首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N -glycosylation (i.e. the presence of β1,2-xylosylation and core α1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous β1,2- xylosyltransferase (XylT) and α1,3- fucosyltransferase (FucT) genes in Nicotiana benthamiana , a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core α1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core α1,3-fucose residues in their N -glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N -glycan species without detectable xylose and α1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N -glycan structure.  相似文献   

2.
In recent years, plants have become an attractive alternative for the production of recombinant proteins. However, their inability to perform authentic mammalian N -glycosylation may cause limitations for the production of therapeutics. A major concern is the presence of β1,2-xylose and core α1,3-fucose residues on complex N -linked glycans, as these N -glycan epitopes are immunogenic in mammals. In our attempts towards the humanization of plant N -glycans, we have generated an Arabidopsis thaliana knockout line that synthesizes complex N -glycans lacking immunogenic xylose and fucose epitopes. Here, we report the expression of a monoclonal antibody in these glycan-engineered plants that carry a homogeneous mammalian-like complex N -glycan pattern without β1,2-xylose and core α1,3-fucose. Plant and Chinese hamster ovary (CHO)-derived immunoglobulins (IgGs) exhibited no differences in electrophoretic mobility and enzyme-linked immunosorbent specificity assays. Our results demonstrate the feasibility of a knockout strategy for N -glycan engineering of plants towards mammalian-like structures, thus providing a significant improvement in the use of plants as an expression platform.  相似文献   

3.
Plant N -linked glycans differ substantially from their mammalian counterparts, mainly with respect to modifications of the core glycan, which typically contains a β(1,2)-xylose and an α(1,3)-fucose. The addition of a bisecting N -acetylglucosamine residue by β(1,4)- N -acetylglucosaminyltransferase III (GnTIII) is known to control the processing of N -linked glycans in mammals, for example by preventing α(1,6)-fucosylation of the core glycan. In order to outcompete plant-specific β(1,2)-xylose and α(1,3)-fucose modifications, rat GnTIII was expressed either with its native localization domain (GnTIII) or with the cytoplasmic tail, transmembrane domain and stem region (CTS) of Arabidopsis thaliana mannosidase II (ManII) (GnTIIIA.th.). Both CTSs targeted enhanced yellow fluorescent protein (eYFP) to a brefeldin A-sensitive compartment, indicative of Golgi localization. GnTIII expression increased the fraction of N -glycans devoid of xylose and fucose from 13% ± 7% in wild-type plants to 60% ± 8% in plants expressing GnTIIIA.th.. N -Glycans of plants expressing rat GnTIII contained three major glycan structures of complex bisected, complex, or hybrid bisected type, accounting for 70%–85% of the total N -glycans. On expression of GnTIIIA.th., N -glycans displayed a higher heterogeneity and were of hybrid type. Co-expression of A. thaliana ManII significantly increased the amount of complex bisected structures relative to the plants expressing GnTIII or GnTIIIA.th., whereas co-expression of human ManII did not redirect the pool of hybrid structures towards complex-type structures. The method described offers the advantage that it can be implemented in any desired plant system for effective removal of β(1,2)-xylose and α(1,3)-fucose from the N -glycan.  相似文献   

4.
Plant-based transient expression is potentially the most rapid and cost-efficient system for the production of recombinant pharmaceutical proteins, but safety concerns associated with plant-specific N -glycosylation have hampered its adoption as a commercial production system. In this article, we describe an approach based on the simultaneous transient co-expression of an antibody, a suppressor of silencing and a chimaeric human β1,4-galactosyltransferase targeted for optimal activity to the early secretory pathway in agroinfiltrated Nicotiana benthamiana leaves. This strategy allows fast and high-yield production of antibodies with human-like N -glycans and, more generally, provides solutions to many critical problems posed by the large-scale production of therapeutic and vaccinal proteins, specifically yield, volume and quality.  相似文献   

5.
Oligosaccharides derived from cell wall of fungal pathogens induce host primary immune responses. To understand fungal strategies circumventing the host plant immune responses, cell wall polysaccharide localization was investigated using fluorescent labels during infectious structure differentiation in the rice blast fungus Magnaporthe grisea . α-1,3-glucan was labelled only on appressoria developing on plastic surfaces, whereas it was detected on both germ tubes and appressoria on plant surfaces. Chitin, chitosan and β-1,3-glucan were detected on germ tubes and appressoria regardless of the substrate. Major polysaccharides labelled at accessible surface of infectious hyphae were α-1,3-glucan and chitosan, but after enzymatic digestion of α-1,3-glucan, β-1,3-glucan and chitin became detectable. Immunoelectron microscopic analysis showed α-1,3-glucan and β-1,3-glucan intermixed in the cell wall of infectious hyphae; however, α-1,3-glucan tended to be distributed farther from the fungal cell membrane. The fungal cell wall became more tolerant to chitinase digestion upon accumulation of α-1,3-glucan. Accumulation of α-1,3-glucan was dependent on the Mps1 MAP kinase pathway, which was activated by a plant wax derivative, 1,16-hexadecanediol. Taken together, α-1,3-glucan spatially and functionally masks β-1,3-glucan and chitin in the cell wall of infectious hyphae. Thus, a dynamic change of composition of cell wall polysaccharides occurs during plant infection in M. grisea .  相似文献   

6.
Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.  相似文献   

7.
Previously, we developed a transgenic tobacco BY2 cell line (GT6) in which glycosylation was modified by expressing human beta(1,4)-galactosyltransferase (betaGalT). In this study, we produced a mouse monoclonal antibody in GT6 cells, and determined the sugar chain structures of plant-produced antibodies. Galactose-extended N-linked glycans comprised 16.7%, and high-mannose-type and complex-type glycans comprised 38.5% and 35.0% of the total number of glycans, respectively. N-linked glycans with the plant-specific sugars beta(1,2)-xylose and alpha(1,3)-fucose comprised 9.8%. The introduction of human betaGalT into suspension cultured tobacco cells resulted in the production of recombinant proteins with galactose-extended glycans and decreased contents of beta(1,2)-xylose and alpha(1,3)-fucose.  相似文献   

8.
The highly glycosylated peptide hormone erythropoietin (EPO) plays a key role in the regulation of erythrocyte maturation. Currently, marketed EPO is produced by recombinant technology in mammalian cell cultures. The complementary DNA (cDNA) for human EPO (hEPO) was transiently and stably expressed in the moss Physcomitrella patens wild-type and Δ-fuc-t Δ-xyl-t mutant, the latter containing N -glycans lacking the plant-specific, core-bound α1,3-fucose and β1,2-xylose. New expression vectors were designed based on a Physcomitrella ubiquitin gene-derived promoter for the expression of hEPO cDNA. Transient expression in protoplasts was much stronger at 10 than at 20 °C. In Western blot analysis, the molecular size of moss-produced recombinant human EPO (rhEPO) was identified to be 30 kDa, and it accumulated in the medium of transiently transformed protoplasts to high levels around 0.5 µg/mL. Transgenic Physcomitrella Δ-fuc-t Δ-xyl-t mutant lines expressing EPO cDNA showed secretion of rhEPO through the cell wall to the culture medium. In 5- and 10-L photobioreactor cultures, secreted rhEPO accumulated to high levels above 250 µg/g dry weight of moss material after 6 days. Silver staining of rhEPO on sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) taken from the bioreactor culture demonstrated a high purity of the over-expressed secreted rhEPO, with a very low background of endogenous moss proteins. Peptide mapping of rhEPO produced by the Physcomitrella Δ-fuc-t Δ-xyl-t mutant indicated correct processing of the plant-derived signal peptide. All three N -glycosylation sites of rhEPO were occupied by complex-type N -glycans completely devoid of the plant-specific core sugar residues fucose and xylose.  相似文献   

9.
In order to determine the N-glycosylation potential of maize, a monocotyledon expression system for the production of recombinant glycoproteins, human lactoferrin was used as a model. The human lactoferrin coding sequence was inserted into the pUC18 plasmid under control of the wheat glutenin promoter. Maize was stably transformed and recombinant lactoferrin was purified from the fourth generation seeds. Glycosylation was analysed by gas chromatography, lectin detection, glycosidase digestions and mass spectrometry. The results indicated that both N-glycosylation sites of recombinant lactoferrin are mainly substituted by typical plant paucimannose-type glycans, with 1,2-xylose and 1,3-linked fucose at the proximal N-acetylglucosamine, and that complex-type glycans with Lewisa determinants are not present in maize recombinant lactoferrin.  相似文献   

10.
Plant cells have no beta1,4-galactosylated and sialylated glycan, which plays important roles in biological functions in animal cells. Previously, we generated transgenic tobacco BY2 suspension-cultured cells that produced human beta1,4-galactosyltransferase [N.Q. Palacpac, S. Yoshida, H. Sakai, Y. Kimura, K. Fujiyama, T. Yoshida, T. Seki, Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation pattern, Proc. Natl. Acad. Sci. USA 96 (1999) 4692-4697]. In this study, we introduced two critical genes encoding human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter into tobacco suspension-cultured cell to pave a route for sialic biosynthetic pathway. The recombinant human proteins showed their biological activities. These results show that the plant cell can be a useful bioreactor for the production of mammalian glycoproteins.  相似文献   

11.
Summary In this study, the variety of sugar residues in the gut glycoconjugates of Triturus carnifex (Amphibia, Caudata) are investigated by carbohydrate conventional histochemistry and lectin histochemistry. The oesophageal surface mucous cells contained acidic glycoconjugates, with residues of GalNAc, Gal β1,3 GalNAc and (GlcNAc β1,4) n oligomers. The gastric surface cells mainly produced neutral glycoproteins with residues of fucose, Gal β1-3 GalNAc, Gal-αGal, and (GlcNAc β1,4) n oligomers in N- and O-linked glycans, as the glandular mucous neck cells, with residues of mannose/glucose, GalNAc, Gal β1,3 GalNAc, (GlcNAc β1,4) n oligomers and fucose linked α1,6 or terminal α1,3 or α1,4 in O-linked glycans. The oxynticopeptic tubulo-vesicular system contained neutral glycoproteins with N- and O-linked glycans with residues of Gal-αGal, Gal β1-3 GalNAc and (GlcNAc β1,4) n oligomers; Fuc linked α1,2 to Gal, α1,3 to GlcNAc in (poly)lactosamine chains and α1,6 to GlcNAc in N-linked glycans. Most of these glycoproteins probably corresponds to the H+K+-ATPase β-subunit. The intestinal goblet cells contained acidic glycoconjugates, with residues of GalNAc, mannose/ glucose, (GlcNAc β1,4) n oligomers and fucose linked α1,2 to Gal in O-linked oligosaccharides. The different composition of the mucus in the digestive tracts may be correlated with its different functions. In fact the presence of abundant sulphation of glycoconjugates, mainly in the oesophagus and intestine, probably confers resistance to bacterial enzymatic degradation of the mucus barrier.  相似文献   

12.
Abstract: Allergenicity of plant glycoproteins in humans may prevent the use of plants as production factories for pharmaceutically important proteins. The major difference between plant and mammalian N-glycans is the presence of xylosyl and α1,3-fucosyl residues in the former. In a first step towards "humanization" of the N-glycosylation pathway in the moss Physcomitrella patens, which could be an excellent system for industrial production of therapeutic proteins, we isolated the cDNAs and genes for N-acetylglucosaminyltransferase I (GNTI), α1,3-fucosyltransferase, and β1,2-xylosyltransferase. Sequence analysis revealed that all three proteins are homologous to their counterparts from higher plants, however, the conservation of the primary structure was only 35 - 45 %. The gene encoding the key enzyme of the pathway, gntI, was disrupted in P. patens by homologous recombination. Although the mutation of this gene in mouse or A. thaliana led to a significantly altered pattern of N-glycans, the glycosylation pattern in the gntI knockouts did not differ from that in wild-type moss and was identical to that in higher plants. Protein secretion, analysed in assays with recombinant human VEGF121 protein, was not affected in the knockouts. We conclude from our findings that the N-glycosylation pathway in P. patens is identically organized to that in higher plants. However, P. patens probably possesses more than one isoform of GNTI which complicates a straightforward knockout. Therefore, and since complex type structures appear more desirable than oligomannosidic N-glycans, future modifications of the pathway should target α1,3-fucosyltransferase and/or β1,2-xylosyltransferase.  相似文献   

13.
The transplantation of organs from other species into humans is considered to be a potential solution to the shortage of human donor organs. Organ transplantation from pig to human, however, results in hyperacute rejection, initiated by the binding of human natural antidonor antibody and complement. The major target antigen of this natural antibody is the terminal disaccharide Galalphal,3Gal, which is synthesized by Galbeta1,4GlcNAc alpha1,3-galactosyltransferase. Here we review our current knowledge of this key enzyme. A better understanding of structure, enzyme properties, and expression pattern of alpha1,3-galactosyltransferase has opened up several novel therapeutic approaches to prevent hyperacute vascular rejection. Cloning, and expression in vitro of the corresponding cDNA, has allowed to develop strategies to induce immune tolerance, and deplete or neutralize the natural xenoreactive antibody. Elucidation of the genomic structure has led to the production of transgenic animals that are lacking alpha1,3-galactosyltransferase activity. A detailed knowledge of the enzyme properties has formed the basis of approaches to modify donor organ glycosylation by intracellular competition. Study of the expression pattern of alpha1,3-galactosyltransferase has helped to understand the mechanism of hyperacute rejection in discordant xenotransplantation, and that of complement-mediated, natural immunity against interspecies transmission of retroviruses.  相似文献   

14.
In plants, N -linked glycans are processed in the Golgi apparatus to complex-type N -glycans of limited size containing a β(1,2)-xylose and/or an α(1,3)-fucose residue. Larger mono- and bi-antennary N -linked complex glycans have not often been described. This study has re-examined the structure of such plant N -linked glycans, and, through both immunological and structural data, it is shown that the antennae are composed of Lewis a (Lea) antigens, comprising the carbohydrate sequence Galβ1-3[Fucα1-4]GlcNAc. Furthermore, a fucosyltransferase activity involved in the biosynthesis of this antigen was detected in sycamore cells. This is the first characterization in plants of a Lewis antigen that is usually found on cell-surface glycoconjugates in mammals and involved in recognition and adhesion processes. Lea-containing N -linked glycans are widely distributed in plants and highly expressed at the cell surface, which may suggest a putative function in cell/cell communication.  相似文献   

15.
Glyco-engineering of moss lacking plant-specific sugar residues   总被引:1,自引:0,他引:1  
The commercial production of complex pharmaceutical proteins from human origin in plants is currently limited through differences in protein N-glycosylation pattern between plants and humans. On the one hand, plant-specific alpha(1,3)-fucose and beta(1,2)-xylose residues were shown to bear strong immunogenic potential. On the other hand, terminal beta(1,4)-galactose, a sugar common on N-glycans of pharmaceutically relevant proteins, e.g., antibodies, is missing in plant N-glycan structures. For safe and flexible production of pharmaceutical proteins, the humanisation of plant protein N-glycosylation is essential. Here, we present an approach that combines avoidance of plant-specific and introduction of human glycan structures. Transgenic strains of the moss Physcomitrella patens were created in which the alpha(1,3)-fucosyltransferase and beta(1,2)-xylosyltransferase genes were knocked out by targeted insertion of the human beta(1,4)-galactosyltransferase coding sequence in both of the plant genes (knockin). The transgenics lacked alpha(1,3)-fucose and beta(1,2)-xylose residues, whereas beta(1,4)-galactose residues appeared on protein N-glycans. Despite these significant biochemical changes, the plants did not differ from wild type with regard to overall morphology under standard cultivation conditions. Furthermore, the glyco-engineered plants secreted a transiently expressed recombinant human protein, the vascular endothelial growth factor, in the same concentration as unmodified moss, indicating that the performed changes in glycosylation did not impair the secretory pathway of the moss. The combined knockout/knockin approach presented here, leads to a new generation of engineered moss and towards the safe and flexible production of correctly processed pharmaceutical proteins with humanised N-glycosylation profiles.  相似文献   

16.
Novel chimeric lacdiNAc (GalNAc(β1-4)GlcNAc) synthase (c-LacdiNAcS) was generated by gene fusion of α-lactalbumin (α-LA) and β1,4-galactosyltransferase 1 (β1,4-GalT1). c-LacdiNAcS was expressed in Lec8 Chinese hamster ovary (Lec8 CHO) cells and exhibited N-acetylgalactosaminyltransferase (GalNAcT) activity in the absence of exogenous α-LA as well as other glycosyltransferase activities including lactose synthase (LacS), and β1,4-GalT. These glycosyltransferase activities of c-LacdiNAcS were compared to those activities induced in LacS system under the co-presence of bovine β1,4-GalT1 and α-LA, indicating that each domain of α-LA and β1,4-GalT1 on c-LacdiNAcS is not only folding correctly, but also interacting together. Furthermore, c-LacdiNAcS was found to be auto-lacdiNAcylated and can synthesize lacdiNAc structures on cellular glycoproteins, demonstrating that GalNAcT activity of c-LacdiNAcS is functional in Lec8 CHO cells.  相似文献   

17.
Glycans (i.e. oligosaccharide chains attached to cellular proteins and lipids) are crucial for nearly all aspects of life, including the development of multicellular organisms. They come in multiple forms, and much of this diversity between molecules, cells, and tissues is generated by Golgi-resident glycosidases and glycosyltransferases. However, their exact mode of functioning in glycan processing is currently unclear. Here we investigate the supramolecular organization of the N-glycosylation pathway in live cells by utilizing the bimolecular fluorescence complementation approach. We show that all four N-glycosylation enzymes tested (β-1,2-N-acetylglucosaminyltransferase I, β-1,2-N-acetylglucosaminyltransferase II, 1,4-galactosyltransferase I, and α-2,6-sialyltransferase I) form Golgi-localized homodimers. Intriguingly, the same enzymes also formed two distinct and functionally relevant heterodimers between the medial Golgi enzymes β-1,2-N-acetylglucosaminyltransferase I and β-1,2-N-acetylglucosaminyltransferase II and the trans-Golgi enzymes 1,4-galactosyltransferase I and α-2,6-sialyltransferase I. Given their strict Golgi localization and sequential order of function, the two heterodimeric complexes are probably responsible for the processing and maturation of N-glycans in live cells.  相似文献   

18.
Cinnamomin is a plant type II ribosome-inactivating protein (RIP) isolated from the seeds of Cinnamomum camphora. It consists of two nonidentical polypeptide chains (A- and B-chain) held together through one disulfide linkage. Its A- and B-chain contain 0.3% and 3.9% sugars respectively. The B-chain of cinnamomin was digested by pronase E and then the liberated glycopeptides were separated from non-glycopeptides by gel filtration chromatography on a Bio-Gel P-4 column. Three crude glycopeptides were obtained by continuing chromatography over anion-exchange resin (AG1-X2) in the buffer of 2% pyridine-acetic acid (pH 8.3) with a polygradient elution system. Through further purification by the gel filtration chromatography and HPLC, three major glycopeptides, GP1, GP2 and GP3 were obtained. Mainly by two-dimensional Nuclear Magnetic Resonance (NMR) including TOCSY, DQF-COSY, NOESY, HMQC and HMBC, their primary structures were analyzed as: Man1,3Man1,6(Man1,3)(Xyl1,2)Man1,4GlcNAc1,4GlcNAc1-(Gly-)Asn-Asn-Thr(GP1), Man1,6(Man1,3)(Xyl1,2)Man1,4GlcNAc1,4(Fuc1,3)GlcNAc1-Asn-Ala-Thr(GP2),Man1,6(Man1,3)Man1,6(Man1,2 Man1,3)Man1,4GlcNAc1,4GlcNAc1-(Ala-)Asn-Gly-Thr(GP3).  相似文献   

19.
Glycosylation of proteins has profound consequences on the activities of macromolecules and their interactions with inhibitors/substrates. Matrix metalloproteinase-9 (MMP-9, also known as gelatinase B) is a member of the MMP family of zinc-dependent endopeptidases, with critical functions in both physiological and pathological processes. MMP-9, a glycosylated MMP, is implicated in inflammation, angiogenesis and tumor metastasis. We have determined by the use of mass spectrometry that of the three possible N-glycosylation sites in human MMP-9 only two are glycosylated. The N-glycosylation sites are at asparagines in positions 38 and 120, the first site within the propeptide domain of the zymogenic form (pro-MMP-9) of the enzyme and the second in the catalytic domain. The chemical nature of the sugar attachments to both these sites was determined by mass spectrometry. Both N-glycosylation sites have NeuAcalpha(1,2)-Galbeta(1,4)-GlcNAcbeta(1,2)-Manalpha(1,3)-[NeuAcalpha(1,2)-Galbeta(1,4)-GlcNAcbeta(1,2)-Manalpha(1,6)-]Manbeta(1,4)-GlcNAcbeta(1,4)-[Fucalpha(1,6)-]GlcNAcbeta oligosaccharide chains. A computational model of glycosylated pro-MMP-9 was generated and it was studied by dynamics simulations  相似文献   

20.
Abstract: The axonal outgrowth of cells of Neuro2a, a mouse neuroblastoma cell line, was suppressed on expression of the β-galactoside α1,2-fucosyltransferase (α1,2-FT) gene. We recently cloned two types of rabbit α1,2-FT, RFT-I and RFT-II. RFT-I exhibits comparable kinetic properties and structural homology with human H gene α1,2-FT, and RFT-II shows comparable kinetic parameters with human Se gene α1,2-FT. Neuro2a cells expressing RFT-I (N2A-RFT-I) contained a large amount of fucosyl GM1 instead of GM1 and GD1a, major gangliosides in the parent Neuro2a cells, whereas Neuro2a cells expressing RFT-II (N2A-RFT-II) showed a subtle change in the ganglioside pattern. N2A-RFT-II and parent Neuro2a cells showed axonal outgrowth in serum-free medium on the exogenous addition of GM1, whereas N2A-RFT-I cells exhibited multiple neurite sprouts but not axonal outgrowth. This phenotype was fully recovered by N2A-RFT-I cells on the addition of d - threo -1-phenyl-2-decanoylamino-3-morpholino-1-propanol and α- l -fucosidase to the culture medium, which resulted in pronounced reduction of fucosyl GM1 expression. These results suggested that expression of H-type α1,2-FT, and subsequent incorporation of fucose into glycolipids and glycoproteins, especially the formation of fucosyl GM1, modifies the response of neuronal cells to stimuli that induce axonal extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号