首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.  相似文献   

2.
Protective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo. By systematic evaluation of the steps taking place during the PA-based intoxication process, we found that cAb29 did not interfere with the initial steps of intoxication, namely its ability to bind to the anthrax receptor, the consecutive proteolytic cleavage to PA63, oligomerization, prepore formation, or LF binding. However, the binding of cAb29 to the prepore prevented its pH-triggered transition to the transmembranal pore, thus preventing the last step of intoxication, i.e. the translocation of LF/EF into the cell. Epitope mapping, using a phage display peptide library, revealed that cAb29 binds the 2α1 loop in domain 2 of PA, a loop that undergoes major conformational changes during pore formation. In vivo, we found that 100% of anthrax-infected rabbits survived when treated with cAb29 12 h after exposure. In conclusion, these experiments demonstrate that cAb29 exerts its potent neutralizing activity in a unique manner by blocking the prepore-to-pore conversion process.  相似文献   

3.
炭疽毒素及其细胞受体的研究进展   总被引:1,自引:0,他引:1  
炭疽毒素由 3种蛋白组成 :保护性抗原 (protectiveantigen ,PA)、致死因子 (lethalfactor,LF)和水肿因子 (edemafactor ,EF) .综述炭疽毒素研究的最新进展 .主要介绍炭疽毒素的关键致病因子———LF的结构与功能 ,炭疽毒素膜转运成分PA的结构及其受体 (anthraxtoxinreceptor ,ATR)和其cDNA克隆的结构 ,并讨论了在炭疽的治疗、预防和毒素在肿瘤治疗中的可能应用 .  相似文献   

4.
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.  相似文献   

5.
Effects of the three-component toxin of Bacillus anthracis on chemotaxis of human polymorphonuclear leukocytes (PMN) were investigated in an effort to determine the basis of the reported antiphagocytic effect of the toxin. The three toxin components, edema factor (EF), protective antigen (PA), and lethal factor (LF), were tested alone and in various combinations for their effect on PMN chemotaxis under agarose to formyl peptides and zymosan-activated serum. No component was active alone; combinations of EF + PA, LF + PA, and EF + LF + PA markedly stimulated chemotaxis (directed migration), but had little or no effect on unstimulated random migration. The toxin components were not themselves chemoattractants. EF in combination with PA had previously been identified as an adenylate cyclase in Chinese hamster ovary (CHO) cells. We found that EF + PA produced detectable cyclic adenosine 3'-5'monophosphate (cAMP) in PMN, but the level of cAMP was less than 1% of that produced in CHO cells by EF + PA, and in PMN by other bacterial adenylate cyclases. LF + PA (which stimulated chemotaxis to an equivalent extent) had no effect on cAMP levels. Thus, the enhancement of chemotaxis by anthrax toxin (at least by LF + PA) does not seem to be related to adenylate cyclase activity.  相似文献   

6.
The significant threat posed by biological agents (e.g. anthrax, tetanus, botulinum, and diphtheria toxins) (Inglesby, T. V., O'Toole, T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Friedlander, A. M., Gerberding, J., Hauer, J., Hughes, J., McDade, J., Osterholm, M. T., Parker, G., Perl, T. M., Russell, P. K., and Tonat, K. (2002) J. Am. Med. Assoc. 287, 2236-2252) requires innovative technologies and approaches to understand the mechanisms of toxin action and to develop better therapies. Anthrax toxins are formed from three proteins secreted by fully virulent Bacillus anthracis, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). Here we present electrophysiological measurements demonstrating that full-length LF and EF convert the current-voltage relationship of the heptameric PA63 ion channel from slightly nonlinear to highly rectifying and diode-like at pH 6.6. This effect provides a novel method for characterizing functional toxin interactions. The method confirms that a previously well characterized PA63 monoclonal antibody, which neutralizes anthrax lethal toxin in animals in vivo and in vitro, prevents the binding of LF to the PA63 pore. The technique can also detect the presence of anthrax lethal toxin complex from plasma of infected animals. The latter two results suggest the potential application of PA63 nanopore-based biosensors in anthrax therapeutics and diagnostics.  相似文献   

7.
Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2) type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ). The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats.  相似文献   

8.
The anthrax toxin consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA mediates the entry of LF and EF to the cytosol where they exert their effects. Although PA is the major component of the vaccines against anthrax, LF has also been found to play an important role in enhancing protective immunity. We have developed an osmolyte-inducible LF expression system. The protein expression system contributed no additional amino acids to the recombinant LF making it suitable for the human vaccine trials.  相似文献   

9.
Bacillus anthracis is a Gram-positive bacillus that is the causative agent of anthrax. The virulence of the bacillus is partly due to the production of a tripartite virulence factor: protective antigen (PA), lethal factor (LF) and edema factor (EF). Recognition of the bacillus and its toxins by the innate immune system is likely to play a key role following infection. In this study we set out to investigate whether anthrax cell wall (ACW) components as well as the lethal toxin are sensed by Toll-like receptors (TLRs). Our data suggest that ACW components as well as PA are sensed by TLR2/6 heterodimers triggering an inflammatory response. This recognition takes place on the cell surface within specialized microdomains for ACW, whereas PA seems to trigger responses intracellularly. Interestingly, LF does not trigger a pro-inflammatory response, and when combined with PA, the complex is not sensed by the innate immune system. Overall our data suggest that TLR2/6 heterodimers are responsible for sensing the ACW and PA, whereas the formation of the subsequent toxin (LF + PA) seems to evade detection by the innate immune system contributing to the virulence of the toxin.  相似文献   

10.
Abstract

Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain)—an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wildtype (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 “small loop” (residues 679–693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4—receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (A724–735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the “small loop” and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.  相似文献   

11.
The protective antigen (PA) of the anthrax toxin binds to a cell surface receptor and thereby allows lethal factor (LF) to be taken up and exert its toxic effect in the cytoplasm. Here, we report that clustering of the anthrax toxin receptor (ATR) with heptameric PA or with an antibody sandwich causes its association to specialized cholesterol and glycosphingolipid-rich microdomains of the plasma membrane (lipid rafts). We find that although endocytosis of ATR is slow, clustering it into rafts either via PA heptamerization or using an antibody sandwich is necessary and sufficient to trigger efficient internalization and allow delivery of LF to the cytoplasm. Importantly, altering raft integrity using drugs prevented LF delivery and cleavage of cytosolic MAPK kinases, suggesting that lipid rafts could be therapeutic targets for drugs against anthrax. Moreover, we show that internalization of PA is dynamin and Eps15 dependent, indicating that the clathrin-dependent pathway is the major route of anthrax toxin entry into the cell. The present work illustrates that although the physiological role of the ATR is unknown, its trafficking properties, i.e., slow endocytosis as a monomer and rapid clathrin-mediated uptake on clustering, make it an ideal anthrax toxin receptor.  相似文献   

12.
Anthrax toxins   总被引:2,自引:0,他引:2  
Bacillus anthracis, the etiological agent of anthrax, secretes three polypeptides that assemble into toxic complexes on the cell surfaces of the host it infects. One of these polypeptides, protective antigen (PA), binds to the integrin-like domains of ubiquitously expressed membrane proteins of mammalian cells. PA is then cleaved by membrane endoproteases of the furin family. Cleaved PA molecules assemble into heptamers, which can then associate with the two other secreted polypeptides: edema factor (EF) and/or lethal factor (LF). The heptamers of PA are relocalized to lipid rafts where they are quickly endocytosed and routed to an acidic compartment. The low pH triggers a conformational change in the heptamers, resulting in the formation of cation-specific channels and the translocation of EF/LF. EF is a calcium- and calmodulin-dependent adenylate cyclase that dramatically raises the intracellular concentration of cyclic adenosine monophosphate (cAMP). LF is a zinc-dependent endoprotease that cleaves the amino terminus of mitogen-activated protein kinase kinases (Meks). Cleaved Meks cannot bind to their substrates and have reduced kinase activity, resulting in alterations of the signaling pathways they govern. The structures of PA, PA heptamer, EF, and LF have been solved and much is now known about the molecular details of the intoxication mechanism. The in vivo action of the toxins, on the other hand, is still poorly understood and hotly debated. A better understanding of the toxins will help in the design of much-needed anti-toxin drugs and the development of new toxin-based medical applications.Abbreviations CMG2 Capillary morphogenesis protein 2 - DTA Diphtheria toxin A chain - EF Edema factor - EFn N-terminal fragment of EF - ETx Edema toxin - GR Glucocorticoid receptors - GSK3 Glycogen synthase kinase 3 - I domain Integrin-like domain - iNOS Inducible nitric oxide synthase - LF Lethal factor - LFn N-terminal fragment of LF - LTx Lethal toxin - MAPK Mitogen-activated protein kinase - Mek MAPK kinases - PA Protective antigen - PA20 20-kDa N-terminal fragment of PA - PA63 63-kDa C-terminal fragment of PA - TEM8 Tumor endothelial marker 8  相似文献   

13.
Exogenous CD1d-binding glycolipid (α-Galactosylceramide, α-GC) stimulates TCR signaling and activation of type-1 natural killer–like T (NKT) cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT) on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA)-mediated intracellular delivery of lethal factor (LF), a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8) and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis–derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen.  相似文献   

14.
The 83 kDa protective antigen (PA(83)) component of anthrax toxin, after proteolytic activation, self-associates to form ring-shaped heptamers ([PA(63)](7)) that bind and aid delivery of the Edema Factor (EF) and Lethal Factor (LF) components to the cytosol. Here we show using fluorescence (F?rster) resonance energy transfer that a molecule of [PA(63)](7) can bind EF and LF simultaneously. We labeled EF and LF with an appropriate donor/acceptor pair and found quenching of the donor and an increase in sensitized emission of the acceptor when, and only when, a mixture of the labeled proteins was combined with [PA(63)](7). Addition of unlabeled PA(63)-binding domain of LF to the mixture competitively displaced labeled EF and LF, causing a loss of energy transfer. In view of the known maximum occupancy of 3 ligand molecules per [PA(63)](7), these findings indicate that PA, EF, and LF can form mixtures of liganded toxin complexes containing both EF and LF.  相似文献   

15.

Background

Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under physiological conditions (pH 7.4, 37°C), heptameric PA is more prevalent on cell surfaces. The difference between these two environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel formation—a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin complexes containing octameric PA are not understood.

Methodology

Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that the two different PA oligomers are equally stabilized by ANTXR interactions.

Conclusions

We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized. Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis.  相似文献   

16.
The virulence of Bacillus anthracis is critically dependent on the cytotoxic components of the anthrax toxin, lethal factor (LF) and edema factor (EF). LF and EF gain entry into host cells through interactions with the protective antigen (PA), which binds to host cellular receptors such as CMG2. Antibodies that neutralize PA have been shown to confer protection in animal models and are undergoing intense clinical development. A murine monoclonal antibody, 14B7, has been reported to interact with domain 4 of PA (PAD4) and block its binding to CMG2. More recently, the 14B7 antibody was used as the platform for the selection of very high affinity, single-chain antibodies that have tremendous potential as a combination anthrax prophylactic and treatment. Here, we report the high-resolution X-ray structures of three high-affinity, single-chain antibodies in the 14B7 family; 14B7 and two high-affinity variants 1H and M18. In addition, we present the first neutralizing antibody-PA structure, M18 in complex with PAD4 at 3.8 Å resolution. These structures provide insights into the mechanism of neutralization, and the effect of various mutations on antibody affinity, and enable a comparison between the binding of the M18 antibody and CMG2 with PAD4.  相似文献   

17.
The past five years have led to a tremendous increase in our molecular understanding of the mode of action of the anthrax toxin, one of the two main virulence factors produced by Bacillus anthracis. The structures of each of the three components of the toxin--lethal factor (LF), edema factor (EF) and protective antigen (PA)--have been solved not only in their monomeric forms but, depending on the subunit, in a heptameric form, bound to their substrate, co-factor or receptor. The endocytic route followed by the toxin has also been unraveled and the enzymatic mechanisms of EF and LF elucidated.  相似文献   

18.
Anthrax toxin, which is released from the Gram-positive bacterium Bacillus anthracis, is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA binds a receptor on the surface of the target cell and further assembles into a homo-heptameric pore through which EF and LF translocate into the cytosol. Two distinct cellular receptors for anthrax toxin, TEM8/ANTXR1 and CMG2/ANTXR2, have been identified, and it is known that their extracellular domains bind PA with low and high affinities, respectively. Here, we report the crystal structure of the TEM8 extracellular vWA domain at 1.7 Å resolution. The overall structure has a typical integrin fold and is similar to that of the previously published CMG2 structure. In addition, using structure-based mutagenesis, we demonstrate that the putative interface region of TEM8 with PA (consisting of residues 56, 57, and 154–160) is responsible for the PA-binding affinity differences between the two receptors. In particular, Leu56 was shown to be a key factor for the lower affinity of TEM8 towards PA compared with CMG2. Because of its high affinity for PA and low expression in normal tissues, an isolated extracellular vWA domain of the L56A TEM8 variant may serve as a potent antitoxin and a potential therapeutic treatment for anthrax infection. Moreover, as TEM8 is often over-expressed in tumor cells, our TEM8 crystal structure may provide new insights into how to design PA mutants that preferentially target tumor cells.  相似文献   

19.
Anthrax toxin: a tripartite lethal combination   总被引:12,自引:0,他引:12  
Anthrax is a severe bacterial infection that occurs when Bacillus anthracis spores gain access into the body and germinate in macrophages, causing septicemia and toxemia. Anthrax toxin is a binary A-B toxin composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). PA mediates the entry of either LF or EF into the cytosol of host cells. LF is a zinc metalloprotease that inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defences. Inhibitors targeting different steps of toxin activity have recently been developed. Anthrax toxin has also been exploited as a therapeutic agent against cancer.  相似文献   

20.
Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-γ-D-glutamic acid capsule. Atx is comprised of three proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT can assemble on host cell surfaces or extracellularly in plasma. We show that, under physiological conditions in bovine plasma, LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel-forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration, which allows them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that could circulate freely in the blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号