首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
The ars operon of resistance plasmid R773 encodes an anion-translocating ATPase which catalyzes extrusion of the oxyanions arsenite, antimonite, and arsenate, thus providing resistance to the toxic compounds. Although both arsenite and arsenate contain arsenic, they have different chemical properties. In the absence of the arsC gene the pump transports arsenite and antimonite, oxyanions with the +III oxidation state of arsenic or antimony. The complex neither transports nor provides resistance to arsenate, the oxyanion of the +V oxidation state of arsenic. The arsC gene encodes a 16-kDa polypeptide, the ArsC protein, which alters the substrate specificity of the pump to allow for recognition and transport of the alternate substrate arsenate. The arsC gene was cloned behind a strong promoter and expressed at high levels. The ArsC protein was purified and crystallized.  相似文献   

4.
5.
A plasmid-encoded anion-translocating ATPase   总被引:1,自引:0,他引:1  
An anion-translocating ATPase has been identified as the product of the arsenical resistance operon of resistance plasmid R773. When expressed in Escherichia coli this ATP-driven oxyanion pump catalyzes extrusion of the oxyanions arsenite, antimonite and arsenate. Maintenance of a low intracellular concentration of oxyanion produces resistance to the toxic agents. The pump is composed of two polypeptides, the products of the arsA and arsB genes. This two-subunit enzyme produces resistance to arsenite and antimonite. A third gene, arsC, expands the substrate specificity to allow for arsenate pumping and resistance.  相似文献   

6.
S Tauriainen  M Karp  W Chang    M Virta 《Applied microbiology》1997,63(11):4456-4461
Luminescent bacterial strains for the measurement of bioavailable arsenite and antimony were constructed. The expression of firefly luciferase was controlled by the regulatory unit of the ars operon of Staphylococcus aureus plasmid pI258 in recombinant plasmid pTOO21, with S. aureus RN4220, Bacillus subtilis BR151, and Escherichia coli MC1061 as host strains. Strain RN4220(pTOO21) was found to be the most sensitive for metal detection responding to arsenite, antimonite, and cadmium, the lowest detectable concentrations being 100, 33, and 330 nM, respectively. Strains BR151(pTOO21) and MC1061(pTOO21) responded to arsenite, arsenate, antimonite, and cadmium, the lowest detectable concentrations being 3.3 and 330 microM and 330 and 330 nM with BR151(pTOO21), respectively, and 3.3, 33, 3.3, and 33 microM with MC1061(pTOO21), respectively. In the absence of the mentioned ions, the expression of luciferase was repressed and only a small amount of background light was emitted. Other ions did not notably interfere with the measurement in any of the strains tested. Freeze-drying of the cells did not decrease the sensitivity of the detection of arsenite; however, the induction coefficients were somewhat lower.  相似文献   

7.
8.
9.
Twenty-six wild-type Streptomyces strains tested for resistance to arsenate, arsenite and antimony(III) could be divided into four groups: those resistant only to arsenite (3) or to arsenate (2) and those resistant (8) or sensitive (13) to both heavy metals. All strains were sensitive to antimony. The structural genes for the ars operon of Escherichia coli were subcloned into various Streptomyces plasmid vectors. The expression of the whole ars operon in streptomycetes may be strain-specific and occurred only from low-copy-number plasmids. The arsC gene product could be expressed from high-copy plasmids and conferred arsenate resistance to both E. coli and Streptomyces species. The ars operon expressed in S. lividans and the arsC gene expressed in S. noursei did not render the synthesis of undecylprodigiosin and nourseothricin, respectively, phosphate-resistant. In addition in wild-type strains of Streptomyces phosphate sensitivity of antibiotic biosynthesis did not show strong correlation with resistance of growth to arsenicals.  相似文献   

10.
To elucidate the mechanisms of arsenic resistance in the arsenic hyperaccumulator fern Pteris vittata L., a cDNA for a glutaredoxin (Grx) Pv5-6 was isolated from a frond expression cDNA library based on the ability of the cDNA to increase arsenic resistance in Escherichia coli. The deduced amino acid sequence of Pv5-6 showed high homology with an Arabidopsis chloroplastic Grx and contained two CXXS putative catalytic motifs. Purified recombinant Pv5-6 exhibited glutaredoxin activity that was increased 1.6-fold by 10 mm arsenate. Site-specific mutation of Cys(67) to Ala(67) resulted in the loss of both GRX activity and arsenic resistance. PvGrx5 was expressed in E. coli mutants in which the arsenic resistance genes of the ars operon were deleted (strain AW3110), a deletion of the gene for the ArsC arsenate reductase (strain WC3110), and a strain in which the ars operon was deleted and the gene for the GlpF aquaglyceroporin was disrupted (strain OSBR1). Expression of PvGrx5 increased arsenic tolerance in strains AW3110 and WC3110, but not in OSBR1, suggesting that PvGrx5 had a role in cellular arsenic resistance independent of the ars operon genes but dependent on GlpF. AW3110 cells expressing PvGrx5 had significantly lower levels of arsenite when compared with vector controls when cultured in medium containing 2.5 mm arsenate. Our results are consistent with PvGrx5 having a role in regulating intracellular arsenite levels, by either directly or indirectly modulating the aquaglyceroporin. To our knowledge, PvGrx5 is the first plant Grx implicated in arsenic metabolism.  相似文献   

11.
The ars operon of the conjugative R-factor R773 produces resistance to arsenicals in cells of Escherichia coli. The operon encodes an oxyanion pump which is composed of a membrane subunit, the 45.5-kDa ArsB protein, and a catalytic subunit, the 63-kDa ArsA protein. Purified ArsA protein is an arsenite(antimonite)-stimulated ATPase. From its amino acid sequence, as deduced from the nucleotide sequence, the ArsA protein has four tryptophanyl residues which could serve as intrinsic fluorescent probes for the study of substrate-induced conformational changes. Both static and dynamic measurements of tryptophan fluorescence were performed with the ArsA protein. Results from static anisotropy measurements indicated differences in molecular motion with addition of ATP, SbO2-, or Mg2+. These results were supported by time decay measurements of fluorescence anisotropy. The results of time decay measurements indicated a shorter correlation time, reflecting localized motion in the vicinity of the probe, and a longer correlation time, which could have arisen from rotation of the major portion of the molecule. The longer correlation time changed with addition of the various effectors, especially MgCl2, suggesting that binding of Mg2+ decreases probe mobility.  相似文献   

12.
Molecular analysis of an ATP-dependent anion pump   总被引:3,自引:0,他引:3  
The plasmid-borne arsenical resistance operon encodes an ATP-driven oxyanion pump for the extrusion of the oxyanions arsenite, antimonite and arsenate from bacterial cells. The catalytic component of the pump, the 63 kDa ArsA protein, hydrolyses ATP in the presence of its anionic substrate antimonite (SbO2-). The ATP analogue 5'-p-fluorosulphonylbenzoyladenosine was used to modify the ATP binding site(s) of the ArsA protein. From sequence analysis there are two potential nucleotide binding sites. Mutations were introduced into the N-terminal site. Purified mutant proteins were catalytically inactive and incapable of binding nucleotides. Conformational changes produced upon binding of substrates to the ArsA protein were investigated by measuring the effects of substrates on trypsin inactivation. The hydrophobic 45.5 kDa ArsB protein forms the membrane anchor for the ArsA protein. The presence of the ArsA protein on purified inner membrane can be detected immunologically. In the absence of the arsB gene no ArsA is found on the membrane. Synthesis of the ArsB protein is limiting for formation of the pump. Analysis of mRNA structure suggests a potential translational block to synthesis of the ArsB protein. Northern analysis of the ars message demonstrates rapid degradation of the mRNA in the arsB region.  相似文献   

13.
14.
15.
The arsA and arsB genes of the ars operon of R-factor R773 confer arsenite resistance in Escherichia coli by coding for an anion-translocating ATPase. Arsenite resistance and the in vivo energetics of arsenite transport were compared in cells expressing the arsA and arsB genes and those expressing just the arsB gene. Cells expressing the arsB gene exhibited intermediate arsenite resistance compared with cells expressing both the arsA and arsB genes. Both types of cells exhibited energy-dependent arsenite exclusion. Exclusion of 73AsO2- from cells expressing only the arsB gene was coupled to electrochemical energy, while in cells expressing both genes, transport was coupled to chemical energy, most likely ATP. These results suggest that the Ars anion transport system can be either an obligatory ATP-coupled primary pump or a secondary carrier coupled to the proton motive force, depending on the subunit composition of the transport complex.  相似文献   

16.
R-factor mediated bacterial resistance to arsenical salts occurs by active extrusion of the toxic oxyanions from cells of gram negative bacteria. The ars operon of the conjugative plasmid R773 encodes an anion pump. The pump has two polypeptide components. The catalytic subunit, the ArsA protein, is an oxyanion-stimulated ATPase. The membrane component, the ArsB protein, has been localized in the inner membrane of Escherichia coli. The ArsA and ArsB proteins have been postulated to form a membrane complex which functions as an anion-translocating ATPase. In this study evidence is presented showing that expression of the arsB gene is required to anchor the ArsA protein to the inner membrane. Binding studies with purified ArsA to membranes with and without the arsB gene product confirm this requirement. Membranes of uncA mutants containing both the ArsA and ArsB proteins exhibit arsenite(antimonite)-stimulated ATPase activity. These results support the model in which the ArsA protein is the catalytic energy transducing component of the anion pump, whereas the integral membrane ArsB protein serves as both the anion channel and membrane binding site for the ArsA protein.  相似文献   

17.
The ArsAB extrusion pump encoded by the ars operon of Escherichia coli plasmid R773 confers resistance to the toxic trivalent metalloids arsenite [As(III)] and antimonite [Sb(III)]. The ArsA ATPase, the catalytic subunit of the pump, has two homologous halves, A1 and A2. At the interface of these two halves are two nucleotide-binding domains and a metalloid-binding domain. Cys-113 and Cys-422 have been shown to form a high-affinity metalloid binding site. The crystal structure of ArsA shows two other bound metalloid atoms, one liganded to Cys-172 and His-453, and the other liganded to His-148 and Ser-420. The contribution of those putative metalloid sites was examined. There was little effect of mutagenesis of residues His-148 and Ser-420 on metalloid binding. However, a C172A ArsA mutant and C172A/H453A double mutant exhibited significantly decreased affinity for Sb(III). These results suggest first that there is only a single high-affinity metalloid binding site in ArsA, and second that Cys-172 controls the affinity of this site for metalloid and hence the efficiency of metalloactivation of the ArsAB efflux pump.  相似文献   

18.
Bacterial resistance to arsenical salts encoded on plasmid pI258 occurs by active extrusion of toxic oxyanions from cells of Staphylococcus aureus. The operon encodes for three gene products: ArsR, ArsB and ArsC. The gene product of arsB is an integral membrane protein and it is sufficient to provide resistance to arsenite and antimonite. A poly His-ArsB fusion protein was generated to purify the staphylococcal ArsB protein. Cells containing the His-tagged arsB gene were resistant to arsenite and antimonite. The levels of resistance to these toxic oxyanions by the His-tagged construct were greater than the levels obtained with the wild type gene. These data would indicate that the His-tagged protein is functionally active. A new 36 kDa protein band was visualized on 10% SDS-polyacrylamide gel electrophoresis (PAGE), which was confirmed as the His-ArsB protein by immunodetection with polyclonal Hisantibodies. The His-ArsB fusion protein was purified by the use of metal-chelate affinity chromatography with a Ni+2-nitrilotriacetic acid column and size-exclusion chromatography suggests that the protein was a homodimer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号