage, as determined by proliferation and growth in soft agar, which was estrogen dependent. While both ERK and Akt have been implicated in MCF-7 cell growth, SPHK1 stimulated ERK1/2 but had no effect on Akt. Surprisingly, parental growth of MCF-7 cells was only weakly stimulated by S1P or dihydro-S1P, ligands for the S1P receptors which usually mediate growth effects. When injected into mammary fat pads of ovariectomized nude mice implanted with estrogen pellets, MCF-7/SPHK1 cells formed more and larger tumors than vector transfectants with higher microvessel density in their periphery. Collectively, our results suggest that SPHK1 may play an important role in breast cancer progression by regulating tumor cell growth and survival.  相似文献   

12.
鞘磷脂是哺乳动物细胞质膜的主要成分之一,在其代谢过程中,鞘氨醇激酶(sphingosine kinase, SPHK)是一个关键性的调节酶.鞘磷脂代谢产物鞘鞍醇经SPHK磷酸化作用产生的鞘氨醇-1-磷酸(S1P)是一种具有生物活性的脂类,参与调节骨骼、神经、免疫、血液系统等多种组织细胞的生物学过程.本文阐述了SPHK/S1P信号途径相关分子,并综述了SPHK/S1P通过调节骨组织细胞的形态结构、增殖、迁移、分化形成及凋亡等功能,进而调节骨重建平衡过程的生物学效应及其机制.  相似文献   

13.
There is accumulating evidence that activation of sphingosine kinase 1 (SPHK1) is an important element in intracellular signalling cascades initiated by stimulation of multiple receptors, including certain growth factor, cytokine, and also G-protein coupled receptors. We here report that stimulation of the lung epithelial cell line A549 by thrombin leads to transient increase of SPHK1 activity and elevation of intracellular sphingosine-1-phosphate (S1P); abrogation of this stimulation by SPHK1-specific siRNA, pharmacological inhibition, or expression of a dominant-negative SPHK1 mutant blocks the response to thrombin, as measured by secretion of MCP-1, IL-6, IL-8, and PGE2. Using selective stimulation of proteinase-activated receptors (PARs) a specific involvement of SPHK1 in the PAR-1 induced responses in A549 cell, including activation of NFκB, was evident, while PAR-2 and PAR-4 responses were independent of SPHK1. Moreover, PAR-1 or thrombin-induced cytokine production and adhesion factor expression of human umbilical vein endothelial cells was also seen to depend on SPHK1. Using dermal microvascular endothelial cells from SPHK1-deficient mice, we showed that absence of the enzyme abrogates MCP-1 production induced in these cells upon treatment with thrombin or PAR-1 activating peptide. We propose SPHK1 inhibition as a novel way to block PAR-1 mediated signalling, which could be useful in treatment of a number of diseases, in particular in atherosclerosis.  相似文献   

14.
Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720   总被引:9,自引:0,他引:9  
Sphingosine-1-phosphate (S1P), a lipid signaling molecule that regulates many cellular functions, is synthesized from sphingosine and ATP by the action of sphingosine kinase. Two such kinases have been identified, SPHK1 and SPHK2. To begin to investigate the physiological functions of sphingosine kinase and S1P signaling, we generated mice deficient in SPHK1. Sphk1 null mice were viable, fertile, and without any obvious abnormalities. Total SPHK activity in most Sphk1-/-tissues was substantially, but not completely, reduced indicating the presence of multiple sphingosine kinases. S1P levels in most tissues from the Sphk1-/- mice were not markedly decreased. In serum, however, there was a significant decrease in the S1P level. Although S1P signaling regulates lymphocyte trafficking, lymphocyte distribution was unaffected in lymphoid organs of Sphk1-/- mice. The immunosuppressant FTY720 was phosphorylated and elicited lymphopenia in the Sphk1 null mice showing that SPHK1 is not required for the functional activation of this sphingosine analogue prodrug. The results with these Sphk1 null mice reveal that some key physiologic processes that require S1P receptor signaling, such as vascular development and proper lymphocyte distribution, can occur in the absence of SPHK1.  相似文献   

15.
16.
Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection.  相似文献   

17.
Sphingosine‐1‐phosphate (S1P) is a signalling lipid that regulates many cellular processes in mammals. One well‐studied role of S1P signalling is to modulate T‐cell trafficking, which has a major impact on adaptive immunity. Compounds that target S1P signalling pathways are of interest for immune system modulation. Recent studies suggest that S1P signalling regulates many more cell types and processes than previously appreciated. This review will summarise current understanding of S1P signalling, focusing on recent novel findings in the roles of S1P receptors in innate immunity.  相似文献   

18.
Sphingosine 1-phosphate (S1P) is a lipid mediator that plays important roles in diverse cellular functions such as cell proliferation, differentiation and migration. S1P is synthesized inside the cells and subsequently released to the extracellular space, where it binds to specific receptors that are located on the plasma membranes of target cells. Accumulating recent evidence suggests that S1P transporters including SPNS2 mediate S1P release from the cells and are involved in the physiological functions of S1P. In this review, we discuss recent advances in our understanding of the mechanism and physiological functions of S1P transporters. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号