首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Halogen bonding, a non-covalent interaction between the halogen σ-hole and Lewis bases, could not be properly characterized by majority of current scoring functions. In this study, a knowledge-based halogen bonding scoring function, termed XBPMF, was developed by an iterative method for predicting protein-ligand interactions. Three sets of pairwise potentials were derived from two training sets of protein-ligand complexes from the Protein Data Bank. It was found that two-dimensional pairwise potentials could characterize appropriately the distance and angle profiles of halogen bonding, which is superior to one-dimensional pairwise potentials. With comparison to six widely used scoring functions, XBPMF was evaluated to have moderate power for predicting protein-ligand interactions in terms of “docking power”, “ranking power” and “scoring power”. Especially, it has a rather satisfactory performance for the systems with typical halogen bonds. To the best of our knowledge, XBPMF is the first halogen bonding scoring function that is not dependent on any dummy atom, and is practical for high-throughput virtual screening. Therefore, this scoring function should be useful for the study and application of halogen bonding interactions like molecular docking and lead optimization.
Figure
Heat map of 2D XB potentials for OA-Cl  相似文献   

2.
O-H…X and O-H…O H-bonds as well as C-X…X dihalogen and C-X…O halogen bonds have been investigated in halomethanol dimers (bromomethanol dimer, iodomethanol dimer, difluorobromomethanol…bromomethanol complex and difluoroiodomethanol…iodomethanol complex). Structures of all complexes were optimized at the counterpoise-corrected MP2/cc-pVTZ level and single-point energies were calculated at the CCSD(T)/aug-cc-pVTZ level. Energy decomposition for the bromomethanol dimer complex was performed using the DFT-SAPT method based on the aug-cc-pVTZ basis set. OH…O and OH…X H-bonds are systematically the strongest in all complexes investigated, with the former being the strongest bond. Halogen and dihalogen bonds, being of comparable strength, are weaker than both H-bonds but are still significant. The strongest bonds were found in the difluoroiodomethanol…iodomethanol complex, where the O-H…O H-bond exceeds 7 kcal mol-1, and the halogen and dihalogen bonds exceed 2.5 and 2.3 kcal mol-1, respectively. Electrostatic energy is dominant for H-bonded structures, in halogen bonded structures electrostatic and dispersion energies are comparable, and, finally, for dihalogen structures the dispersion energy is clearly dominant.
Figure
Competition of hydrogen, halogen, and dihalogen bonding in the bromomethanol dimer are investigated  相似文献   

3.
Halogen-bonding, a noncovalent interaction between a halogen atom X in one molecule and a negative site in another, plays critical roles in fields as diverse as molecular biology, drug design and material engineering. In this work, we have examined the strength and origin of halogen bonds between carbene CH2 and XCCY molecules, where X?=?Cl, Br, I, and Y?=?H, F, COF, COOH, CF3, NO2, CN, NH2, CH3, OH. These calculations have been carried out using M06-2X, MP2 and CCSD(T) methods, through analyses of surface electrostatic potentials V S(r) and intermolecular interaction energies. Not surprisingly, the strength of the halogen bonds in the CH2···XCCY complexes depend on the polarizability of the halogen X and the electron-withdrawing power of the Y group. It is revealed that for a given carbene···X interaction, the electrostatic term is slightly larger (i.e., more negative) than the dispersion term. Comparing the data for the chlorine, bromine and iodine substituted CH2···XCCY systems, it can be seen that both the polarization and dispersion components of the interaction energy increase with increasing halogen size. One can see that increasing the size and positive nature of a halogen’s σ-hole markedly enhances the electrostatic contribution of the halogen-bonding interaction.
Graphical abstract
Halogen bonding interactions between carbene and X-CC-Y molecules (X?=?Cl, Br, and I; Y?=?H, F, COF, COOH, CF3, NO2, CN, OH, NH2, CH3)  相似文献   

4.
In this work, computations of density functional theory (DFT) were carried out to investigate the nature of interactions in solid 2,6-dibromo-4-nitroaniline (DBNA). This system was selected to mimic the hydrogen/halogen bonding found within crystal structures as well as within biological molecules. DFT (M06-2X/6-311++G**) calculations indicated that the binding energies for different of interactions lie in the range between ?1.66 and ?9.77 kcal mol?1. The quantum theory of atoms in molecules (QTAIM) was applied to provide more insight into the nature of these interactions. Symmetry-adapted perturbation theory (SAPT) analysis indicated that stability of the Br···Br halogen bonds is predicted to be attributable mainly to dispersion, while electrostatic forces, which have been widely believed to be responsible for these types of interactions, play a smaller role. Our results indicate that, for those nuclei participating in hydrogen/halogen bonding interactions, nuclear quadrupole resonance parameters exhibit considerable changes on going from the isolated molecule model to crystalline DBNA.
Figure
Electrostatic potential mapped on the surface of 2,6-dibromo-4-nitroaniline (DBNA) molecular electron density (0.001 e au?3). Color ranges for V S(r), in kcal?mol?1: red > 26.5, yellow 26.5–5.7, green 5.7– ?15.1, blue < ?15.1. Black circles Surface maxima, blue surface minima  相似文献   

5.
The halogen bonding interactions between C6F5I and a series of transition metal monohalides trans-[M(X)(2-C5NF4)-(PR3)2] (M = Ni, Pd, Pt; X = F, Cl, Br; R = Me, Cy) have been studied with quantum chemical calculations. Optimized geometries of the halogen bonding complexes indicate that angles C1-I···X are basically linear (178–180°) and angles I···X-M mainly range from 90 to 150°. The strength of these metal-influenced halogen bonds alters with different metal centers, metal-bound halogen atoms and the substitutes on phosphine ligands. Electrostatic potential and natural bond orbital analysis show that both of the electrostatic and orbital interactions make a contribution to the formation of halogen bonds, while the electrostatic term plays a dominant role. AIM analysis suggests that, for trans-[M(F)(2-C5NF4)-(PR3)2] (M = Ni, Pd, Pt) monomers, the formed halogen bonding complexes are stabilized by local concentration of the charge of intermediate character, while for the metal monomers containing chlorine and bromine, a typical closed-shell interaction exist. These results prove that the structures and geometries of these halogen bonding complexes can be tuned by changing the halogen atoms and metal centers, which may provide useful information for the design and synthesis of new functional materials.
Figure
The properties and structural characteristics of a series of metal-influenced halogen-bonding complexes have been studied by using density functional theory (DFT) method. The calculation results indicate that metal centers and metal-bound halogen atoms have significant influence on the geometries and strength of halogen bonds  相似文献   

6.
Thirteen X-ray crystal structures containing various non-covalent interactions such as halogen bonds, halogen–halogen contacts and hydrogen bonds (I?N, I?F, I?I, F?F, I?H and F?H) were considered and investigated using the DFT-D3 method (B97D/def2-QZVP). The interaction energies were calculated at MO62X/def2-QZVP and MP2/aug-cc-pvDZ level of theories. The higher interaction and dispersion energies (2nd crystal) of ?9.58 kcal mol?1 and ?7.10 kcal mol?1 observed for 1,4-di-iodotetrafluorobenzene bis [bis (2-phenylethyl) sulfoxide] structure indicates the most stable geometrical arrangement in the crystal packing. The electrostatic potential values calculated for all crystal structures have a positive σ-hole, which aids understanding of the nature of σ-hole bonds. The significance of the existence of halogen bonds in crystal packing environments was authenticated by replacing iodine atoms by bromine and chlorine atoms. Nucleus independent chemical shift analysis reported on the resonance contribution to the interaction energies of halogen bonds and halogen–halogen contacts. Hirshfeld surface analysis and topological analysis (atoms in molecules) were carried out to analyze the occurrence and strength of all non-covalent interactions. These analyses revealed that halogen bond interactions were more dominant than hydrogen bonding interactions in these crystal structures.
Graphical Abstract Molecluar structure of 1,4-Di-iodotetrafluorobenzene bis(thianthrene 5-oxide) moelcule and its corresponding molecular electrostatic potential map for the view of σ-hole.
  相似文献   

7.
The binding geometry of fluorouracil/cucurbit[n]urils (CB[n]s) complexes with n?=?5–8 is investigated using the first-principles van der Waals density functional (vdW-DF) method, involving full geometry optimization. Such host-guest complexes are typically calculated using conventional DFT method, which significantly underestimates non-local dispersion forces (or vdW contributions) and therefore affects interactions between respected entities. We address here the role of vdW forces for the fluorouracil and CB[n]s molecules which can form directional hydrogen bonds with each other. It was found that the inclusion of dispersion interactions significantly affects the host-guest binding properties and the hydrogen bonding between the molecules provides the main binding mechanism, while results in the same geometries for the considered complexes. The 0.84 eV binding energy, for the thermodynamically favorable state, reveals that the interaction of fluorouracil with CB[n]s is an exothermic interaction and typical for strong hydrogen bonding. Furthermore, we have investigated the binding nature of these host-guest systems in aqueous solution with ab initio MD simulations adopting vdW-DF method. These findings afford evidence for the applicability of the vdW-DF approach and provide a realistic benchmark for the investigation of the host-guest complexes.
Figure
The binding geometry of fluorouracil/CB[n]s complexes is investigated using the first-principles vdW-DF method, involving full geometry optimization.  相似文献   

8.
The ETS-NOCV analysis was applied to describe the σ-hole in a systematic way in a series of halogen compounds, CF3-X (X?=?I, Br, Cl, F), CH3I, and C(CH3)nH3-n-I (n?=?1,2,3), as well as for the example germanium-based systems. GeXH3, X?=?F, Cl, H. Further, the ETS-NOCV analysis was used to characterize bonding with ammonia for these systems. The results show that the dominating contribution to the deformation density, Δρ 1 , exhibits the negative-value area with a minimum, corresponding to σ-hole. The “size” (spatial extension of negative value) and “depth” (minium value) of the σ-hole varies for different X in CF3-X, and is influenced by the carbon substituents (fluorine atoms, hydrogen atoms, methyl groups). The size and depth of σ-hole decreases in the order: I, Br, Cl, F in CF3-X. In CH3-I and C(CH3)nH3-n-I, compared to CF3-I, introduction of hydrogen atoms and their subsequent replacements by methyl groups lead to the systematic decrease in the σ-hole size and depth. The ETS-NOCV σ-hole picture is consistent with the existence the positive MEP area at the extension of σ-hole generating bond. Finally, the NOCV deformation density contours as well as by the ETS orbital-interaction energy indicate that the σ-hole-based bond with ammonia contains a degree of covalent contribution. In all analyzed systems, it was found that the electrostatic energy is approximately two times larger than the orbital-interaction term, confirming the indisputable role of the electrostatic stabilization in halogen bonding and σ-hole bonding.
Figure
Graphical representation of the σ-hole on the halogen atom, based on the molecular electrostatic potential (upper row) and the NOCV deformation-density channel Δρ 1 (lower row and the right-hand side plot)  相似文献   

9.
This article analyzes the substitution effects on cooperativity between fluorin-centered halogen bonds in NCF?·?·?·?NCF?·?·?·?NCX and CNF?·?·?·?CNF?·?·?·?CNX complexes, where X?=?H, F, Cl, CN, OH, and NH2. These effects are investigated theoretically in terms of geometric and energetic features of the complexes, which are computed by ab initio methods. The topological analysis, based on the quantum theory of atoms in molecules (QTAIM), is used to characterize the interactions and analyze their enhancement with varying electron density at bond critical points. It is found that the complexes with electron-donating groups exhibit a strong cooperativity, while a much weaker cooperativity occurs in the NCF?·?·?·?NCF?·?·?·?NCCN and CNF?·?·?·?CNF?·?·?·?CNCN trimers. An excellent correlation is found between the cooperative energy in the ternary complexes and the calculated three-body interaction energies. The energy decomposition analysis (EDA) indicates that the electrostatic and dispersion effects play a main role in the cooperativity of fluorine-centered halogen bonding.
Figure
Structure of NCF···NCF···NCX and CNF···CNF···CNX complexes  相似文献   

10.
The capacity of SX2 (X = F, Cl, and Br) to engage in different kinds of noncovalent bonds was investigated by ab initio calculations. SCl2 (SBr2) has two σ-holes upon extension of Cl (Br)?S bonds, and two σ-holes upon extension of S?Cl (Br) bonds. SF2 contains only two σ-holes upon extension of the F?S bond. Consequently, SCl2 and SBr2 form chalcogen and halogen bonds with the electron donor H2CO while SF2 forms only a chalcogen bond, i.e., no F···O halogen bond was found in the SF2:H2CO complex. The S···O chalcogen bond between SF2 and H2CO is the strongest, while the strongest halogen bond is Br···O between SBr2 and H2CO. The nature of these two types of noncovalent interaction was probed by a variety of methods, including molecular electrostatic potentials, QTAIM, energy decomposition, and electron density shift maps. Termolecular complexes X2S···H2CO···SX′2 (X = F, Cl, Br, and X′ = Cl, Br) were constructed to study the interplay between chalcogen bonds and halogen bonds. All these complexes contained S···O and Cl (Br)···O bonds, with longer intermolecular distances, smaller values of electron density, and more positive three-body interaction energies, indicating negative cooperativity between the chalcogen bond and the halogen bond. In addition, for all complexes studied, interactions involving chalcogen bonds were more favorable than those involving halogen bonds.
Graphical Abstract Molecular electrostatic potential and contour map of the Laplacian of the electron density in Cl2S···H2CO···SCl2 complex
  相似文献   

11.
In the present study we have characterized the halogen bonding in selected molecules H3N–ICF3 (1-NH 3 ), (PH3)2C–ICF3 (1-CPH 3 ), C3H7Br–(IN2H2C3)2C6H4 (2-Br), H2–(IN2H2C3)2C6H4 (2-H 2 ) and Cl–(IC6F5)2C7H10N2O5 (3-Cl), containing from one halogen bond (1-NH 3 , 1-CPH 3 ) up to four connections in 3-Cl (the two Cl–HN and two Cl–I), based on recently proposed ETS-NOCV analysis. It was found based on the NOCV-deformation density components that the halogen bonding C–X B (X-halogen atom, B-Lewis base), contains a large degree of covalent contribution (the charge transfer to X B inter-atomic region) supported further by the electron donation from base atom B to the empty σ*(C–X) orbital. Such charge transfers can be of similar importance compared to the electrostatic stabilization. Further, the covalent part of halogen bonding is due to the presence of σ-hole at outer part of halogen atom (X). ETS-NOCV approach allowed to visualize formation of the σ-hole at iodine atom of CF3I molecule. It has also been demonstrated that strongly electrophilic halogen bond donor, [C6H4(C3H2N2I)2][OTf]2, can activate chemically inert isopropyl bromide (2-Br) moiety via formation of Br–I bonding and bind the hydrogen molecule (2-H 2 ). Finally, ETS-NOCV analysis performed for 3-Cl leads to the conclusion that, in terms of the orbital-interaction component, the strength of halogen (Cl–I) bond is roughly three times more important than the hydrogen bonding (Cl–HN).
Figure
ETS-NOCV reprezentation of σ-hole at iodine together with the molecular electrostatic potential picture  相似文献   

12.
MP2(full)/aug-cc-pVDZ(-PP) computations predict that new triangular bonding complexes (where X? is a halide and H–C refers to a protic solvent molecule) consist of one halogen bond and two hydrogen bonds in the gas phase. Carbon tetrabromide acts as the donor in the halogen bond, while it acts as an acceptor in the hydrogen bond. The halide (which commonly acts as an acceptor) can interact with both carbon tetrabromide and solvent molecule (CH3CN, CH2Cl2, CHCl3) to form a halogen bond and a hydrogen bond, respectively. The strength of the halogen bond obeys the order CBr4???Cl? > CBr4???Br? > CBr4???I?. For the hydrogen bonds formed between various halides and the same solvent molecule, the strength of the hydrogen bond obeys the order C-H???Cl? > C-H???Br? > C-H???I?. For the hydrogen bonds formed between the same halide and various solvent molecules, the interaction strength is proportional to the acidity of the hydrogen in the solvent molecule. The diminutive effect is present between the hydrogen bonds and the halogen bond in chlorine and bromine triangular bonding complexes. Complexes containing iodide ion show weak cooperative effects.
Figure
The triangular bonding complexes consisting of halogen bond and hydrogen bonds were predict in the gas phase by computational quantum chemistry.  相似文献   

13.
14.
The character of the cooperativity between the HOX···OH/SH halogen bond (XB) and the Y―H···(H)OX hydrogen bond (HB) in OH/SH···HOX···HY (X = Cl, Br; Y = F, Cl, Br) complexes has been investigated by means of second-order Møller?Plesset perturbation theory (MP2) calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The geometries of the complexes have been determined from the most negative electrostatic potentials (V S,min) and the most positive electrostatic potentials (V S,max) on the electron density contours of the individual species. The greater the V S,max values of HY, the larger the interaction energies of halogen-bonded HOX···OH/SH in the termolecular complexes, indicating that the ability of cooperative effect of hydrogen bond on halogen bond are determined by V S,max of HY. The interaction energies, binding distances, infrared vibrational frequencies, and electron densities ρ at the BCPs of the hydrogen bonds and halogen bonds prove that there is positive cooperativity between these bonds. The potentiation of hydrogen bonds on halogen bonds is greater than that of halogen bonds on hydrogen bonds. QTAIM studies have shown that the halogen bonds and hydrogen bonds are closed-shell noncovalent interactions, and both have greater electrostatic character in the termolecular species compared with the bimolecular species.
Figure
The character of the cooperativity between the X···O/S halogen bond (XB) and the Y―H···O hydrogen bond (HB) in OH/SH···HOX···HY (X=Cl, Br; Y=F, Cl, Br) complexes has been investigated by means of second-order Møller—Plesset perturbation theory (MP2) calculations and “quantum theory of atoms in molecules” (QTAIM) studies.  相似文献   

15.
Quantum chemical calculations are performed to study the interplay between halogen?nitrogen and halogen?carbene interactions in NCX?NCX?CH2 complexes, where X?=?F, Cl, Br and I. Molecular geometries and interaction energies of dyads and triads are investigated at the MP2/aug-cc-pVTZ level of theory. It is found that the X?N and X?Ccarbene interaction energies in the triads are larger than those in the dyads, indicating that both the halogen bonding interactions are enhanced. The estimated values of cooperative energy E coop are all negative with much larger E coop in absolute value for the systems including iodine. The nature of halogen bond interactions of the complexes is analyzed using parameters derived from the quantum theory atoms in molecules methodology and energy decomposition analysis.
Figure
The structure of NCX?NCX?CH2 complexes (X?=?F, Cl, Br and I)  相似文献   

16.
A quantum chemistry study was carried out to investigate the strength and nature of halogen bond interactions in HXeH···XCCY complexes, where X = Cl, Br and Y = H, F, Cl, Br, CN, NC, C2H, CH3, OH, SH, NH2. Examination of the electrostatic potentials V(r) of the XCCY molecules reveals that the addition of substituents has a significant effect upon the most positive electrostatic potential on the surface of the interacting halogen atom. We found that the magnitude of atomic charges and multipole moments depends upon the halogen atom X and is rather sensitive to the electron-withdrawing/donating power of the remainder of the molecule. An excellent correlation was found between the most positive electrostatic potentials on the halogen atom and the interaction energies. For either HXeH···ClCCY or HXeH···BrCCY complexes, an approximate linear correlation between the interaction energies and halogens multipole moments are established, indicating that the electrostatic and polarization interactions are responsible for the stability of the complexes. According to energy decomposition analysis, it is revealed that the electrostatic interactions are the major source of the attraction in the HXeH···XCCY complexes. Furthermore, the changes in the electrostatic term are mainly responsible for the dependence of interaction energy on the halogen atom.
Graphical abstract
Electrostatic potential mapped on the surface of molecular electron density at the 0.001 electrons Bohr ?3 of HXeH. The color ranges in kcal mol?1 red >8.5, yellow 1.5 to 8.5, green ?5.5 to 1.5, blue <?5.5. Black and blue circles are referred to surface maxima and minima, respectively.  相似文献   

17.
Calculation predicted the interacting forms of halopentafluorobenzene C6F5X (X=F, Cl, Br, I) with triethylphosphine oxide which is biologically interested and easily detected by 31P NMR. The interaction energy and geometric parameters of resultant halogen or π-hole bonding complexes were estimated and compared. Moreover, the bonding constants were determined by 31P NMR. Both theory and experiments indicated the C6F6 and C6F5Cl interact with triethylphosphine oxide by π-hole bonding pattern, while C6F5I by halogen/σ-hole bonding form. For C6F5Br, two interactions are comparative and should coexist competitively. The calculated interaction energies of σ-hole bonding complexes, ?5.07 kcal mol?1 for C6F5Br?O=P and ?8.25 kcal mol?1 for C6F5I?O=P, and π-hole bonding complexes, ?7.29 kcal mol?1 for C6F6?O=P and ?7.24 kcal mol?1 for C6F5Cl?O=P, are consistent with the changing tendency of bonding constants measured by 31P NMR, 4.37, 19.7, 2.42 and 2.23 M?1, respectively.
Figure
The competitive σ-hole···O=P and π-hole···O=P bonds between C6F5X (X=F, Cl, Br, I) and O=PEt3  相似文献   

18.
In this work several quantum properties including the NEDA and QTAIM are computed on three models of rapta-C complexes using DFT with hybrid functional and basis set with ECP and without ECP. Several interesting correlations within the observed properties and also with the reported experimental behaviors of these complexes including their biological activities are presented. The study shows that the stability of the two complexes with bidentate ligands is associated with their high hydrogen bonding stability and existence of stronger non-covalent metal-ligand bonds. The energy decomposition analysis indicated that inter-atomic interactions in the three forms of rapta-C complexes and their stability are governed by the charge transfer term with significant contributions from polarization and electrostatic terms. The higher stability of complex 1 and 2 over 3 comes from the lower exchange repulsion and higher polarization contributions to their stability which agrees perfectly with the experimental observation. Our results provide insight into the nature of intramolecular forces that influence the structural stability of the three complexes.  相似文献   

19.
The interaction between one polychlorobiphenyl (3,3′,4,4′,-tetrachlorobiphenyl, coded PCB77) and the four DNA nucleic acid–base is studied by means of quantum mechanics calculations in stacked conformations. It is shown that even if the intermolecular dispersion energy is the largest component of the total interaction energy, some other contributions play a non negligible role. In particular the electrostatic dipole-dipole interaction and the charge transfer from the nucleobase to the PCB are responsible for the relative orientation of the monomers in the complexes. In addition, the charge transfer tends to flatten the PCB, which could therefore intercalate more easily between DNA base pairs. From these seminal results, we predict that PCB could intercalate completely between two base pairs, preferably between Guanine:Cytosine pairs.
Figure
Molecular orbital interaction diagram of stacked PCB77 and Adenine.  相似文献   

20.
The interaction between oxazepam and C60 fullerene was explored using first-principles vdW-DF calculations. It was found that oxazepam binds weakly to the fullerene cage via its carbonyl group. The binding of oxazepam to C60 is affected drastically by nonlocal dispersion interactions, while vdW forces affect the corresponding geometries only a little. Furthermore, aqueous solution affects the geometries of the oxazepam approaching to fullerene slightly, while oxazepam binds slightly farther away from the nanocage. The results presented provide evidence for the applicability of the vdW-DF method and serve as a practical benchmark for the investigation of host–guest interactions in biological systems.
Figure
ab initio vdW-DF study on the possibility of formation of oxazepam/C60 complex at aqueous solution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号