首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Cetaceans evolved flippers that are unique in both size and shape probably due to selection pressures associated with foraging and body size. Flippers function as control surfaces for maneuverability and stability. Flippers of cetaceans and engineered hydrofoils are similar with streamlined cross‐sections and wing‐like planforms, which affect lift, drag and hydrodynamic efficiency. Scale models of the flippers from large‐bodied (body length > 6 m) cetaceans (fin whale, killer whale, sperm whale) were constructed from computed tomography (CT) scans of flippers. Flipper planforms were highly tapered for the fin whale, a rounded, paddle‐like design for the killer whale, and a square geometry for the sperm whale. Hydrodynamic properties of the models at varying angles of attack (?40º to 40o) were determined in a water tunnel with a multi‐axis load cell. The flippers were found to have hydrodynamic characteristics similar to engineered wings. Differences in flipper morphology of large‐bodied cetaceans and their hydrodynamic performance are associated with the requirements of aquatic locomotion involved with ecology of the whales. The flippers of the killer whale provided the greatest maneuverability, whereas the flippers of the fin whale had low drag for lunging and the flippers of the sperm whale provided lift for diving.  相似文献   

2.
This study characterized the morphology, density and orientation of the dermal denticles along the body of a shortfin mako shark Isurus oxyrinchus and identified the hydrodynamic parameters of its body through a computational fluid‐dynamics model. The study showed a great variability in the morphology, size, shape, orientation and density of dermal denticles along the body of I. oxyrinchus. There was a significant higher density in dorsal and ventral areas of the body and their highest angular deviations were found in the lower part of the mouth and in the areas between the pre‐caudal pit and the second dorsal and pelvic fins. A detailed three‐dimensional geometry from a scanned body of a shark was carried out to evaluate the hydrodynamic properties such as drag coefficient, lift coefficient and superficial (skin) friction coefficient of the skin together with flow velocity field, according to different roughness coefficients simulating the effect of the dermal denticles. This preliminary approach contributed to detailed information of the denticle interactions. As the height of the denticles was increased, flow velocity and the effect of lift decreased whereas drag increased. The highest peaks of skin friction coefficient were observed around the pectoral fins.  相似文献   

3.
The Triassic ammonoid Czekanowskites rieberi displays a covariation of morphological charac ters, which is rather common in ammonoids. Its morphological spectrum ranges from laterally compressed, involute, weakly ribbed forms to depressed, semiinvolute, strongly ribbed forms. In order to study this covariation, fifteen axially cut specimens have been analyzed by means of image analysis, which allows us to obtain the ontogenetic record of radii, area and perimeter of the individual whorl cross-sections. A logarithmic model of growth has been applied. Our data indicate that, owing to the covariation, the radii from the origin to the venter and to the umbil ical seam of a given whorl section vary inversely in order to maintain the relative position of the center of gravity of the whorl cross-section both throughout the ontogeny of single specimens and within the population. This influences hydrostatic parameters, such as the position of the center of mass and the orientation and stability of the shell. Since the ontogenetic record of the angular length of the body chamber is not known, we have calculated those hydrostatic varia bles using two mutually exclusive assumptions: (1) the angular length of the body chamber was constant throughout ontogeny and (2) the volume of the body chamber grew monotonically with the revolution angle. Fluctuations of the three hydrostatic variables were always less important in the first assumption. In any case, the spectrum of, for example, theoretical orien tations is comparable to those observed in the species of present-day Nautilus. The range of adult body-chamber length observed in C. rieberi is much narrower than the theoretical adult body-chamber length calculated under the second assumption which indicates that a certain control over this parameter existed in the natural population, probably in order to maintain a narrow range in orientation and stability. The excess or deficit in soft-body weight was probably compensated by inverse variations in shell-wall weight. The main conclusion is that, despite the extreme morphological variability, hydrostatic and, possibly, hydrodynamic properties of the population remained within narrow limits.  相似文献   

4.
Differences in behaviour between adult and juvenile Aporrhais occidentalis are related to age-dependent changes in shell morphology and habitat. Juvenile snails right their shells by pulling with the propodium, and do not ‘kick’ at the substratum until the expanded outer lip of the adult shell has formed. Locomotion of juveniles is by arhythmical crawling, with ‘leaping’ taking place only during escape from predators. Adult snails leap during both normal and escape locomotion. Data are presented that demonstrate the importance of the outer lip in stabilizing the shell during leaping locomotion. Escape reactions of A. occidentalis are similar to, but slower than, those reported in the literature for species of strombids. Most of the basic locomotory and shell-righting behaviour patterns seen in the highly specialized Strombidae are observable in the more primitive A. occidentalis. However, the use of the operculum in locomotion and shell righting, although characteristic of the Strombidae, is not found in A. occidentalis. The behaviour of Aporrhais is discussed in relation to evolution within the superfamily Strombacea.  相似文献   

5.

The attachment strength of the freshwater mussel Limnoperna fortunei against water flow was studied. Newton's expression successfully described the hydrodynamic drag force acting on the mussel with a drag coefficient value of 1.03. The drag‐resistant force (defined as hydrodynamic drag force at mussel detachment) was smaller than the detachment force measured using a tensile load test. A fairly good correlation was obtained between the drag‐resistant force and the number of secreted threads. The drag‐resistant force divided by the number of threads increased with shell size, suggesting that byssal thread strength increased with mussel growth. For the mussel specimens obtained from a water transmission pipe, thread width increased with shell size. However, thread width was not dependent on current velocity. There was no correlation between the number of secreted threads and shell length, which indicated that the number of secreted threads did not change with mussel size. Therefore, the water velocity needed to detach mussels increases with shell size of the mussel when the number of secreted threads is constant. The increases in the water velocity to detach mussels with larger shells suggests that the mussel becomes more resistant to water flow as it grows. It is estimated that a flow velocity of around lms‐1 is critical for attachment/detachment of a juvenile mussel with a shell length of a few millimeters and one hundred byssal threads.  相似文献   

6.
Many fish species transform in body shape during growth, but it remains unclear how this influences the mechanics of locomotion. Therefore, the present study focused on understanding how drag generation during coasting is affected by ontogenetic changes in the morphology of zebrafish (Danio rerio). The shapes of the body and fins were measured from photographs of fish ranging in size from small larvae to mature adults and these morphometrics were compared to drag coefficients calculated from high-speed video recordings of routine swimming. We found that the viscous drag coefficient of larval and juvenile fish increased by more than an order of magnitude during growth and the inertial drag coefficient decreased at a comparable rate in adults. These hydrodynamic changes occurred as zebrafish disproportionately increased the span of their fins and their body changed shape from elongated to streamlined, as reflected by the logistic growth of a newly defined streamlining index, SL. These results suggest that morphological changes incur a performance cost by generating greater drag when larvae and juveniles operate in the viscous regime, but later provide a performance benefit by reducing pressure drag in the inertial regime of the adult stage.  相似文献   

7.
Among the hydrodynamic forces experienced by intertidal organisms, drag and the impingement force are thought to have the greatest effect on macroalgae. These forces are modified by biotic factors such as algal morphology, reconfiguration, and the presence of a canopy. However, much of what is known about the hydrodynamics of macroalgae has been garnered from low-velocity laboratory flume studies. Few field studies have measured drag and none have directly measured the effects of the canopy on force. To examine in situ hydrodynamic forces imposed on the turf forming macroalga Chondrus crispus, compact digital force sensors were developed that measure and record the 3-dimensional force imposed on a macroalga without disturbing the surrounding canopy. Sensors were positioned within natural Chondrus beds and the effects of the canopy, algal morphology, and sea state on in situ hydrodynamic force were examined. Additionally, the predictions of a new model for drag on flexible macroalgae were tested by simultaneously measuring force and water velocity. Digital force recordings indicated that Chondrus only experience drag; lift and impingement force were negligible in all combinations of factors. Canopies significantly reduced drag by 15-65%. Morphology and size also influenced drag, such that lower forces were imposed on small planar algae than large arborescent individuals. Further, planar algae experienced low drag in all combinations of sea and canopy state, indicating that these individuals may not be as susceptible to wave disturbance as arborescent individuals. Overall, these data indicate that the ability for Chondrus to grow large, arborescent individuals is dependent on the drag reducing properties of the canopy, while more hydrodynamically harsh habitats may be accessible to planar morphologies. Additionally, these data suggest that drag models for canopy forming macroalgae must incorporate the effects of the canopy to predict drag accurately in situ.  相似文献   

8.
Behavior plays an important role in mediating relationships between morphology and performance in animals and, thus, can influence how selection operates. However, to what extent can the use of specific behaviors be associated with particular types of selection on morphological traits? Laboratory selection analyses on waterfall-climbing gobiid fishes were performed to investigate how behavioral variations in locomotion can affect patterns of linear and nonlinear morphological selection. Species from sister genera (Sicyopterus stimpsoni and Sicydium punctatum) that use different climbing behaviors were exposed to similar artificial waterfalls to simulate a controlled selective regime involving the climbing of a nearly vertical slope against flowing water. Juvenile S. stimpsoni “inch up” waterfalls by alternate attachment of oral and pelvic suckers with little axial or fin movement, leading to straightforward expectations that climbing selection should favor morphologies that improve drag reduction and substrate adhesion. In contrast, juvenile S. punctatum climb using substantial axial and fin movements, complicating expectations for selection patterns and potentially promoting correlational selection. Comparisons of directional, quadratic and correlational selection coefficients for various morphological traits and trait interactions indicated that these species showed different selection patterns that generally fit these predictions. Both directional and correlational selection patterns were different between the species, and on average were stronger in S. punctatum compared to S. stimpsoni. Stronger selection in S. punctatum may be related to its climbing style that requires more integrated movement of the fins and body axis than S. stimpsoni, promoting dynamic interactions among body regions within a complicated hydrodynamic environment.  相似文献   

9.
Comparisons between aquatic and terrestrial species provide an opportunity to examine how sex-specific adaptations interact with the environment to influence body shape. In terrestrial female tortoises, selection for fecundity favors the development of a large internal abdominal cavity to accommodate the clutch; in conspecific males, sexual selection favors mobility with large openings in the shell. To examine to what extent such trends apply in aquatic chelonians we compared the body shape of males and females of two aquatic turtles (Chelodina colliei and Mauremys leprosa). In both species, females were larger than males. When controlled for body size, females exhibited a greater relative internal volume and a higher body condition index than males; both traits potentially correlate positively with fecundity. Males were more streamlined (hydrodynamic), and exhibited larger openings in the shell providing more space to move their longer limbs; such traits probably improve mobility and copulation ability (the males chase and grab the female for copulation). Overall, although the specific constraints imposed by terrestrial and aquatic locomotion shape the morphology of chelonians differently (aquatic turtles were flatter, hence more hydrodynamic than terrestrial tortoises), the direction for sexual shape dimorphism remained unaffected. Our main conclusion is that the direction of sexual shape dimorphism is probably more consistent than sexual size dimorphism in the animal kingdom.  相似文献   

10.
The northern spearnose poacher, Agonopsis vulsa, is a benthic, heavily armored fish that swims primarily using pectoral fins. High-speed kinematics, whole-body lift measurements, and flow visualization were used to study how A. vulsa overcomes substantial negative buoyancy while generating forward thrust. Kinematics for five freely swimming poachers indicate that individuals tend to swim near the bottom (within 1 cm) with a consistently small (less than 1°) pitch angle of the body. When the poachers swam more than 1 cm above the bottom, however, body pitch angles were higher and varied inversely with speed, suggesting that lift may help overcome negative buoyancy. To determine the contribution of the body to total lift, fins were removed from euthanized fish (n=3) and the lift and drag from the body were measured in a flume. Lift and drag were found to increase with increasing flow velocity and angle of attack (ANCOVA, p<0.0001 for both effects). Lift force from the body was found to supply approximately half of the force necessary to overcome negative buoyancy when the fish were swimming more than 1 cm above the bottom. Lastly, flow visualization experiments were performed to examine the mechanism of lift generation for near-bottom swimming. A vortex in the wake of the pectoral fins was observed to interact strongly with the substratum when the animals approached the bottom. These flow patterns suggest that, when swimming within 1 cm of the bottom, poachers may use hydrodynamic ground effect to augment lift, thereby counteracting negative buoyancy.  相似文献   

11.
With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.  相似文献   

12.
Animals in wave-exposed habitats must constantly contend with the hydrodynamic forces of lift and drag. In this study, we investigated aspects of the metabolic response of Haliotis iris to simulated wave forces varying in magnitude up to 9.6 N applied to the shell at 69° to horizontal, alternately from anterior and posterior directions, with a period of 10s. Shell adductor muscle activity (electromyogram, EMG), heart rate, and oxygen consumption were monitored during force application and during extended recovery. EMG spiking was absent at zero force, but increased markedly with increasing force, in synchrony with the wave cycle. In contrast, heart rate was unaffected by wave forces and varied by only 5% over the whole range of applied forces. During force application, oxygen consumption increased by 10-25% above resting rates and remained elevated throughout a 5-hour recovery period, indicating a switch to anaerobic metabolism. It is concluded that living in a wave-swept environment is metabolically costly for abalone although this may be compensated by improved food availability and more efficient ventilation induced by external flow.  相似文献   

13.
The diotocardian gastropod Patina pellucida (L.) is a macro-herbivore common upon the fronds of laminarian algae. Considerations of shell shape, adhesive tenacity, and current tolerance, together with calculations of expected hydrodynamic drag, indicate that this limpet is effectively streamlined. Smaller individuals are relatively more resistant to dislodgement than are larger ones. Experimental animals of 6.0–13.5 mm shell length resisted constant flows of up to 0.9-1.3 m s?1. An orientation, in which the longitudinal axis of a limpet is aligned parallel to the direction of the prevailing flow, is induced by currents faster than ≈ 0.5 m s?1, and is an adaptation to conditions of directional water streaming. P. pellucida appears to show a seasonal change in orientatory preference, individuals tending to point distally with respect to the algal lamina in spring and proximally in autumn: this change may be associated with the annual growth cycle of the host plant.  相似文献   

14.
Detailed swimming kinematics of the yellowtail kingfish Seriola lalandi were investigated after unilateral ablation of superficial neuromasts (SNs). Most kinematic variables, such as tail‐beat frequency, stride length, caudal fin‐beat amplitude and propulsive wavelength, were unaffected but lateral amplitude at the tip of the snout (A0) was significantly increased in SN‐disrupted fish compared with sham‐operated controls. In addition, the orientation of caudal fin‐tip relative to the overall swimming direction of SN‐disrupted fish was significantly deflected (two‐fold) in comparison with sham‐operated control fish. In some fish, SN disruption also led to a phase distortion of the propulsive body‐wave. These changes would be expected to increase both hydrodynamic drag and thrust production which is consistent with the finding that SN‐disrupted fish had to generate significantly greater thrust power when swimming at ≥1·3 fork lengths (LF) s?1. In particular, hydrodynamic drag would increase as a result of any increase in rotational (yaw) perturbation and sideways slip resulting from the sensory disturbance. In conclusion, unilateral SN ablation produced directional instability of steady swimming and altered propulsive movements, suggesting a role for sensory feedback in correcting yaw and slip disturbances to maintain efficient locomotion.  相似文献   

15.
Observations were made on the reactions of the Norway lobster, Nephrops norvegicus, to water currents in a sea‐water flume tank. Blind animals were used to prevent visually‐guided behaviour. Nephrops adopted a downstream orientation, and usually walked downstream, in response to water current speeds in the range of 0.07 to 0.20 ms?1. Patterns of water flow around the body revealed that it was most effectively streamlined when the animal adopted a downstream orientation. Direct measurements of the forces acting on the body revealed that animals with a downstream orientation experienced the least hydrodynamic drag and the greatest downforce.  相似文献   

16.
In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during bipedal locomotion. For this, we first inferred the leg function and trunk control strategy applied by a generalized small bird during terrestrial locomotion by analysing synchronously recorded kinematic (three-dimensional X-ray videography) and kinetic (three-dimensional force measurement) quail locomotion data. Then, by simulating quail gaits using a simplistic bioinspired numerical model which made use of parameters obtained in in vivo experiments with real quail, we show that the observed asymmetric leg function (left-skewed ground reaction force and longer leg at touchdown than at lift-off) is necessary for pronograde steady-state locomotion. In addition, steady-state locomotion becomes stable for specific morphological parameters. For quail-like parameters, the most common stable solution is grounded running, a gait preferred by quail and most of the other small birds. We hypothesize that stability of bipedal locomotion is a functional demand that, depending on trunk orientation and centre of mass location, constrains basic hind limb morphology and function, such as leg length, leg stiffness and leg damping.  相似文献   

17.
The interpretation of the function of the ammonoid phragmocone as a buoyancy device is now widely accepted among ammonoid researchers. During the 20th century, several theoretical models were proposed for the role of the chambered shell (phragmocone); accordingly, the phragmocone had hydrostatic properties, which enabled it to attain neutral buoyancy, presuming it was partially filled with gas. With new three‐dimensional reconstructions of ammonoid shells, we are now able to test these hypothetical models using empirical volume data of actual ammonoid shells. We investigated three Palaeozoic ammonoids (Devonian and Carboniferous), namely Fidelites clariondi, Diallagites lenticulifer and Goniatites multiliratus, to reconstruct their hydrostatic properties, their syn vivo shell orientation and their buoyancy. According to our models, measurements and calculations, these specimens had aperture orientations of 19°, 64° and 125° during their lives. Although none of our results coincide with the aperture orientation of the living Nautilus, they do verify the predictions for shell orientations based on published theoretical models. Our calculations also show that the shorter the body chamber, the poorer was the hydrodynamic stability of the animal. This finding corroborates the results of theoretical models from the 1990s. With these results, which are based on actual specimens, we favour the rejection of hypotheses suggesting a purely benthonic mode of life of ammonoids. Additionally, it is now possible to assess hydrodynamic properties of the shells through ontogeny and phylogeny, leading to insights to validate theoretical modes of life and habitat through the animal's life.  相似文献   

18.
Hydrodynamic forces can affect survival as well as limit the movement of motile benthic animals. An animal's danger of dislodgement depends on the hydrodynamic forces it experiences in its microhabitat relative to the force required to dislodge it (tenacity) from the substratum. We measured water flow and substratum characteristics in two different habitats of the shore crab Pachygrapsus crassipes: a wave-swept rocky shore and an intertidal mudflat. The maximum water velocities and accelerations in the microhabitats of the crabs at the wave-swept site were three times and two times greater, respectively, than at the mudflat site. In the laboratory, we measured the tenacity of crabs of various sizes on different substrata, and also measured their drag, lift and added-mass coefficients. Using these data, we calculated the flow conditions under which crabs would be overturned or sheared off the substratum in their two habitats. The net horizontal force (drag plus acceleration reaction) required to dislodge a crab on a rugose rock substratum was an order of magnitude greater than on smooth rock and two orders of magnitude greater than on mud. Our calculations indicate that, under non-storm conditions, crabs will not be dislodged from the substratum in either the mudflat or the wave-swept habitat when grasping the substratum with maximum tenacity. Moving crabs have lower tenacity and our calculations predict that hydrodynamic forces will restrict the mobility of large crabs more than that of small ones on smooth, but not on rugose rock.  相似文献   

19.
We observed orientation and locomotion of the nudibranch Tritonia tetraquetra in its natural habitat using SCUBA over many sequential days, in three different months. The slugs oriented significantly headfirst to tidal currents. Nevertheless, the direction of locomotion of the slugs over hours was not usually correlated with tidal flow direction (i.e. not indicative of consistent rheotaxis). We did not find evidence of consistent body axis orientation to the geomagnetic field, but the direction of locomotion of some groups of slugs over hours was significantly correlated with geomagnetic direction. Independent of direction, each slug changed position by an average of ~2?m during a single tidal phase (~6?h), and changed position by an average of ~4?m over a full tidal cycle (~25?h). Orientation to flow reduced drag, and reduced the probability that a slug will be dislodged from the soft bottom, in laboratory experiments. Slugs deprived of olfactory and flow cues exhibit a search-like pattern of multiple and frequent turns.  相似文献   

20.
《Marine Micropaleontology》2011,78(3-4):125-136
Biometric analyses were performed on 20 Pliensbachian samples from the Santotis section (Basque-Cantabrian Basin, N Spain), in order to separate the species Crepidolithus crassus and Crepidolithus crucifer based on their size, and to evaluate the role, if any, of the paleoenvironmental conditions on C. crassus and C. crucifer size changes. In each sample, 100 specimens of both C. crassus and C. crucifer were randomly selected and imaged for taking measurements of their length and width. The length/width ratio or eccentricity was calculated for each specimen. Our results show that C. crucifer is around 2 μm longer and 1.3 μm wider than C. crassus. Based on length measurements, two groups were statistically differentiated. Crepidolithus crucifer coccoliths are longer than 8.2 μm. However, an overlap has been observed for C. crassus and C. crucifer in the 8–8.5 μm range; in these cases, central area structure and crystallographic properties are essential for species separation. A trend towards a progressive increase in the size of both taxa has been observed throughout the studied interval and no obvious relationships have been recognized between the lithology, TOC values and coccolith size. However, the size increment in both C. crassus and C. crucifer coincides with a cooling period, suggesting a potential environmental control on coccolith size.Size shifts have been recorded first in C. crassus and later in C. crucifer. Based on the sizes of both species, we speculate that the large C. crucifer, perhaps inhabited a slightly deeper portion of the photic zone and, that the diachronous size variations in the two investigated taxa could be related to the transgressive phase recorded during the Late Pliensbachian. The discrepancy between size variations of C. crassus and C. crucifer specimens in the uppermost part of the studied section might be indicative of modifications of specific portions of the photic zone. We propose that the stratification of water masses probably reduced the ecologic niche of C. crucifer that was forced to reach shallower depths by reducing its size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号