首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium thermocellum xylanase Xyn10C (formerly XynC) is a modular enzyme, comprising a family-22 carbohydrate-binding module (CBM), a family-10 catalytic module of the glycoside hydrolases, and a dockerin module responsible for cellulosome assembly consecutively from the N-terminus. To study the functions of the CBM, truncated derivatives of Xyn10C were constructed: a recombinant catalytic module polypeptide (rCM), a family-22 CBM polypeptide (rCBM), and a polypeptide composed of the family-22 CBM and CM (rCBM-CM). The recombinant proteins were characterized by enzyme and binding assays. Although the catalytic activity of rCBM-CM toward insoluble xylan was four times higher than that of rCM toward the same substrate, removal of the CBM did not severely affect catalytic activity toward soluble xylan or beta-1,3-1,4-glucan. rCBM showed an affinity for amorphous celluloses and insoluble and soluble xylan in qualitative binding assays. The optimum temperature of rCBM-CM was 80 degrees C and that of rCM was 60 degrees C. These results indicate that the family-22 CBM of C. thermocellum Xyn10C not only was responsible for the binding of the enzyme to the substrates, but also contributes to the stability of the CM in the presence of the substrate at high temperatures.  相似文献   

2.
Clostridium stercorarium Xyn10B having hydrolytic activities on xylan and beta-1,3-1,4-glucan is a modular enzyme composed of two family-22 carbohydrate-binding modules (CBMs), a family-10 catalytic module of the glycoside hydrolases, a family-9 CBM, and two S-layer homologous modules, consecutively from the N-terminus. We investigated the function of family-9 and family-22 CBMs in a modular enzyme by comparing the enzymatic properties of a truncated enzyme composed of two family-22 CBMs and the catalytic module (rCBM22-CM), an enzyme composed of the catalytic module and family-9 CBM (rCM-CBM9), an enzyme composed of two family-22 CBMs, the catalytic module, and family-9 CBM (rCBM22-CM-CBM9), and the catalytic module polypeptide (rCM). Although the addition of family-9 CBM to rCM and rCBM22-CM did not significantly change catalytic activity toward xylan and beta-1,3-1,4-glucan, the addition of family-22 CBM to rCM and rCM-CBM9 drastically enhanced catalytic activity toward xylan and especially beta-1,3-1,4-glucan. Furthermore, the addition of family-22 CBM to rCM and rCM-CBM9 shifted the optimum temperature from 65 degrees C to 75 degrees C, but that of family-9 CBM to rCM and rCBM22-CM did not affect the optimum temperature. These facts suggest that the enzyme properties of Xyn10B were mainly dependent on the presence of the family-22 CBMs but not family-9 CBM.  相似文献   

3.
A non-cellulosomal xylanase from Clostridium thermocellum, XynX, consists of a family-22 carbohydratebinding module (CBM22), a family-10 glycoside hydrolase (GH10) catalytic module, two family-9 carbohydrate-binding modules (CBM9-I and CBM9-II), and an S-layer homology (SLH) module. E. coli BL21(DE3) (pKM29), a transformant carrying xynX', produced several truncated forms of the enzyme. Among them, three major active species were purified by SDS-PAGE, activity staining, gel-slicing, and diffusion from the gel. The truncated xylanases were different from each other only in their C-terminal regions. In addition to the CBM22 and GH10 catalytic modules, XynX(1) had the CBM9-I and most of the CBM9-II, XynX(2) had the CBM9-I and about 40% of the CBM9-II, and XynX(3) had about 75% of the CBM9-I. The truncated xylanases showed higher binding capacities toward Avicel than those toward insoluble xylan. XynX(1) showed a higher affinity toward Avicel (70.5%) than XynX(2) (46.0%) and XynX(3) (42.1%); however, there were no significant differences in the affinities toward insoluble xylan. It is suggested that the CBM9 repeat, especially CBM9-II, of XynX plays a role in xylan degradation in nature by strengthening cellulose binding rather than by enhancing xylan binding.  相似文献   

4.
To examine the possibility of module interaction in the thermal unfolding of different modular architectures, four truncated proteins were constructed from Clostridium stercorarium Xyn10B: a family 10 catalytic module (CM10), a polypeptide compound of one family 22 carbohydrate-binding module (CBM22-2) and the catalytic module (CBM22-CM10), two family 22 CBMs and the catalytic module (2CBM22-CM10), and only two family 22 CBMs (2CBM22). Thermal unfolding of four proteins were observed by differential scanning calorimetry. CM10 was unfolded reversibly and denatured as one component. The unfolding of protein CBM22-CM10 comprising CBM22-2 connected with CM10 was irreversible, and can be assumed to be one-component denaturation. Protein 2CBM22, with two CBM22s in tandem, unfolded as two independent modules. However, 2CBM22-CM10, with two CBM22s, unfolded as two and not the expected three separate components. These findings constitute the first reported case in which differences in thermal unfolding units and mechanisms were derived from differences in the modular architectures of proteins.  相似文献   

5.
To examine the possibility of module interaction in the thermal unfolding of different modular architectures, four truncated proteins were constructed from Clostridium stercorarium Xyn10B: a family 10 catalytic module (CM10), a polypeptide compound of one family 22 carbohydrate-binding module (CBM22-2) and the catalytic module (CBM22-CM10), two family 22 CBMs and the catalytic module (2CBM22-CM10), and only two family 22 CBMs (2CBM22). Thermal unfolding of four proteins were observed by differential scanning calorimetry. CM10 was unfolded reversibly and denatured as one component. The unfolding of protein CBM22-CM10 comprising CBM22-2 connected with CM10 was irreversible, and can be assumed to be one-component denaturation. Protein 2CBM22, with two CBM22s in tandem, unfolded as two independent modules. However, 2CBM22-CM10, with two CBM22s, unfolded as two and not the expected three separate components. These findings constitute the first reported case in which differences in thermal unfolding units and mechanisms were derived from differences in the modular architectures of proteins.  相似文献   

6.
The Clostridium stercorarium xylanase Xyn10B is a modular enzyme comprising two thermostabilizing domains, a family 10 catalytic domain of glycosyl hydrolases, a family 9 carbohydrate-binding module (CBM), and two S-layer homologous (SLH) domains [Biosci. Biotechnol. Biochem., 63, 1596-1604 (1999)]. To investigate the role of this CBM, we constructed two derivatives of Xyn10B and compared their hydrolytic activity toward xylan and some preparations of plant cell walls; Xyn10BdeltaCBM consists of a catalytic domain only, and Xyn10B-CBM comprises a catalytic domain and a CBM. Xyn10B-CBM bound to various insoluble polysaccharides including Avicel, acid-swollen cellulose, ball-milled chitin, Sephadex G-25, and amylose-resin. A cellulose binding assay in the presence of soluble saccharides suggested that the CBM of Xyn10B had an affinity for even monosaccharides such as glucose, galactose, xylose, mannose and ribose. Removal of the CBM from the enzyme negated its cellulose- and xylan-binding abilities and severely reduced its enzyme activity toward insoluble xylan and plant cell walls but not soluble xylan. These findings clearly indicated that the CBM of Xyn10B is important in the hydrolysis of insoluble xylan. This is the first report of a family 9 CBM with an affinity for insoluble xylan in addition to crystalline cellulose and the ability to increase hydrolytic activity toward insoluble xylan.  相似文献   

7.
Elucidating the molecular mechanisms regulating multimodularity is a challenging task. Paenibacillus barcinonensis Xyn10C is a 120-kDa modular enzyme that presents the CBM22/GH10/CBM9 architecture found in a subset of large xylanases. We report here the three-dimensional structure of the Xyn10C N-terminal region, containing the xylan-binding CBM22-1–CBM22-2 tandem (Xyn10C-XBD), which represents the first solved crystal structure of two contiguous CBM22 modules. Xyn10C-XBD is folded into two separate CBM22 modules linked by a flexible segment that endows the tandem with extraordinary plasticity. Each isolated domain has been expressed and crystallized, and their binding abilities have been investigated. Both domains contain the R(W/Y)YYE motif required for xylan binding. However, crystallographic analysis of CBM22-2 complexes shows Trp-308 as an additional binding determinant. The long loop containing Trp-308 creates a platform that possibly contributes to the recognition of precise decorations at subsite S2. CBM22-2 may thus define a subset of xylan-binding CBM22 modules directed to particular regions of the polysaccharide. Affinity electrophoresis reveals that Xyn10C-XBD binds arabinoxylans more tightly, which is more apparent when CBM22-2 is tested against highly substituted xylan. The crystal structure of the catalytic domain, also reported, shows the capacity of the active site to accommodate xylan substitutions at almost all subsites. The structural differences found at both Xyn10C-XBD domains are consistent with the isothermal titration calorimetry experiments showing two sites with different affinities in the tandem. On the basis of the distinct characteristics of CBM22, a delivery strategy of Xyn10C mediated by Xyn10C-XBD is proposed.  相似文献   

8.
Clostridium thermocellum CelJ is a modular enzyme containing a family 30 carbohydrate-binding module (CBM) and a family 9 catalytic module at its N-terminal moiety. To investigate the functions of the CBM and the catalytic module, truncated derivatives of CelJ were constructed and characterized. Isothermal titration calorimetric studies showed that the association constants (K(a)) of the CBM polypeptide (CBM30) for the binding of cellopentaose and cellohexaose were 1.2 x 10(4) and 6.4 x 10(4) M(-1), respectively, and that the binding of CBM30 to these ligands is enthalpically driven. Qualitative analyses showed that CBM30 had strong affinity for cellulose and beta-1,3-1,4-mixed glucan such as barley beta-glucan and lichenan. Analyses of the hydrolytic action of the enzyme comprising the CBM and the catalytic module showed that the enzyme is a processive endoglucanse with strong activity towards carboxymethylcellulose, barley beta-glucan and lichenan. By contrast, the catalytic module polypeptide devoid of the CBM showed negligible activity toward these substrates. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.  相似文献   

9.
Glycoside hydrolases often contain multiple copies of noncatalytic carbohydrate binding modules (CBMs) from the same or different families. Currently, the functional importance of this complex molecular architecture is unclear. To investigate the role of multiple CBMs in plant cell wall hydrolases, we have determined the polysaccharide binding properties of wild type and various derivatives of Cellulomonas fimi xylanase 11A (Cf Xyn11A). This protein, which binds to both cellulose and xylan, contains two family 2b CBMs that exhibit 70% sequence identity, one internal (CBM2b-1), which has previously been shown to bind specifically to xylan and the other at the C-terminus (CBM2b-2). Biochemical characterization of CBM2b-2 showed that the module bound to insoluble and soluble oat spelt xylan and xylohexaose with K(a) values of 5.6 x 10(4), 1.2 x 10(4), and 4.8 x 10(3) M(-1), respectively, but exhibited extremely weak affinity for cellohexaose (<10(2) M(-1)), and its interaction with insoluble cellulose was too weak to quantify. The CBM did not interact with soluble forms of other plant cell wall polysaccharides. The three-dimensional structure of CBM2b-2 was determined by NMR spectroscopy. The module has a twisted "beta-sandwich" architecture, and the two surface exposed tryptophans, Trp 570 and Trp 602, which are in a perpendicular orientation with each other, were shown to be essential for ligand binding. In addition, changing Arg 573 to glycine altered the polysaccharide binding specificity of the module from xylan to cellulose. These data demonstrate that the biochemical properties and tertiary structure of CBM2b-2 and CBM2b-1 are extremely similar. When CBM2b-1 and CBM2b-2 were incorporated into a single polypeptide chain, either in the full-length enzyme or an artificial construct comprising both CBM2bs covalently joined via a flexible linker, there was an approximate 18-20-fold increase in the affinity of the protein for soluble and insoluble xylan, as compared to the individual modules, and a measurable interaction with insoluble acid-swollen cellulose, although the K(a) (approximately 6.0 x 10(4) M(-1)) was still much lower than for insoluble xylan (K(a) = approximately 1.0 x 10(6) M(-1)). These data demonstrate that the two family 2b CBMs of Cf Xyn11A act in synergy to bind acid swollen cellulose and xylan. We propose that the increased affinity of glycoside hydrolases for polysaccharides, through the synergistic interactions of CBMs, provides an explanation for the duplication of CBMs from the same family in some prokaryotic cellulases and xylanases.  相似文献   

10.
The nucleotide sequence of the Clostridium thermocellum F1 celQ gene, which codes for the endoglucanase CelQ, consists of 2,130 bp encoding 710 amino acids. The precursor form of CelQ has a molecular weight of 79,809 and is composed of a signal peptide, a family 9 cellulase domain, a family IIIc carbohydrate-binding module (CBM), and a dockerin domain. Truncated derivatives of CelQ were constructed: CelQdeltadoc consisted of the catalytic domain and the CBM; CelQcat consisted of the catalytic domain only. CelQdeltadoc showed strong activity toward carboxymethylcellulose (CMC) and barley beta-glucan and low activity toward Avicel, acid-swollen cellulose, lichenan, and xylan. The Vmax and Km values were 235 micromol/min/mg and 3.3 mg/ml, respectively, for CMC. By contrast, CelQcat, which was devoid of the CBM, showed negligible activity toward CMC, i.e., about 1/1,000 of the activity of CelQdeltadoc, supporting the previously proposed idea that family IIIc CBMs participate in the catalytic function of the enzyme. Immunological analysis using an antiserum raised against CelQdeltadoc confirmed that CelQ is a component of the C. thermocellum cellulosome.  相似文献   

11.
The genome sequence of Bacillus licheniformis SVD1, that produces a cellulolytic and hemi-cellulolytic multienzyme complex, was partially determined, indicating that the glycoside hydrolase system of this strain is highly similar to that of B. licheniformis ATCC14580. All of the fifty-six genes encoding glycoside hydrolases identified in B. licheniformis ATCC14580 were conserved in strain SVD1. In addition, two new genes, xyn30A and axh43A, were identified in the B. licheniformis SVD1 genome. The xyn30A gene was highly similar to Bacillus subtilis subsp. subtilis 168 xynC encoding for a glucuronoarabinoxylan endo-1,4-β-xylanase. Xyn30A, produced by a recombinant Escherichia coli, had high activity toward 4-O-methyl-d-glucurono-d-xylan but showed definite activity toward oat-spelt xylan and unsubstituted xylooligosaccharides. Recombinant Axh43A, consisting of a family-43 catalytic module of the glycoside hydrolases and a family-6 carbohydrate-binding module (CBM), was an arabinoxylan arabinofuranohydrolase (α-l-arabinofuranosidase) classified as AXH-m23 and capable of releasing arabinosyl residues, which are linked to the C-2 or C-3 position of singly substituted xylose residues in arabinoxylan or arabinoxylan oligomers. The isolated CBM polypeptide had an affinity for soluble and insoluble xylans and removal of the CBM from Axh43A abolished the catalytic activity of the enzyme, indicating that the CBM plays an essential role in hydrolysis of arabinoxylan.  相似文献   

12.
Molecular engineering of ligand-binding proteins is commonly used for identification of variants that display novel specificities. Using this approach to introduce novel specificities into CBMs (carbohydrate-binding modules) has not been extensively explored. Here, we report the engineering of a CBM, CBM4-2 from the Rhodothermus marinus xylanase Xyn10A, and the identification of the X-2 variant. As compared with the wild-type protein, this engineered module displays higher specificity for the polysaccharide xylan, and a lower preference for binding xylo-oligomers rather than binding the natural decorated polysaccharide. The mode of binding of X-2 differs from other xylan-specific CBMs in that it only has one aromatic residue in the binding site that can make hydrophobic interactions with the sugar rings of the ligand. The evolution of CBM4-2 has thus generated a xylan-binding module with different binding properties to those displayed by CBMs available in Nature.  相似文献   

13.
The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.  相似文献   

14.
Xyn30D from the xylanolytic strain Paenibacillus barcinonensis has been identified and characterized. The enzyme shows a modular structure comprising a catalytic module family 30 (GH30) and a carbohydrate-binding module family 35 (CBM35). Like GH30 xylanases, recombinant Xyn30D efficiently hydrolyzed glucuronoxylans and methyl-glucuronic acid branched xylooligosaccharides but showed no catalytic activity on arabinose-substituted xylans. Kinetic parameters of Xyn30D were determined on beechwood xylan, showing a K(m) of 14.72 mg/ml and a k(cat) value of 1,510 min(-1). The multidomain structure of Xyn30D clearly distinguishes it from the GH30 xylanases characterized to date, which are single-domain enzymes. The modules of the enzyme were individually expressed in a recombinant host and characterized. The isolated GH30 catalytic module showed specific activity, mode of action on xylan, and kinetic parameters that were similar to those of the full-length enzyme. Computer modeling of the three-dimensional structure of Xyn30D showed that the catalytic module is comprised of a common (β/α)(8) barrel linked to a side-associated β-structure. Several derivatives of the catalytic module with decreasing deletions of this associated structure were constructed. None of them showed catalytic activity, indicating the importance of the side β-structure in the catalysis of Xyn30D. Binding properties of the isolated carbohydrate-binding module were analyzed by affinity gel electrophoresis, which showed that the CBM35 of the enzyme binds to soluble glucuronoxylans and arabinoxylans. Analysis by isothermal titration calorimetry showed that CBM35 binds to glucuronic acid and requires calcium ions for binding. Occurrence of a CBM35 in a glucuronoxylan-specific xylanase is a differential trait of the enzyme characterized.  相似文献   

15.
Polysaccharide-degrading enzymes are generally modular proteins that contain non-catalytic carbohydrate-binding modules (CBMs), which potentiate the activity of the catalytic module. CBMs have been grouped into sequence-based families, and three-dimensional structural data are available for half of these families. Clostridium thermocellum xylanase 11A is a modular enzyme that contains a CBM from family 6 (CBM6), for which no structural data are available. We have determined the crystal structure of this module to a resolution of 2.1 A. The protein is a beta-sandwich that contains two potential ligand-binding clefts designated cleft A and B. The CBM interacts primarily with xylan, and NMR spectroscopy coupled with site-directed mutagenesis identified cleft A, containing Trp-92, Tyr-34, and Asn-120, as the ligand-binding site. The overall fold of CBM6 is similar to proteins in CBM families 4 and 22, although surprisingly the ligand-binding site in CBM4 and CBM22 is equivalent to cleft B in CBM6. These structural data define a superfamily of CBMs, comprising CBM4, CBM6, and CBM22, and demonstrate that, although CBMs have evolved from a relatively small number of ancestors, the structural elements involved in ligand recognition have been assembled at different locations on the ancestral scaffold.  相似文献   

16.
The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.  相似文献   

17.
The recycling of photosynthetically fixed carbon by the action of microbial glycoside hydrolases is a key biological process. The consortium of degradative enzymes involved in this process frequently display catalytic modules appended to one or more noncatalytic carbohydrate-binding modules (CBMs). CBMs play a central role in the optimization of the catalytic activity of plant cell wall hydrolases through their binding to specific plant structural polysaccharides. Despite their pivotal role in the biodegradation of plant biomass, the mechanism by which these proteins recognize their target ligands is unclear. This report describes the structure of a xylan-binding CBM (CBM15) in complex with its ligand. This module, derived from Pseudomonas cellulosa xylanase Xyn10C, binds to both soluble xylan and xylooligosaccharides. The three-dimensional crystal structure of CBM15 bound to xylopentaose has been solved by x-ray crystallography to a resolution of 1.6 A. The protein displays a similar beta-jelly roll fold to that observed in many other families of binding-modules. A groove, 20-25 A in length, on the concave surface of one of the beta-sheets presents two tryptophan residues, the faces of which are orientated at approximately 240 degrees to one another. These form-stacking interactions with the n and n+2 sugars of xylopentaose complementing the approximate 3-fold helical structure of this ligand in the binding cleft of CBM15. In four of the five observed binding subsites, the 2' and 3' hydroxyls of the bound ligand are solvent-exposed, providing an explanation for the capacity of this xylan-binding CBM to accommodate the highly decorated xylans found in the plant cell wall.  相似文献   

18.
Xylanase A of Thermotoga neapolitana contains binding domains both at the N- and C-terminal ends of the catalytic domain. In the N-terminal position it contains two carbohydrate-binding modules (CBM) which belong to family 22. These CBMs bind xylan but not to cellulose. The gene encoding the mature peptide of these CBMs was fused with an alkaline active GH10 xylanase from Bacillus halodurans S7 and expressed in Escherichia coli. The (His)6 tagged hybrid protein was purified by immobilized metal affinity chromatography and characterized. Xylan binding by the chimeric protein was influenced by NaCl concentration and pH of the binding medium. Binding increased with increasing salt concentration up to 200 mM. Higher extent of binding was observed under acidic conditions. The fusion of the CBM structures enhanced the hydrolytic efficiency of the xylanase against insoluble xylan, but decreased the stability of the enzyme. The optimum temperature and pH for the activity of the xylanase did not change.  相似文献   

19.
An EcoRI chromosomal DNA fragment of Ruminococcus albus F-40 that conferred endoglucanase activity on Escherichia coli was cloned. An open reading frame (ORF1) and another incomplete reading frame (ORF2) were found in the EcoRI fragment. The ORF2 was completed using inverse PCR genome walking technique. ORF1 and ORF2, which confront each other, encoded cellulases belonging to families 5 and 9 of the glycoside hydrolases and were designated cel5D and cel9A respectively. The cel5D gene encodes 753 amino acids with a deduced molecular weight of 83,409. Cel5D consists of a signal peptide of 24 amino acids, a family-5 catalytic module, a dockerin module, and two family-4 carbohydrate-binding modules (CBMs). The cel9A gene encodes 936 amino acids with a deduced molecular weight of 104,174, consisting of a signal peptide, a family-9 catalytic module, a family-3 CBM, and a dockerin module. The catalytic module polypeptide (rCel5DCat) derived from Cel5D was constructed, expressed, and purified from a recombinant E. coli. The truncated enzyme hydrolyzed cellohexaose, cellopentaose, and cellotetraose to yield mainly cellotriose and cellobiose with glucose as a minor product, but the enzyme was less active toward cellotriose and not active toward cellobiose, suggesting that this enzyme is a typical endoglucanase. rCel5DCat had a Km of 3.9 mg/ml and a Vmax of 37.2 micromol/min/mg for carboxymethycellulose.  相似文献   

20.
The nucleotide sequence of the Clostridium josui FERM P-9684 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,150 bp and encodes 1,050 amino acids with a molecular weight of 115,564. Xyn10A is a multidomain enzyme composed of an N-terminal signal peptide and six domains in the following order: two thermostabilizing domains, a family 10 xylanase domain, a family 9 carbohydrate-binding module (CBM), and two S-layer homologous (SLH) domains. Immunological analysis indicated the presence of Xyn10A in the culture supernatant of C. josui FERM P-9684 and on the cell surface. The full-length Xyn10A expressed in a recombinant Escherichia coli strain bound to ball-milled cellulose (BMC) and the cell wall fragments of C. josui, indicating that both the CBM and the SLH domains are fully functional in the recombinant enzyme. An 85-kDa xylanase species derived from Xyn10A by partial proteolysis at the C-terminal side, most likely at the internal region of the CBM, retained the ability to bind to BMC. This observation suggests that the catalytic domain or the thermostabilizing domains are responsible for binding of the enzyme to BMC. Xyn10A-II, the 100-kDa derivative of Xyn10A, was purified from the recombinant E. coli strain and characterized. The enzyme was highly active toward xylan but not toward p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-cellobioside, or carboxymethylcellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号