首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This study compared slow freezing and vitrification of ovarian tissue by evaluation of histological changes, WNT signaling pathway and apoptotic genes expression. Ovarian tissue was obtained from women aging 27–38 years old. Ovarian cortex from each patient was divided into three pieces and randomly grouped as slow freezing, vitrification and control groups for investigation of WNT signaling gene expression and β-CATENIN presence as well as histological studies. The stromal structure of all ovaries were preserved. The number of secondary follicles decreased in vitrified group (P < 0.05). WNT-3, β-CATENIN, FZD-2 and GSK-3β expressions were significantly higher in slow frozen and vitrified groups, compared to control group (P < 0.05). On the contrary, AXIN1 expression in slow frozen samples were significantly lower than that of the vitrified and control group. The expression of apoptotic genes, excluding CASP3, was significantly decreased in slow-frozen samples (P < 0.05). Conversely, BAX:BCL-2 percentage significantly increased in vitrification versus slow freezing and control(P < 0.05). Follicles in slow frozen samples displayed nuclear and cytoplasmic β-CATENIN staining, while control and vitrification groups only showed β-CATENIN protein in the cytoplasm. The presented data show that slow freezing results in a better preservation regardless of the type of follicle. Therefore, it is concluded that slow freezing is still an ideal method for ovary cryopreservation.  相似文献   

2.
The purpose of our study was to assess the effect of vitrification with or without the presence of calcium in the vitrification solution on the: 1) diameter of oocytes and thickness of the zona pellucida, 2) zona pellucida hardening, 3) expression of mRNA follistatin (FST) and cathepsin B (CTSB) in oocytes and 4) developmental competence of embryos derived from in vitro matured and vitrified oocytes.The results of our study demonstrate, that vitrification did not alter thickness of the zona pellucida and diameter of the oocytes, however it triggered hardening of the zona pellucida. The presence of calcium in the vitrification solutions intensified hardening of zona in immature and mature oocytes (P < 0.04, P < 0.001, respectively) and provoked increased mRNA FST expression in oocytes matured in vitro compared to immature oocytes (P < 0.01) and those vitrified without calcium (P < 0.004). CTSB mRNA expression was increased in immature oocytes and oocytes vitrified with calcium compare to mature oocytes (P < 0.02). The developmental potential of vitrified oocytes was impaired compared to non-vitrified oocytes, being more evident in oocytes vitrified with calcium.In summary, vitrification did not change the oocyte diameter and thickness of the zona pellucida and expression of FST and CTSB mRNA. It diminished developmental potential of the vitrified oocytes. The presence of calcium in the vitrification solutions increased hardening of zona pellucida as well as affected the level of FST and CTSB mRNA in oocytes and developmental potential of these oocytes.  相似文献   

3.
4.
The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.  相似文献   

5.
《Cryobiology》2015,70(3):428-433
The objective of this study was to develop an effective ultra-rapid vitrification method and evaluate its effect on maturation, developmental competence and development-related gene expression in bovine immature oocytes. Bovine cumulus oocyte complexes were randomly allocated into three groups: (1) controls, (2) liquid nitrogen vitrification, and (3) liquid helium vitrification. Oocytes were vitrified and then warmed, the percentage of morphologically normal oocytes in liquid helium group (89.0%) was significantly higher (P < 0.05) than that of the liquid nitrogen group (81.1%). When the vitrified–thawed oocytes were matured in vitro for 24 h, the maturation rate in liquid helium group (50.6%) was higher (P < 0.05) than liquid nitrogen group (42.6%). Oocytes of liquid helium vitrification had higher cleavage and blastocyst rates (41.1% and 10.0%) than that of liquid nitrogen vitrification (33.0% and 4.5%; P < 0.05) after in vitro fertilization. Moreover, the expression of GDF9 (growth/differentiation factor-9), BAX (apoptosis factor) and ZAR1 (zygote arrest 1) was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) when the vitrified–thawed oocytes were matured 24 h. The expression of these genes was altered after vitrification. Expression of GDF9 and BAX in the liquid helium vitrification group was not significantly different from that of the control, however there were significant differences between the liquid nitrogen vitrification group and control. In conclusion, it was feasible to use liquid helium for vitrifying bovine immature oocytes. There existed an association between the compromised developmental competence and the altered expression levels of these genes for the vitrified oocytes.  相似文献   

6.
The aim of the study was to identify a cryo-device that would be best suited for the vitrification of buffalo immature cumulus-oocyte complexes (COCs) as judged by viability and meiotic competence of the vitrified-warmed oocytes and their development ability following in vitro fertilization (IVF). The expression of oocyte secreting factors and their receptors (GDF9, BMP15, BMPR2, TGFBR1) and apoptosis related genes (BCL2, BAX, P53, C-MYC) were compared in vitrified-warmed oocytes after in vitro maturation. COCs from the ovaries of slaughtered buffaloes were vitrified in a combination of dimethyl sulfoxide, ethylene glycol, and sucrose using either a conventional straw (CS), open pulled straw (OPS), cryoloop (CL), hemistraw (HS) or cryotop (CT). The fresh COCs were exposed to vitrification and warming solutions as in other vitrification methods without plunging in to liquid nitrogen (EC). The viability of vitrified-warmed COCs, 2 h post warming in HS and CT was similar to fresh and EC groups but significantly higher than CS and OPS methods. The proportions of oocytes with first polar body after 24 h in vitro maturation were significantly higher in HS and CT methods than in CS, OPS and CL methods. The development ability of these vitrified-warmed oocytes to blastocyst stage following IVF in all vitrified groups was significantly lower than control and EC groups. Among the vitrified groups, the blastocyst rate in HS, CT and CL groups was significantly higher than in OPS and CS groups. It was also observed that the expression levels of GDF9, BMP15, BMPR2, TGFBR1, BCL2, BAX, P53 and C-MYC genes in vitrified-warmed COCs in CT, HS and CL groups were similar to control. The results indicated that HS, CT and CL are more suitable cryo-devices for vitrification of buffalo immature oocytes.  相似文献   

7.
8.
The aim of the present study was to perform a qualitative and quantitative analysis of the effect of different sucrose concentrations combined with ethylene glycol in the preservation of vitrified porcine preantral follicles. Fragments of ovarian cortex were vitrified in cryotubes containing 200 μl of the vitrification solution (30% Ethylene Glycol; 20% Fetal Bovine Serum; 0 M–0.25 M – 0.75 M or 1 M sucrose) and stored in liquid nitrogen for a week. Histological analysis showed that after vitrification the number of normal follicles decreased compared to the fresh tissue (control). The percentage of normal primordial follicles was sucrose dose dependent. The percentage of normal primary follicles was similar in 0 M or 0.25 M sucrose, while higher concentrations (0.75 M and 1 M) increased significantly the percentage of abnormal follicles (p < 0.05). Morphometric analysis showed a statistically significant reduction in the total area of primordial follicles with 0.75 M sucrose and a significant increase in the cytoplasmic area of primordial follicles with 0 M sucrose (p < 0.05). The qualitative and the quantitative analysis appear to be a complementary tool when choosing a vitrification protocol. For our cryopreservation system - vitrification of ovarian cortex slices in cryotubes-the best vitrification medium was TCM 199-Hepes with 30% de ethylene glycol, 20% of Fetal Bovine Serum and 0 or 0.25 M sucrose. The present study shows that the use of high sucrose concentrations in the vitrification solution has a deleterious effect on the preservation of porcine preantral follicles contained in ovarian tissue. Consequently, its use at 0.75 M or 1 M wouldn't be recommended.  相似文献   

9.
Data of cryoprotectant-free vitrification of human testicular and epididymal spermatozoa are limited. The aim of this investigation was to compare two aseptic technologies of TESE (testicular) and MESA (epididymal) spermatozoa cryopreservation: standard conventional freezing with the use of cryoprotectants and cryoprotectant-free vitrification. Sperm motility, capacitation-like changes, acrosome reaction and the mitochondrial membrane potential of frozen (5% glycerol, −10 °C/min) and vitrified (Human Tubal Fluid + 1% Human Serum Albumin+0.25 M sucrose, plunging into liquid nitrogen of capillaries with spermatozoa isolated from liquid nitrogen (aseptic method) were compared. The quality of the cryoprotectant-free vitrified MESA- and TESE-spermatozoa was higher than that of spermatozoa conventionally frozen with permeable cryoprotectants. Intracellular sperm injection (ICSI) was performed with vitrified spermatozoa. We report the birth of three healthy babies from two women following ICSI with motile MESA- and TESE-spermatozoa vitrified without cryoprotectants. This is the first report of full-term pregnancies and babies born after ICSI with epididymal and testicular spermatozoa vitrified without cryoprotectants. In conclusion, cryoprotectant-free vitrification can be successfully applied for the cryopreservation of motile TESE- and MESA-spermatozoa.  相似文献   

10.
This study was conducted to evaluate the effects of developmental stage of in vitro produced (IVP) ovine embryos and the type of vitrification procedure used on embryo cryotolerance.The IVP embryos were vitrified at five different developmental stages: 4-, 8- and 16-cell, morula, and blastocyst. For each stage, half of the embryos were vitrified in either 30 μl 3.4 M glycerol + 4.6 M ethylene glycol in straw (method 1) or in <0.1 μl 2.7 M ethylene glycol + 2.1 M Me2SO + 0.5 M sucrose placed on the inner surface of a straw (method 2) of vitrification solution, based on two different procedures. After warming embryo viability was determined by assessing the rates of re-expansion, survival, and blastocyst formation. The quality of surviving embryos was evaluated by their hatching rate and blastocyst cell numbers. In both vitrification methods, embryo survival progressively increased as the developmental stage progressed. In method 1 few of the early cleavage stage embryos (4-, 8- and 16-cell) could reach to the blastocyst stage following warming. There was no significant difference in blastocyst cell numbers (total, ICM, and trophectoderm cells) or hatching rate of blastocysts derived from vitrified embryos at different developmental stages. The number of dead cells in vitrified blastocysts in method 1 was higher than for non-vitrified blastocysts (P < 0.05). The number of apoptotic cells in vitrified blastocysts was higher than for non-vitrified counterparts (P < 0.05). In conclusion, both the developmental stage of IVP ovine embryos and the method of vitrification have a significant effect on the viability and developmental competence of sheep embryos.  相似文献   

11.
Loss of biodiversity among amphibians is a current concern. Our hypothesis is that the embryos of amphibian species at risk of extinction could be cryopreserved by vitrification, using methods which have proved successful with fish oocyte. To test this hypothesis, samples of four cryoprotectants - methanol (MeOH), dimethyl sulphoxide (Me2SO), propylene glycol (PG) and polyethylene glycol (PEG), some singly, some in combination, were plunged in liquid nitrogen for 5 min to find the best solution for vitrification. To find the least toxic of these solutions, blastulae and stage G17 embryos of Bufotes Viridis, a typical amphibian, were exposed to solutions at different concentrations (0.5–10 M) for different lengths of time (15–30 min), with and without their normal protective jelly coats. In each case the number of survivors, which reached stage G25 was counted. Finally a series of embryos was vitrified in liquid nitrogen using the most efficient and least toxic cryoprotectants.Propylene glycol had the best vitrification characteristics, but MeOH vitrified at higher concentrations. The optimum regime, with the least toxic ctyoprotectants, consisted of 1M Me2SO for 15 min and a combination of 15% PEG(w/v) + 3M PG + 2M Me2SO for 3 min, with the jelly coat intact, followed by vitrification. This gave a survival percentage of 87.6% immediately after vitrification. Methods designed for cryopreservation of fish embryos make a good starting point for cryopreservation of the embryos of amphibian.  相似文献   

12.
13.
This work studies the effect of vitrification of in vitro matured (IVM) prepubertal goat oocytes on: 1) oocyte damage assessed by reactive oxygen species (ROS) level and apoptosis and 2) embryo development after Intracytoplasmic sperm injection (ICSI) and Parthenogenic Activation (PA). Oocytes were IVM in supplemented TCM-199 for 22–24 h. Control group oocytes matured during 24 h were directly used for the analysis after IVM. Vitrified/warmed IVM-oocytes were vitrified after 22 h of IVM in 15% ethylene glycol (EG), 15% dimethyl sulfoxide (Me2SO) and 0.5 M sucrose and after subjected to warming procedure. Oocyte ROS level was measured by staining denuded IVM-oocytes with 10 μM 2′7′ dichlorodihydrofluorescein diacetate. Apoptosis was analyzed by Annexin V (AV) Apoptosis Detection kit and Propidium iodide (PI) signal and oocytes were classified as: Live (AV PI), early apoptotic (AV+ PI), dead non-apoptotic (AV PI+) and necrotic (AV+ PI+). Developmental competence of vitrified/warmed oocytes was assessed by PA (5 min in 5 μM Ionomycin plus 4 h in 2 mM 6-Dimethylaminopurine), and by ICSI fertilization. Presumptive zygotes were in vitro cultured for 8 days in commercial media BO-IVC. Vitrified/warmed oocytes showed higher ROS levels (P < 0.0001), lower live oocytes (44 vs. 66%; P: 0.0025) and higher dead non-apoptotic oocytes (33 vs. 13% P: 0.023) compared to control. No differences were found on normal zygote formation (2 PN) (32 vs. 25%) or blastocyst development (0 vs. 4%) after ICSI fertilization. However, after PA, significant differences were found in cleavage rate (59 vs.78%; P < 0.0343) and blastocyst formation (1 vs. 25%; P < 0.0001). In conclusion, vitrification reduced oocyte competence by increasing dead oocytes and ROS levels.  相似文献   

14.
Vitrification is considered a viable method for cryopreservation of ovarian tissue and selection of methods that minimize follicular damage is important. The objective of the present study was to evaluate the effects of two vitrification methods on ovarian tissue morphology, preantral follicles survival rate during in vitro culture, and relative expression of genes associated with oocyte maturation and cumulus expansion. Ovaries from 12-day-old mice were vitrified in media containing ethylene glycol, dimethyl sulphoxide, and sucrose. Before plunging in liquid nitrogen, ovaries were first loaded into an acupuncture needle (needle immersion vitrification [NIV]) or placed on a cold steel surface for 10 to 20 seconds (solid surface vitrification [SSV]). The integrity of the ovarian tissue was well-preserved after vitrification and was similar controls. Follicle viability in the SSV group was lower (P < 0.05) than in the control group after 6 days of culture and the NIV group after 10 day of culture. Follicle viability after 12 day of culture was 92.8%, 82.1%, and 58.4% in control, NIV, and SSV groups, respectively. Bmp15, Gdf9, BmprII, Alk6, Alk5, Has2, and Ptgs2 gene expression patterns were similar among groups. However, the level of gene expression in the vitrification groups during Days 6 to 10 were higher compared with the control group. In conclusion, ovarian tissue morphologic integrity was well-preserved, regardless of the vitrification method. Vitrification using the needle immersion method resulted in greater follicular survival after 12 day of culture than the SSV method. Gene expression patterns during culture did not seem to explain the reduced survival rate observed in the solid surface group.  相似文献   

15.
We evaluated the meiotic and developmental competence of GV-stage equine oocytes vitrified under different conditions. In a preliminary study, using dimethyl sulfoxide (D), ethylene glycol (EG) and sucrose (S) as cryoprotectants, the maturation rate was higher for cumulus-oocyte complexes (COCs) held overnight before vitrification (37%) than for those vitrified immediately (14%; P < 0.05). Thereafter, all COCs were held overnight before vitrification. In Experiment 1 we compared 1 min (1m) and 4 min (4m) exposure to vitrification and warming solutions; oocytes that subsequently matured were fertilized by ICSI. The maturation rate was similar between timing groups (29–36%), but was significantly lower than that for controls (73%). The 1m treatment yielded one blastocyst (11%), vs. 19% in controls. In Experiment 2, propylene glycol (PG) and trehalose (T) were also used. We compared two base solutions: M199 with 10% FBS (M199+), and 100% FBS; three cryoprotectant combinations: D-EG-S; PG-EG-S; and PG-EG-T; and two timings in vitrification solution: ∼30 s (30s) and 1 min (1m). The most effective treatment (FBS/PG-EG-T/30s) yielded 42% maturation, 80% cleavage and 1 blastocyst (10%), vs. 49%, 93% and 29%, respectively for controls (P > 0.1). In Experiment 3, we evaluated the toxicity of the M199/D-EG-S/1m and FBS/PG-EG-T/30s treatments, without actual vitrification. These treatments did not affect maturation but both significantly reduced blastocyst development (0% and 0%, vs. 21% for controls). This represents the second report of blastocyst development after vitrification of GV-stage equine oocytes, and presents the highest developmental competence yet achieved; however, more work is needed to increase the efficiency of this system.  相似文献   

16.
Our objective was to study the effect of the concentration of ethylene glycol (EG) and dimethyl sulfoxide (Me2SO) during vitrification on the development of porcine blastocysts. Vitrification was performed with 0.4 M sucrose and either a Me2SO and EG mixture (15%, 16% and 17% v/v of each) or EG alone (40% v/v), using superfine open pulled straws. Fresh and vitrified blastocysts were cultured for 48 h and the survival and hatching rates were evaluated. Some vitrified and fresh embryos were processed for Hoechst 33342 staining and proliferation cell nuclear antigen (PCNA) inmunolocalization to determine the proliferation index. The survival rate was similar for fresh and vitrified blastocysts, except for blastocysts vitrified using 15% of cryoprotectants, which displayed lower (P < 0.05) survival than fresh blastocysts. Vitrified and fresh blastocysts had a similar cell proliferation index (range: 75.8 ± 3.2 to 83.7 ± 3). When only hatched blastocysts among groups were compared, the proliferation rate decreased (P < 0.05) after vitrification with 17% of EG–Me2SO. In conclusion, the concentration of EG–Me2SO could be decreased to 16% in the vitrification medium with no reduction of the in vitro developmental ability of the blastocysts. In addition, a 40% EG-based medium can be used for vitrification with similar results to those achieved with a medium containing 16% EG–Me2SO.  相似文献   

17.
《Cryobiology》2016,72(3):367-373
Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P < 0.05) in vitrified fragments, when compared to whole ovaries. There were no significant differences in follicular survival and growth when the two vitrification devices were compared.  相似文献   

18.
A. Dhali 《Theriogenology》2009,71(9):1408-1416
The effect of modified droplet vitrification was assessed on cellular actin filament organization, apoptosis related gene expression and development competence in mouse embryos cultured in vitro. Mouse zygotes, 2-cell embryos and morulae were vitrified in ethylene glycol (VS-1) and ethylene glycol plus DMSO (VS-2) and thawed by directly placing the vitrified drop into 0.3 M sucrose solution at 37 °C. High recovery (93-99%) of morphologically normal embryos was evident following vitrification and thawing. No detectable actin filament disruption was observed in the embryos at any development stage following vitrification and thawing and/or in vitro culture. The expression pattern of Bax, Bcl2 and p53 genes was altered (P < 0.05) in vitrified zygotes and 2-cell embryos, but not in morulae. Although a large proportion of the vitrified zygotes (59.5 ± 4.4% in VS-1 and 57.9 ± 4.5% in VS-2; mean ± S.E.M.) and 2-cell embryos (63.1 ± 4.4% in VS-1 and 59.2 ± 4.3% in VS-2) developed into blastocysts, development of control embryos (70.2 ± 5.0% of zygotes and 75.5 ± 4.4% of 2-cell embryos) into blastocysts was higher (P < 0.05). In contrast, development of the control and vitrified morulae into blastocysts (more than 85%) was similar. We concluded that the modified droplet vitrification procedure supported better survival of morula stage compared to zygotes and 2-cell mouse embryos.  相似文献   

19.
Mass production is necessary to ensure the availability of biological control agents for the suppression of target pests. Many rearing hosts need to be sterilized to prevent development. Host egg sterilization also allows their storage for a longer period. Ephestia kuehniella eggs are frequently used as hosts for Trichogramma parasitoïds but they must be sterilized to prevent larvae from emerging and eating the unhatched parasitized eggs. Three sterilization methods were examined: UV irradiation, freezing at −15 °C and vitrification (liquid nitrogen submersion). The dosage and exposure duration to provide egg sterilization were determined and then the suitability of hosts sterilized by the different methods were compared. E. kuehniella eggs abortion was achieved after 15 min by UV irradiation, 4 h by freezing at −15 °C and 30 s by vitrification. Vitrification resulted in significantly lower parasitoids production with a global emergence rate of 28.7%, compared to UV irradiation (75.1%), freezing at −15 °C (77.4%) and control (80.9%). Host eggs sterilization method did not affect sex-ratio, occurrence of malformation in adults, and female walking speed. Fecundity was significantly reduced in the females emerging from UV irradiated (37.2 offsprings) and vitrified (36.9 offsprings) eggs, compared to control (43.1 offsprings).  相似文献   

20.
The cryopreservation of immature oocytes would generate a readily available, non-seasonal source of female gametes for research and reproduction. In domestic animals, the most promising results on oocyte cryopreservation have been reported in cattle, few studies have been conducted on buffalo. The aim of the present study was to compare the use of different vitrification solutions and various cryodevices on viability and developmental competence of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cumulus oocyte-complexes (COCs) obtained at slaughterhouse from mature buffalo ovaries were randomly divided into three main groups and vitrified by using either straw or open pulled-straw (OPS) or solid surface vitrification (SSV) in a solution composed of either 20% ethylene glycol (EG) + 20% glycerol (GLY); VS1 or 20% EG + 20% dimethylsulfoxide (DMSO); VS2, respectively. Following vitrification and warming, viable COCs were matured in vitro for 22 h. Some COCs were denuded and stained with 1.0% aceto-orcein to evaluate nuclear maturation, whereas the others were fertilized and cultured in vitro for 7 days to determine the developmental competence. Although the recovery rate (64.9%) was the lowest in the oocytes vitrified by SSV using 20% EG + 20% DMSO as compared to the other groups, the best survival rate of the COCs was achieved in the same treatment (96.7%), which was significantly higher (P < 0.05) than those vitrified using traditional straws (71.8% in VS1 and 73.6% in VS2) or those vitrified using OPS and VS1 (73.9%). Furthermore, in the nuclear maturation test, the highest maturation rate (75.5%) was achieved in SSV vitrified COCs using 20% EG + 20% DMSO (VS2), which was similar to the controls (77.1%). Post IVF and embryo culture, the highest cleavage and blastocyst development rates were obtained in COCs vitrified in 20% EG + 20% DMSO using SSV (47.1% and 24.0%, respectively), which showed no difference from the controls (61.2% and 46.9%, respectively). Our results clearly show that the combination of SSV and 20% EG + 20% DMSO could be used effectively to vitrify GV stage buffalo COCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号