首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The capacity to cryopreserve semen from captive cranes facilitates production of offspring from behaviorally incompatible or geographically separated pairs, and allows for long-term preservation of valuable genetic materials. The present study sought to develop effective cryopreservation protocols for whooping (Grus americana) and white-naped (Grus vipio) cranes, through examining the influences of two permeating (DMA and Me2SO) and one non-permeating (sucrose) cryoprotectants, as well as vitamin E on post-thaw sperm survival. In Study 1, ejaculates (whooping: n = 10, white-naped: n = 8) were collected and cryopreserved in one of six cryo-diluents (crane extender with: DMA; DMA+0.1M sucrose; Me2SO; Me2SO+0.1M sucrose; 0.1M sucrose; 0.2M sucrose) using a two-step cooling method. Frozen samples were thawed and assessed for overall motility, motion characteristics, membrane integrity, morphology, and ability to bind to the inner perivitelline membrane (IPVM). In Study 2, whooping crane ejaculates (n = 17) were frozen in crane extender containing Me2SO alone or with vitamin E (5 μg/mL or 10 μg/mL). Frozen samples were thawed and assessed as in Study 1, except the binding assay. White-naped crane sperm were more tolerant to cryopreservation than whooping crane (15% vs 6% post-thawed motility). In both species, sperm cryopreserved in medium containing Me2SO alone displayed higher post thaw survival and ability to bind to IPVM than the other cryodiluent treatments. Vitamin E supplementation exerted no benefits to post thaw motility or membrane integrity. The findings demonstrated that there was species specificity in the susceptibility to cryopreservation. Nevertheless, Me2SO was a preferred cryoprotectant for sperm from both whooping and white-naped cranes.  相似文献   

2.
Medaka Oryzias latipes is a well-recognized biomedical fish model because of advantageous features such as small body size, transparency of embryos, and established techniques for gene knockout and modification. The goal of this study was to evaluate two critical factors, cryoprotectant and cooling rate, for sperm cryopreservation in 0.25-ml French straws. The objectives were to: (1) evaluate the acute toxicity of methanol, 2-methoxyethanol (ME), dimethyl sulfoxide (Me2SO), N,N-dimethylacetamide (DMA), N,N-dimethyl formamide (DMF), and glycerol with concentrations of 5%, 10%, and 15% for 60 min of incubation at 4 °C; (2) evaluate cooling rates from 5 to 25 °C/min for freezing and their interaction with cryoprotectants, and (3) test fertility of thawed sperm cryopreserved with selected cryoprotectants and associated cooling rates. Evaluation of cryoprotectant toxicity showed that methanol and ME (5% and 10%) did not change the sperm motility after 30 min; Me2SO, DMA, and DMF (10% and 15%) and glycerol (5%, 10% and 15%) significantly decreased the motility of sperm within 1 min after mixing. Based on these results, methanol and ME were selected as cryoprotectants (10%) to evaluate with different cooling rates (from 5 to 25 °C/min) and were compared to Me2SO and DMF (10%) (based on their use as cryoprotectants in previous publications). Post-thaw motility was affected by cryoprotectant, cooling rate, and their interaction (P ? 0.000). The highest post-thaw motility (50 ± 10%) was observed at a cooling rate of 10 °C/min with methanol as cryoprotectant. Comparable post-thaw motility (37 ± 12%) was obtained at a cooling rate of 15 °C/min with ME as cryoprotectant. With DMF, post-thaw motility at all cooling rates was ?10% which was significantly lower than that of methanol and ME. With Me2SO, post-thaw motilities were less than 1% at all cooling rates, and significantly lower compared to the other three cryoprotectants (P ? 0.000). When sperm from individual males were cryopreserved with 10% methanol at a cooling rate of 10 °C/min and 10% ME with a rate of 15 °C/min, no difference was found in post-thaw motility. Fertility testing of thawed sperm cryopreserved with 10% methanol at a rate of 10 °C/min showed average hatching of 70 ± 30% which was comparable to that of fresh sperm (86 ± 15%). Overall, this study established a baseline for high-throughput sperm cryopreservation of medaka provides an outline for protocol standardization and use of automated processing equipment in the future.  相似文献   

3.
This study aimed to improve a sperm cryopreservation protocol for farmed Pacific abalone, Haliotis discus hannai. Dimethyl sulfoxide (Me2SO), glycerol, ethylene glycol (EG), propylene glycol (PG), and methanol were chosen as cryoprotectants (CPAs). Four different equilibration time (5, 10, 30, and 60 min), and two types of equilibration temperature (4 °C and 20 °C) were selected at the present experiment. Most equilibration temperatures with each CPA showed significant differences among different equilibration time. Post-thaw sperm motility of five CPAs showed no significant difference at two equilibration temperature. Based on these results, 8% Me2SO, 8% EG, 6% PG, 2% glycerol, and 2% methanol were chosen to determine optimal conditions for sperm cryopreservation of H. discus hannai. The highest post-thaw sperm motility (8% Me2SO: 50.6%, 8% EG: 45.6%, 2% glycerol: 44.5%, 6% PG: 28.7%, 2% methanol: 25.4%) was achieved after exposing sperm to liquid nitrogen (LN2) vapor for 10 min at 5 cm above the LN2 surface and then submerging them in LN2 for at least 2 h followed by thawing at 60 °C with seawater and recovering them at 20 °C with seawater. In this study, 8% Me2SO and 2% glycerol were chosen to check post-thaw sperm quality to estimate percentages of plasma membrane integrity (PMI), mitochondrial potential analysis (MP), and acrosome integrity (AI) using fluorescent techniques. No significant difference in PMI, MP, and AI was found between sperm cryopreserved with 8% Me2SO and those cryopreserved with 2% glycerol. The current study has demonstrated that 8% Me2SO was optimal for sperm cryopreservation for H. discus hannai with 5 min of equilibration time, 5 cm of rack height and 60 °C of thawing temperature. The present research provides more effective cryopreservation methods for H. discus hannai sperm than previous studies.  相似文献   

4.
《Cryobiology》2016,73(3):183-190
Assessment of cell membrane integrity is one of the most widely used methods to measure post-cryopreservation viability of cells such as human umbilical vein endothelial cells (HUVECs). However, an evaluation of cell function provides a better measure of cell quality following cryopreservation. The tube formation assay mimics angiogenesis in vitro and can be used to quantitate the ability of endothelial cells to form capillary-like tubular structures when cultured on reconstituted basement membrane (Matrigel). We compared the membrane integrity (measured by flow cytometry) and tube forming ability of HUVEC suspensions exposed to 10% dimethyl sulfoxide (Me2SO), cooled at 1 °C/min to various sub-zero temperatures, plunged directly into liquid nitrogen, stored for an hour, and thawed rapidly. We found that as membrane integrity increased so did the various parameters associated with the extent of in vitro angiogenesis; however, in comparison to fresh cells with a similar percentage of membrane-intact cells, the extent of tube formation, expressed as total tube length, is significantly lower in previously frozen cells for the lower range of post-thaw membrane integrities. Our findings underscore the value of an assay that quantifies a specific function that a cell is known to perform in vivo to measure the success of cryopreservation protocols.  相似文献   

5.
In the present study, we examined methods for the cryopreservation of Epinephelus septemfasciatus spermatozoa. The percent motility, average path velocity, and linearity of movement (LIN) of fresh and corresponding post-thaw sperm were evaluated. Sperm motility was investigated using computer-assisted sperm analysis. Five percent dimethyl sulphoxide (Me2SO) with 95% fetal bovine serum (FBS) was the most successful cryoprotectant diluent with a comparative post-thaw motility of 77.6 ± 8.5%; 5% dimethyl formamide was also effective. Fetal bovine serum was significantly better as an extender when compared with artificial seminal plasma, glucose, and trehalose solution. Sperm tolerated a wide range of cooling rates (from 27.1 to 94.3 °C min?1); however, the post-thaw motility of sperm cooled to ?30 °C was significantly lower than that of other cooled temperatures (?40 to ?70 °C). The velocity of post-thaw sperm was significantly lower than that of fresh sperm, although LIN remained the same. For effective cryopreservation of seven-band grouper sperm, samples should be diluted in 5% Me2SO with 95% FBS and cooled to at least ?40 °C before immersion in liquid nitrogen.  相似文献   

6.
The recent decline and extinction of amphibian species is a worldwide phenomenon without an identified cause or solution. Assisted reproductive technologies, including sperm cryopreservation, are required to manage endangered amphibian species and preserve their genetic diversity. This study on the Anuran amphibian (Bufo marinus) was undertaken to determine the feasibility of cryopreservation of amphibian sperm. Sperm suspensions for cryopreservation were prepared by macerating testes in cryoprotective additives of 10% (w/v) sucrose or 10% (w/v) sucrose containing either 10, 15, or 20% (v/v) glycerol or 10, 15, or 20% (v/v) dimethyl sulfoxide (Me2SO). Suspensions were then cooled to −85°C using a controlled rate cooler, stored in LN2, and thawed in air. The motility and fertilization rate of cryopreserved suspensions and unfrozen control suspensions in Simplified Amphibian Ringer were compared. Sucrose alone had no cryoprotective effect. All other treatments showed varying degrees of recovery of motility and fertilizing capacity. High rates of recovery of motility and fertilizing capacity were observed with 15% Me2SO (68.9 ± 3.8 and 60.5 ± 4.7%) and 20% glycerol (58.0 ± 5.9 and 81.4 ± 4.3%), respectively. Motility and fertilization rates were similar with Me2SO but diverged with glycerol as cryoprotectant. The data demonstrate the feasibility of using sperm cryopreservation with amphibian species.  相似文献   

7.
A previous study demonstrated that disaccharides, antioxidants, and caspase inhibitors can be used in freezing solutions to reduce the concentration of Me2SO from the current standard of 10% (v/v) to 5% (v/v) or 2.5% and to eliminate fetal bovine serum (FBS) for the cryopreservation of human amniotic fluid-derived stem cells (AFSCs). Hence, this study investigated whether an irreversible inhibitor of caspase enzymes, benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone (zVAD-fmk), could be used in post-thaw culture media to increase the survival rate of AFSCs. Our results showed that AFSCs cryopreserved in freezing solution containing trehalose, catalase, and 5% (v/v) Me2SO and then supplemented with zVAD-fmk in the post-thaw culture media showed similar post-thawing viability, proliferation, and apoptosis than cells cryopreserved in the control solution (10% (v/v) Me2SO and 20% FBS). The caspase-3 activity in all the cryopreservation solutions tested was similar to that of the control. Caspase-3, caspase-8, caspase-9, and PARP expression was not found in the cryopreserved cells. In addition, no difference was found in the survival rate and apoptosis between short-term (3 weeks) and long-term (1 year) storage of AFSCs cryopreserved in the solutions used in this study. The results of the present study demonstrate that recovery of cryopreserved cells was enhanced by using a caspase inhibitor in the post-thaw culture media.  相似文献   

8.
Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me2SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me2SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine.  相似文献   

9.
Long term cryopreservation of tissue engineering constructs is of paramount importance to meet off-the shelf requirements for medical applications. In the present study, the effect of cryopreservation using natural osmolytes such as trehalose and ectoin with and without conventional Me2SO on the cryopreservation of tissue engineered constructs (TECs) was evaluated. MSCs derived from umbilical cord were seeded on electrospun nanofibrous silk fibroin scaffolds and cultured to develop TECs. TECs were subjected to controlled rate freezing using nine different freezing solutions. Among these, freezing medium consisting of natural osmolytes like trehalose (40 mM), ectoin (40 mM), catalase (100 μg) as antioxidant and Me2SO (2.5%) was found to be the most effective. Optimality of the chosen cryoprotectants was confirmed by cell viability (PI live/dead staining), cell proliferation (MTT assay), microstructure analysis (SEM), membrane integrity (confocal microscopy) and in vitro osteogenic differentiation (ALP assay, RT-PCR and histology) study carried out with post-thaw cryopreserved TECs. The mechanical integrity of the cryopreserved scaffold was found to be unaltered.  相似文献   

10.
Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs.Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen ‘in air’ and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%).No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of ‘ready-to-use’ TECs.  相似文献   

11.
Cryoprotectants play a vital role in the cryopreservation process, protecting biological samples from freezing damage. Here, we evaluate the effects of the combination and interaction of different extenders with permeable and non-permeable cryoprotectants, on the cryopreservation of Danio rerio sperm, analyzing the effects of cryopreservation through a broad approach to variables. Two extenders were used, Hank's balanced salt solution (HBSS) and Ginsburg's solution. Eight cryoprotective solutions (CS) were used: CS1 (HBSS + Me2SO 8%), CS2 (HBSS + Methanol 8%), CS3 (HBSS + Me2SO 8% + Skim milk powder 15%), CS4 (HBSS + Methanol 8% + Skim milk powder 15%), CS5 (Ginsburg + Me2SO 8%), CS6 (Ginsburg + Methanol 8%), CS7 (Ginsburg + Me2SO 8% + Skim milk powder 15%) and CS8 (Ginsburg + Methanol 8% + Skim milk powder 15%). The samples were cryopreserved in cryovials for 20 min on dry ice, stored in liquid nitrogen, thawed at 38 °C for 10 s, and analyzed. In addition to increasing viability, we show that powdered milk also allows for better preservation of the membrane and normal cell morphology, and protects the sperm cells from DNA damage and oxidative stress caused by cryopreservation.  相似文献   

12.
This study developed the cryopreservation of brown-marbled grouper spermatozoa for practical application. We examined 32 cryodiluents, developed from four types of cryoprotectants [propylene glycol (PG), dimethyl-sulphoxide (Me2SO), dimethyl-acetamide (DMA) and ethylene glycol (EG)] at four concentrations of 5, 10, 15 and 20% in combination with two extenders [Fetal bovine serum (FBS) and artificial seminal plasma (ASP). Cooling rates were examined by adjusting the height of straws (2.5–12.5 cm) from the liquid nitrogen (LN) vapor and cooled for 5 min before immersion into LN. DNA laddering was used to detect DNA damage in cryopreserved sperm. In fertilization trials, 0.5 g of eggs was mixed with cryopreserved sperm stored for 30 days in LN. The best motility of post-thaw sperm was achieved using 15% PG + 85% FBS (76.7 ± 8.8%); 10% PG + 90% FBS was also effective as cryodiluent. Generally, FBS gave better post-thaw motility compared to ASP. The optimum cooling rate was at 17.6 °C min−1 obtained by freezing at the height of 7.5 cm surface of LN. The results obtained showed that cryopreserved sperm of brown-marbled grouper suffered slight DNA fragmentation, which resulted in significantly lower motility. However, the fertilization (90.9 ± 0.5%), hatching (64.5 ± 4.1%) and deformity rates (3.8 ± 0.2%) obtained from cryopreserved sperm showed no significant difference with fresh sperm. These findings show that the developed protocol for cryopreservation of brown-marbled grouper sperm was viable and will be useful for successful breeding and seed production of brown-marbled grouper.  相似文献   

13.
This study determined the viscous conditions experienced by cells in the unfrozen freeze concentrated channels between ice crystals in slow cooling protocols. This was examined for both the binary Me2SO-water and the ternary Me2SO-NaCl-water systems.Viscosity increases from 6.9 ± 0.1 mPa s at −14.4 ± 0.3 °C to 958 ± 27 mPa s at −64.3 ± 0.4 °C in the binary system, and up to 55387 ± 1068 mPa s at −75 ± 0.5 °C in the ternary (10% Me2SO, 0.9% NaCl by weight) solution were seen. This increase in viscosity limits molecular diffusion, reducing adsorption onto the crystal plane. These viscosities are significantly lower than observed in glycerol based systems and so cells in freeze concentrated channels cooled to between −60 °C and −75 °C will reside in a thick fluid not a near-solid state as is often assumed.In addition, the viscosities experienced during cooling of various Me2SO based vitrification solutions is determined to below −70 °C, as is the impact which additional solutes exert on viscosity. These data show that additional solutes in a cryopreservation system cause disproportionate increases in viscosity. This in turn impacts diffusion rates and mixing abilities of high concentrations of cryoprotectants, and have applications to understanding the fundamental cooling responses of cells to Me2SO based cryopreservation solutions.  相似文献   

14.
《Cryobiology》2009,58(3):195-200
IntroductionHuman fetal liver (HFL) is a valuable source of hematopoietic stem/progenitor cells (HSCs) for the treatment of various hematological disorders. This study describes the effect of sucrose addition to a cryoprotective medium in order to reduce the Me2SO concentration during cryopreservation of HFL hematopoietic cell preparations.MethodsHuman fetal liver (HFL) cells of 8–12 weeks of gestation were cryopreserved with a cooling rate of 1 °C/min down to −80 °C and stored in liquid nitrogen. The cryoprotectant solutions contained 2% or 5% Me2SO (v/v) with or without sucrose at a final concentration of 0.05, 0.1, 0.2 or 0.3 M. The metabolic activity of HFL cells was determined using the alamar blue assay. For the determination of the number and survival of hematopoietic progenitors present, cells were stained with CD34 (FITC) and 7-AAD, and analyzed by flow cytometry. The colony-forming activity of HFL hematopoietic stem/progenitor cells after cryopreservation was assessed in semisolid methylcellulose.ResultsThe addition of sucrose to the cryoprotective medium produced a significant reduction in HFL cell loss during cryopreservation. The metabolic activity of HFL cells, cryopreserved with 5% Me2SO/0.3 M sucrose mixture was comparable to cryopreservation in 5% Me2SO/10% FCS. Although the inclusion of sucrose did not affect the survival of CD34+ cells in HFL after cryopreservation it did improve the functional capacity of hematopoietic stem/progenitor cells.ConclusionThe inclusion of sucrose as an additive to cryoprotective media for HFL cells enables a reduction in the concentration of Me2SO, replacing serum and increasing the efficiency of cryopreservation.  相似文献   

15.
We assessed the influences of medium osmolality, cryoprotectant and cooling and warming rate on maned wolf (Chrysocyon brachyurus) spermatozoa. Ejaculates were exposed to Ham’s F10 medium (isotonic control) or to this medium plus NaCl (350–1000 mOsm), sucrose (369 and 479 mOsm), 1 M glycerol (1086 mOsm) or dimethyl sulfoxide (Me2SO, 1151 mOsm) for 10 min. Each sample then was diluted back into Ham’s medium and assessed for sperm motility and plasma membrane integrity. Although glycerol and Me2SO had no influence (P > 0.05), NaCl and sucrose solutions affected sperm motility (P < 0.05), but not membrane integrity. Motility of sperm exposed to <600 mOsm NaCl or sucrose was less (P < 0.05) than fresh ejaculate, but comparable (P > 0.05) to the control. As osmolality of the NaCl solution increased, motility decreased to <5%. In a separate study, ejaculates were diluted in Test Yolk Buffer containing 1 M glycerol or Me2SO and cooled from 5 °C to −120 °C at −57.8 °C, −124.2 °C or −67.0 °C/min, frozen in LN2, thawed in a water bath for 30 s at 37 °C or 10 s at 50 °C, and then assessed for motility, plasma- and acrosomal membrane integrity. Cryopreservation markedly (P < 0.05) reduced sperm motility by 70% compared to fresh samples. Higher (P < 0.05) post-thaw motility (20.0 ± 1.9% versus 13.5 ± 2.1%) and membrane integrity (51.2 ± 1.7% versus 41.5 ± 2.2%) were observed in samples cryopreserved in Me2SO than in glycerol. Cooling rates influenced survival of sperm cryopreserved in glycerol with −57.8 °C/min being advantageous (P < 0.05). The findings demonstrate that although maned wolf spermatozoa are similar to domestic dog sperm in their sensitivity to osmotic-induced motility damage, the plasma membranes tolerate dehydration, and the cells respond favorably to Me2SO as a cryoprotectant.  相似文献   

16.
《Cryobiology》2013,66(3):215-223
Rat sperm cryopreservation is an effective method of archiving valuable strains for biomedical research and handling of rat spermatozoa is very important for successful cryopreservation. The aim of this study was to evaluate changes in rat sperm function during cryopreservation and centrifugation. Epididymal rat spermatozoa were subjected to cooling and freezing–thawing processes and then motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were compared before and after minimum centrifugation force (200×g). Cryopreservation decreased sperm motility, PMI, and MMP (P < 0.05). Basal (without ROS inducer, tert-butyl hydroperoxide [TBHP] treatment) and stimulated ROS (with TBHP treatment) were increased in viable cooled spermatozoa compared to viable fresh spermatozoa (P < 0.01), with equal susceptibility to TBHP among fresh, cooled, and frozen–thawed spermatozoa. Centrifugation decreased motility and PMI of frozen–thawed spermatozoa (P < 0.05). Centrifugation decreased basal ROS of all spermatozoa (P < 0.01), while it led to higher susceptibility to TBHP in viable cooled spermatozoa, showing higher increased fold in ROS and decreased rate in viability by TBHP in viable cooled spermatozoa (P < 0.05). Cooling process was the major step of ROS generation, with loss in sperm motility, PMI, and MMP. Centrifugation affected function of cryopreserved spermatozoa. These data suggest that centrifugation makes rat spermatozoa susceptible to external ROS source, in particular during cooling process. Thus, protection from ROS damage and minimizing centrifugation should be considered during cryopreservation and post-thaw use of cryopreserved epididymal rat spermatozoa.  相似文献   

17.
Transplantation using hematopoietic stem cells from umbilical cord blood (UCB) is a life-saving treatment option for patients with select oncologic diseases, immunologic diseases, bone marrow failure, and others. Often this transplant modality requires cryopreservation and storage of hematopoietic stem cells (HSC), which need to remain cryopreserved in UCB banks for possible future use. The most widely used cryoprotectant is dimethylsulfoxide (Me2SO), but at 37 °C, it is toxic to cells and for patients, infusion of cryopreserved HSC with Me2SO has been associated with side effects. Freezing of cells leads to chemical change of cellular components, which results in physical disruption. Reactive oxygen species (ROS) generation also has been implicated as cause of damage to cells during freezing. We assessed the ability of two bioantioxidants and two disaccharides, to enhance the cryopreservation of UCB. UCB was processed and subjected to cryopreservation in solutions containing different concentrations of Me2SO, bioantioxidants and disaccharides. Samples were thawed, and then analysed by: flow cytometry analysis, CFU assay and MTT viability assay. In this study, our analyses showed that antioxidants, principally catalase, performed greater preservation of: CD34+ cells, CD123+ cells, colony-forming units and cell viability, all post-thawed, compared with the standard solution of cryopreservation. Our present studies show that the addition of catalase improved the cryopreservation outcome. Catalase may act on reducing levels of ROS, further indicating that accumulation of free radicals indeed leads to death in cryopreserved hematopoietic cells.  相似文献   

18.
Liu G  Shu C  Cui L  Liu W  Cao Y 《Cryobiology》2008,56(3):209-215
Bone marrow mesenchymal stem cells (MSCs) have become the main cell source for bone tissue engineering. It has been reported that cryopreserved human MSCs can maintain their potential for proliferation and osteogenic differentiation in vitro. There are, however, no reports on osteogenesis with cryopreserved human MSCs in vivo. The aim of this study was to determine whether cryopreservation had an effect on the proliferation capability and osteogenic differentiation of human MSCs on scaffolds in vitro and in vivo. MSCs were isolated from human bone marrow, cultured in vitro until passage 2, and then frozen and stored at −196 °C in liquid nitrogen with 10% Me2SO as cryoprotectant for 24 h. The cryopreserved MSCs were then thawed rapidly, seeded onto partially demineralized bone matrix (pDBM) scaffolds and cultured in osteogenic media containing 10 mM sodium β-glycerophosphate, 50 μM l-ascorbic acid, and 10 nM dexamethasone. Non-cryopreserved MSCs seeded onto the pDBM scaffolds were used as control groups. Scanning electronic microscopy (SEM) observation, DNA content assays, and measurements of alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were applied, and the results showed that the proliferation potential and osteogenic differentiation of MSCs on pDBM in vitro were not affected by cryopreservation. After 2 weeks of subculture, the MSCs/pDBM composites were subcutaneously implanted into the athymic mice. The constructs were harvested at 4 and 8 weeks postimplantation, and histological examination showed tissue-engineered bone formation in the pDBM pores in both groups. Based on these results, it can be concluded that cryopreservation allows human MSCs to be available for potential therapeutic use to tissue-engineer bone.  相似文献   

19.
《Cryobiology》2016,73(3):191-197
Although primary neuronal cells are routinely used for neuroscience research, with potential clinical applications such as neuronal transplantation and tissue engineering, a gold standard protocol for preservation has not been yet developed. In the present work, a slow cooling methodology without ice seeding was studied and optimized for cryopreservation of rat cerebellar granular cells. Parameters such as cooling rate, plunge temperature and cryoprotective agent concentration were assessed using a custom built device based on Pye's freezer idea. Cryopreservation outcome was evaluated by post thawing cell viability/viable cell yield and in culture viability over a period of 14 days. The best outcome was achieved when 10% of Me2SO as cryoprotective agent, a cooling rate of 3.1 ± 0.2 °C/min and a plunge temperature of −48.2 ± 1.5 °C were applied. The granular cells cryopreserved under these conditions exhibited a cell viability of 82.7 ± 2.7% and a viable cell yield of 28.6 ± 2.2%. Moreover, cell viability in culture remained above 50%, very similar to not cryopreserved cells (control). Our results also suggest that post-thaw viability (based on membrane integrity assays) not necessarily reflects the quality of the cryopreservation procedure and proper functionality tests must be carried out in order to optimize both post thaw viability/cell yield and in culture performance.  相似文献   

20.
Culture collections of microalgae represent a biological resource for scientific research and biotechnological applications. When compared to the current methods of maintenance and sub-culturing, cryopreservation minimizes labor costs and is an effective method for maintaining a large range of species over long periods with high stability. In order to determine the best cryopreservation method for microalgae species with great biotechnological potential, three freezing protocols were employed using different cryoprotectants (dimethyl sulfoxide—Me2SO; methanol—MeOH). Three marine microalgae species (Thalassiosira weissflogii; Nannochloropsis oculata, and Skeletonema sp.) were cooled by directly plunging into liquid nitrogen (?196°C) and with two-step controlled cooling protocols (?18°C and ?80°C pre-treatments). After storage periods ranging from 10 to 120 days, viability was determined by the ability of cells to actively grow again. Results obtained for T. weissflogii showed that this species could be preserved at ultra-low temperature (?196°C) for 10 and 30 days with 10?% Me2SO and 5?% MeOH when employed a controlled cooling protocol (?80°C). N. oculata was successfully cryopreserved either by direct freezing or with controlled cooling protocols. N. oculata samples presented good responses when treated with 5?% Me2SO, 10?% Me2SO, 5?% MeOH and even without any cryoprotectant. Skeletonema sp. did not survive cryopreservation in any of the tested conditions. The results indicate the difficulty in establishing common protocols for different microalgae species, being necessary further studies for a better understanding of cell damages during freezing and thawing conditions for each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号