首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, oocyte acquires a series of competencies sequentially during folliculogenesis that play critical roles at fertilization and early stages of embryonic development. In mouse, chromatin in germinal vesicle (GV) undergoes dynamic changes during oocyte growth and its progressive condensation has been related to the achievement of developmental potential. Cumulus cells are essential for the acquisition of meiotic competence and play a role in chromatin remodeling during oocyte growth. This study is aimed to characterize the chromatin configuration of growing and fully grown bovine oocytes, the status of communications between oocyte and cumulus cells and oocyte developmental potential. Following nuclear staining, we identified four discrete stages of GV, characterized by an increase of chromatin condensation. GV0 stage represented 82% of growing oocytes and it was absent in fully grown oocytes. GV1, GV2, and GV3 represented, respectively, 24, 31, and 45% of fully grown oocytes. Our data indicated a moderate but significant increase in oocyte diameter between GV0 and GV3 stage. By dye coupling assay the 98% of GV0 oocytes showed fully open communications while the number of oocytes with functionally closed communications with cumulus cells was significantly higher in GV3 group than GV1 and GV2. However, GV0 oocytes were unable to progress through metaphase II while GV2 and GV3 showed the highest developmental capability. We conclude that in bovine, the progressive chromatin condensation is related to the sequential achievement of meiotic and embryonic developmental competencies during oocyte growth and differentiation. Moreover, gap-junction-mediated communications between oocyte and cumulus cells could be implicated in modulating the chromatin remodeling process.  相似文献   

2.
Sun QY  Fuchimoto D  Nagai T 《Theriogenology》2004,62(1-2):245-255
The ubiquitin-proteasome pathway is involved in the degradation of proteins related to cell cycle progression including cyclins. The present study, using two specific proteasome inhibitors, for the first time investigated the roles of ubiquitin-proteasome in cell cycle progression during pig oocyte meiotic maturation and after fertilization. In contrast to its effect in rodent oocytes, proteasome inhibition strongly prevented germinal vesicle breakdown (GVBD). After GVBD, proteasome inhibition disrupted meiotic apparatus organization, cell cycle progression, and first polar body (PB1) extrusion. Sperm penetration into the oocytes was completely inhibited when proteasome inhibitors were added at the beginning of insemination. However, sperm chromatin decondensation and metaphase-interphase transition were not affected when inhibitors were added once sperm penetrated. The results suggest that ubiquin-proteasome complex is one of the critical regulators of meiotic cell cycle, but proteasome inhibitors do not affect major fertilization events when added after sperm penetration into the oocytes in the pig.  相似文献   

3.
The organization of chromatin and cytoplasmic microtubules changes abruptly at M-phase entry in both mitotic and meiotic cell cycles. To determine whether the early nuclear and cytoplasmic events associated with meiotic resumption are dependent on protein synthesis, cumulus-enclosed hamster oocytes were cultured in the presence of 100 micrograms/ml puromycin or cycloheximide for 5 hr. Both control (untreated) and treated oocytes were analyzed by fluorescence microscopy after staining with Hoechst 33258 and tubulin antibodies. Freshly isolated oocytes exhibit prominent nucleoli and diffuse chromatin within the germinal vesicle as well as an interphase network of cytoplasmic microtubules. After 4-4.5 hr in culture, most oocytes were in prometaphase I of meiosis as characterized by a prominent spindle with fully condensed chromosomes and numerous cytoplasmic asters. After 5-5.5 hr in culture, microtubule asters are no longer detected in most cells, and the spindle is the only tubulin-positive structure. Incubation for 5 hr in the presence of inhibitors does not impair germinal vesicle breakdown, chromatin condensation, kinetochore microtubule assembly, or cytoplasmic aster formation in the majority of oocytes examined; however, under these conditions, a population of oocytes retains a germinal vesicle, exhibiting variable degrees of chromatin condensation and cytoplasmic aster formation. Meiotic spindle formation is inhibited in all oocytes. These effects are fully reversible upon culture of treated oocytes in drug-free medium for 5 hr. The data indicate that meiotic spindle assembly is dependent on ongoing protein synthesis in the cumulus-enclosed hamster oocyte; in contrast, chromatin condensation and aster formation are not as sensitive to protein synthesis inhibitors during meiotic resumption.  相似文献   

4.
Histological examination of gonadotrophin stimulated Macaca fascicularis ovaries removed at mid-follicular phase showed that germinal vesicles (GV) could exhibit different configurations in follicles greater than 1000 microns in diameter. We describe 3 types of nuclear organization called GV1 (dispersed and filamentous chromatin), GV2 (clumped and filamentous chromatin) and GV3 (perinucleolar chromatin condensation). Gonadotrophin stimulation and follicular atresia induced modifications in GV chromatin dispersion. Such modifications were of a higher degree in the case of atresia which could even induce in vivo germinal vesicle breakdown (GVBD). Our findings were as follows. The frequency of GV1 oocytes was always low, but was higher in healthy than in atretic follicles, whereas GV3 oocytes were more frequent in atretic compared to healthy follicles; the oocytes which resumed meiosis in vitro were most probably those which were at the GV3 stage at the time of recovery; GV nuclear changes were related to follicle size and quality, but not to oocyte size. The mean follicular size increased from GV1 to GV3 oocyte stages whatever the follicle quality; the nucleus was often observed in a peripheral position even in GV1 oocytes; zona pellucida appearance was related to GV stage and follicle quality and was more often observed to be abnormal or absent in case of GV3 oocytes included in atretic follicles. Oocyte nuclear modifications therefore appear to be a prerequisite to resumption of meiosis.  相似文献   

5.
We have shown okadaic acid (OA) and calyculin-A (CLA) inhibition of mouse oocyte phosphoprotein phosphatase 1 (PPP1C) and/or phosphoprotein phosphatase 2A (PPP2CA) results in aberrant chromatin condensation, as evidenced by the inability to resolve bivalents. Phosphorylation of histone H3 at specific residues is thought to regulate chromatin condensation. Therefore, we examined changes in histone H3 phosphorylation during oocyte meiosis and the potential regulation by protein PPPs. Western blot and immunocytochemical analysis revealed histone H3 phosphorylation changed during mouse oocyte meiosis, with changes in chromatin condensation. Germinal vesicle-intact (GV-intact; 0 h) oocytes had no phospho-Ser10 but did have phospho-Ser28 histone H3. Oocytes that had undergone germinal vesicle breakdown (GVBD; 2 h) and progressed to metaphase I (MI; 7 h) and MII (16 h) had phosphorylated Ser10 and Ser28 histone H3 associated with condensed chromatin. To determine whether OA-induced aberrations in chromatin condensation were due to alterations in levels of histone H3 phosphorylation, we assessed phosphorylation of Ser10 and Ser28 residues following PPP inhibition. Oocytes treated with OA (1 microM) displayed increased phosphorylation of histone H3 at both Ser10 and Ser28 compared with controls. To begin to elucidate which OA-sensitive PPP is responsible for regulating chromatin condensation and histone H3 phosphorylation, we examined spatial and temporal localization of OA-sensitive PPPs, PPP1C, and PPP2CA. PPPC2A did not localize to condensed chromatin, whereas PPP1beta (PPP1CB) associated with condensing chromatin in GVBD, MI, and MII oocytes. Additionally, Western blot and immunocytochemistry confirmed presence of the PPP1C regulatory inhibitor subunit 2 (PPP1R2) in oocytes at condensed chromatin during meiosis and indicated a change in PPP1R2 phosphorylation. Inhibition of oocyte glycogen synthase kinase 3 (GSK3) appeared to regulate phosphorylation of PPP1R2. Furthermore, inhibition of GSK3 resulted in aberrant oocyte bivalent formation similar to that observed following PPP inhibition. These data suggest that PPP1CB is the OA/CLA-sensitive PPP that regulates oocyte chromatin condensation through regulation of histone H3 phosphorylation. Furthermore, GSK3 inhibition results in aberrant chromatin condensation and appears to regulate phosphorylation of PPP1R2.  相似文献   

6.
7.
There is a great variability in the success of horse oocyte maturation and fertilization among laboratories. This study was conducted to determine if the meiotic and developmental competence of horse oocytes could be dependent on the method of oocyte collection, i.e., aspiration of follicular fluid with a vacuum apparatus, or opening follicles and scraping the granulosa layer. Horse oocytes were recovered from abattoir ovaries by aspiration or scraping and classified as having compact (Cp), expanded (Ex), or partial (P) cumuli. In Experiment 1 (Part A in May and Part B in October), oocytes were fixed immediately after collection to assess whether the collection method influenced the initial chromatin configuration of oocytes. In Experiment 2, in vitro maturation rates of oocytes recovered by aspiration or scraping were compared. In Experiment 3, oocytes were matured in vitro and submitted to intracytoplasmic sperm injection (ICSI). Initial chromatin configuration differed according to collection method in that there was a significantly higher prevalence of diffuse chromatin within the germinal vesicle in oocytes recovered by scraping than in oocytes recovered by aspiration (29/87, 33% and 28/166, 17%, respectively; P < 0.01). Maturation of oocytes to metaphase II did not significantly differ between scraped and aspirated oocytes (56/101, 55.4 % vs. 65/106, 61.4%, respectively). The overall pronucleus formation rate after ICSI of oocytes recovered by scraping was not significantly different than that of oocytes recovered by aspiration (50/99, 52.6% vs. 50/85, 68.5 %, respectively); however, the rate of abnormal fertilization was significantly higher for oocytes collected by aspiration (14/73, 19% vs. 6/94, 6%, respectively; P <0.05). These results demonstrate that the collection method affects the population of recovered oocytes and may contribute to differences in results observed among laboratories working with horse oocytes.  相似文献   

8.
The effects of ovary holding time and temperature on granulosa cell apoptosis, oocyte chromatin configuration and cumulus morphology were investigated through a series of experiments. Three experiments were performed to determine the effect of ovary holding time and temperature on granulosa cell apoptosis. Ovaries were held (1) at 20, 30 or 35-37 degrees C for up to 2h, (2) at 30 degrees C for 0-1, 1-2, 2-3, 3-4, 4-6 or 6-10h, and (3) granulosa cells were held for 0, 1, 2, 3, 5, 12 or 24h in M199 with Hank's salts at room temperature (suboptimal incubation). Granulosa cell DNA was analysed by ethidium bromide staining or 3'-end labelling. Two experiments were performed to determine the effect of ovary holding time and temperature on oocyte chromatin configuration. Ovaries were held (1) at 20, 30 or 35-37 degrees C for up to 3h and (2) at 20-37 degrees C for 0-1, 1-2, 2-3, 3-4, 4-6, 6-8 or 8-12h. The oocytes were stained with Hoechst stain 33258 and the chromatin configuration was evaluated. Two experiments were performed to determine the effect of ovary holding time and temperature on cumulus oophorus morphology. Ovaries were held at (1) 20-30 or 35-37 degrees C for up to 2h and (2) for 0-2, 2-4, 4-6, and 6-10h at 35-37 degrees C. The cumulus oocyte complex (COC) were retrieved and the cumulus morphology was evaluated. There was no difference in proportion of follicles with non-apoptotic granulosa cells in the two groups below body temperature (20 and 30 degrees C), but more follicles had apoptotic granulosa cells when the ovaries were held at 35-37 degrees C (P < 0.001). Holding ovaries at 30 degrees C for more than 3h increased the proportion of follicles with apoptotic granulosa cells (P < 0.01). When follicles with non-apoptotic granulosa cells were incubated at room temperature, there was no granulosa cell apoptosis in any of the follicles within the first 3h, but at 5h apoptosis was present in the granulosa cells of 22% of the follicles, and 78% of the follicles contained apoptotic granulosa cells at 24h (P < 0.001). The temperature at which the ovaries were held did not influence oocyte chromatin, although there was a tendency towards more condensed chromatin configurations in the groups below body temperature. More denuded and expanded COCs were present in the lower temperature group (P < 0.001). Oocyte chromatin configuration changed after 6h of holding (P < 0.001), and numbers of compact COCs decreased after 2h (P < 0.05). The present studies suggest that equine follicles should be held for no more than 3h at 20-30 degrees C if granulosa cell apoptosis is to be avoided. To avoid changes in cumulus oophorus morphology, ovaries should be held at 35-37 degrees C and for less than 2h before processing, and to avoid oocyte chromatin configuration changes, ovaries should be stored for less than 6h. When ovaries are to be used in oocyte maturation studies, and assuming that (1) CC is the chromatin configuration of choice for oocyte maturation, (2) that presence of granulosa cell apoptosis promotes maturation of the oocyte and (3) that expanded cumulus oocytes are preferable, the present data suggests that ovaries should be stored for 4-6h before oocyte retrieval.  相似文献   

9.
Kinetics of extrusion of the first polar body was examined as well as the effect of the time of stripping of the cumulus cells on this kinetics. In addition, the effects of time of stripping and time of insemination on developmental competence of the oocytes, as evaluated by the percentage of morulae and blastocysts, were studied. Polar body extrusion occurred in 80% of the oocytes between 12 and 18 h after the onset of maturation. The remainder of the oocytes did not extrude a polar body at all. Stripping of the cumulus at 12 h after the onset of maturation delayed polar body extrusion significantly by about 1 h. No significant differences were found in the percentage of oocytes that could be fertilized, and the percentage of oocytes that cleaved and developed to the morula and blastocyst stages, between oocytes that were stripped free of cumulus and inseminated at either 16 or 20 h after onset maturation. Oocytes that had extruded a polar body at either 16 or 20 h after onset maturation showed significantly higher percentages of cleavage and development than oocytes that had not extruded a polar body at those time points. However, the percentage of oocytes that could be fertilized was not affected.  相似文献   

10.
Oocytes undergo numerous biochemical and morphological changes during their development from preantral to preovulatory phases. In vitro studies have suggested several compounds that might induce oocyte maturation. Heparin is a natural component of ooplasm, follicular fluid and uterine fluid and previous studies indicated that it might act as a chromatin maturation factor in bovine oocytes. We tested this hypothesis in vitro by timing germinal vesicle breakdown (GVBD) and first polar body (PB) formation without any other natural or introduced factors that might influence the rate of oocyte maturation. We also determined if these oocytes could be fertilized. Bovine oocytes were incubated in a salt medium and TCM 199 supplemented with different concentrations of heparin for 24 h at 37.5 degrees C in a humidified atmosphere of 5% CO2. With 1.0 and 6.5 mg/ml heparin, the time of GVBD was reduced from 4.7+/-1.1 h to about 1.5 h and the time of first PB formation was reduced from 22.0+/-1.1 h to 9.0-11.0 h in salt medium. In TCM 199, only 6.5 mg/ml heparin significantly reduced the time of PB formation. In both incubation media, 1.0 and 6.5 mg/ml heparin induced GVBD, extrusion of the first PB and formation of the metaphase II nucleus. Moreover, heparin did not interfere with the fertilization of oocytes matured in TCM 199. Based on the results, we propose that heparin plays an important role in the rearrangement of the oocyte chromatin and acts as an oocyte maturation factor.  相似文献   

11.
In vitro studies of meiotic maturation of mouse oocytes have been carried out in the presence of several drugs. The individual steps of nuclear progression, including dissolution of the nuclear (germinal vesicle) membrane, condensation of dictyate chromatin into compact bivalents, formation of the first metaphase spindle, and extrusion of the first polar body, are each susceptible to one or more of these drugs. Germinal vesicle breakdown, the initial morphological feature characteristic of meiotic maturation, is inhibited by dibutyryl cyclic AMP. However, even in the presence of dibutyryl cyclic AMP, the nuclear membrane becomes extremely convoluted and condensation of chromatin is initiated but aborts at a stage short of compact bivalents. Germinal vesicle breakdown and chromatin condensation take place in an apparently normal manner in the presence of puromycin, Colcemid, or cytochalasin B. Nuclear progression is blocked at the circular bivalent stage when oocytes are cultured continuously in the presence of puromycin or Colcemid, whereas oocytes cultured in the presence of cytochalasin B proceed to the first meiotic metaphase, form an apparently normal spindle, and arrest. Emission of a polar body is inhibited by all of these drugs. The inhibitory effects of these drugs on meiotic maturation are reversible to varying degrees dependent upon the duration of exposure to the drug and upon the nature of the drug. These studies suggest that dissolution of the mouse oocyte's germinal vesicle and condensation of chromatin are not dependent upon concomitant protein synthesis or upon microtubules. On the other hand, the complete condensation of chromatin into compact bivalents apparently requires breakdown of the germinal vesicle. Failure of homologous chromosomes to separate after normal alignment on the meiotic spindle in the presence of cytochalasin B suggest that microfilaments may be involved in nuclear progression at this stage of maturation. Cytokinesis, in the form of polar body formation, is blocked when any one of the earlier events of maturation fails to take place.  相似文献   

12.
Dominko T  First NL 《Theriogenology》1997,47(5):1041-1050
The effect of maturational state of bovine oocytes at the time of insemination on early embryo development and the sex ratio of developing embryos was evaluated. Early maturing oocytes were inseminated either immediately after the first polar body extrusion or insemination was delayed for 8 h. Most of the zygotes completed the first embryonic cell cycle and reached the 2-cell stage by 35 h after insemination regardless of the time of insemination. Delaying insemination enhanced the proportion of cleaving zygotes and significantly improved their development to the 8-cell stage. At the same time delaying insemination produced significantly higher proportions of male embryos. Cleavage and development to 8-cell stage was significantly impaired when oocytes were inseminated immediately after polar body formation. Sex ratio in these embryos did not differ from 1. These results suggest that oocytes developmental ability as well as capability to process X and Y-bearing spermatozoa may be acquired at specific times during maturation.  相似文献   

13.
Horse oocytes were collected from an abattoir over a 15-mo period. After classification of follicle size and cumulus morphology, oocytes were either fixed immediately (0 h) or matured in vitro (24 h). There was no effect of season on the number of antral follicles present on the ovaries, or on oocyte maturation rate for any class of oocyte. The proportion of oocytes having condensed chromatin at 0 h increased with increasing follicle size. The oocyte maturation rate also increased with follicle size, and for follicles 相似文献   

14.
Our objective was to examine the developmental fate of sperm nuclei in oocytes fertilized under conditions of meiotic arrest. Therefore zona-free metaphase II oocytes and oocyte fragments (nucleate and anucleate) were fertilized in the presence of colcemid. In anucleate oocyte fragments, normal male pronuclei develop. In contrast, in intact oocytes and nucleate fragments sperm nuclei after initial decondensation undergo secondary condensation. This state is maintained as long as the oocytes are treated with colcemid. When the drug is removed 3 h after insemination, the meiotic spindle(s) is reconstructed, the second polar body(ies) is extruded, and a female pronucleus (or micronuclei) forms. At the same time the sperm nucleus decondenses again and transforms into a male pronucleus. In addition oocytes fertilized in the presence of colcemid could not be refertilized. These observations suggest that oocytes and oocyte fragments fertilized in the presence of colcemid undergo activation despite the failure of pronucleus formation. The inhibitory effect of colcemid on the formation of pronuclei is expressed only in the presence of oocyte chromosomes. We suggest that colcemid stabilizes factors responsible for chromosome condensation that are associated with oocyte chromosomes but not factors (whether the same or different) present in the cytoplasm.  相似文献   

15.
The present study was conducted to clarify the relationship between histone H1 kinase (H1K) activity and events associated with in vitro fertilization of pig follicular oocytes matured in vitro. Histone H1 kinase has been shown to be homologous with a maturation promoting factor (MPF). Cumulus-oocyte complexes obtained from prepubertal gilts were cultured for 46 h in a modified Waymouth's MB752/1 medium and were then inseminated in vitro with frozen-thawed and preincubated epididymal boar spermatozoa. At 4, 6, 8 and 10 h post insemination, the oocytes were stained with 10 microg/ml Hoechst-33342 and examined under a fluorescent microscope for the stage of fertilization, according to morphological changes of oocyte nuclear chromatin and the extent of sperm penetration. Sperm penetration was observed to occur within 4 h post insemination (20.5%), and the percentage of fertilized oocytes increased (P < 0.01) to 72.9% at 8 h post insemination. Pronuclear formation was observed from 6 h post insemination (3.3%) and the percentage increased (P < 0.01) to 46.8% at 10 h post insemination. In each examination period, H1K activities in unfertilized oocytes at metaphase-II remained unchanged (112.0 fmol/h/oocyte) and were higher (P < 0.01) than those in fertilized oocytes (30.1 fmol/h/oocyte). The H1K activity in fertilized oocytes such as oocytes emitting a second polar body, oocytes with an enlarging sperm head(s) and oocytes with multiple pronuclei did not differ significantly. These results suggest that MPF in pig oocytes is inactivated shortly after sperm penetration and is maintained at the basal level throughout pronuclear formation.  相似文献   

16.
Ultrastructural changes in the maturing oocyte of the sea urchin Hemicentrotus pulcherrimus were observed, with special reference to the behavior of centrioles and chromosomes, using oocytes that had spontaneously started the maturation division process in vitro after dissection from ovaries. The proportion of oocytes entering the maturation process differed from batch to batch. In those eggs that accomplished the maturation division, it took ~4.5-5 h from the beginning of germinal vesicle breakdown to the formation of a second polar body. Serial sections revealed that a young oocyte before germinal vesicle breakdown had a pair of centrioles with procentrioles, located between the presumed animal pole and the germinal vesicle and accompanied by amorphous aggregates of moderately dense material and dense granules (granular aggregate). Just before germinal vesicle breakdown, a pair of fully grown centrioles located in the granular aggregate, which is present until this stage and then disappears, had already separated from another pair of centrioles. In meiosis I, each division pole had two centrioles, whereas in meiosis II each had only one. The two centrioles in the secondary oocyte separated into single units and formed the mitotic figure of meiosis II. The first polar body had two centrioles and the second had only one. The two centrioles in the first polar body did not form the mitotic figure nor did they separate at the time of meiosis II. These results indicate that, in sea urchins, duplication of the centrioles does not occur during the two successive meiotic divisions and the egg inherits only one centriole from the primary oocyte, confirming the results previously reported for starfish oocytes.  相似文献   

17.
The aim of this study was to explore how some reproductive methodologies may affect the sex ratio. We first confirmed the association between the maturation stage of bovine oocytes at the time of in vitro fertilisation (IVF) and the sex ratio of in vitro-derived embryos. Secondly, we studied whether the time of insemination, prior to or after ovulation, could alter the sex ratio in sheep. In the first experiment, bovine oocytes were matured in vitro for 16 h; then oocytes were either fertilised in vitro immediately after extrusion of the first polar body or IVF was delayed for 8 h. The proportion of cleaving embryos and their development to the 8-cell stage was enhanced with delayed insemination. Moreover, delaying IVF produced a male-to-female sex ratio of 1.67:1.00, which was significantly different from the expected 1:1 ratio (p < 0.05), whereas more female embryos were produced when oocytes were fertilised in vitro immediately after polar body extrusion (sex ratio of 1.00:0.67; p < 0.05). In the second experiment, 380 ewes were inseminated at different times before or after ovulation, producing 537 lambs. Significant differences in the sex ratio were obtained when we compared the sex of the offspring of ewes inseminated during the 5 h preceding ovulation (more females) with those inseminated during the 5 h after ovulation (more males). Our results suggest that the differential ability of X- or Y-bearing spermatozoa to fertilise oocytes depending either on time of insemination or oocyte maturation state, may be due, at least partially, to 'intrinsic' differences in the physiological activity of X- or Y-bearing spermatozoa before fertilisation.  相似文献   

18.
Maintenance and timely termination of cohesion on chromosomes ensures accurate chromosome segregation to guard against aneuploidy in mammalian oocytes and subsequent chromosomally abnormal pregnancies. Sororin, a cohesion stabilizer whose relevance in antagonizing the anti-cohesive property of Wings-apart like protein (Wapl), has been characterized in mitosis; however, the role of Sororin remains unclear during mammalian oocyte meiosis. Here, we show that Sororin is required for DNA damage repair and cohesion maintenance on chromosomes, and consequently, for mouse oocyte meiotic program. Sororin is constantly expressed throughout meiosis and accumulates on chromatins at germinal vesicle (GV) stage/G2 phase. It localizes onto centromeres from germinal vesicle breakdown (GVBD) to metaphase II stage. Inactivation of Sororin compromises the GVBD and first polar body extrusion (PBE). Furthermore, Sororin inactivation induces DNA damage indicated by positive γH2AX foci in GV oocytes and precocious chromatin segregation in MII oocytes. Finally, our data indicate that PlK1 and MPF dissociate Sororin from chromosome arms without affecting its centromeric localization. Our results define Sororin as a determinant during mouse oocyte meiotic maturation by favoring DNA damage repair and chromosome separation, and thereby, maintaining the genome stability and generating haploid gametes.  相似文献   

19.
Three experiments were conducted to study a series of factors affecting in vitro reproductive parameters in camels. In Experiment 1, the effect of season and presence of a corpus luteum (CL) on ovarian follicular populations, oocyte yield and quality was studied using a total of 252 and 208 ovaries collected during the breeding and non-breeding season, respectively. Small, medium, large and the total number of ovarian follicles, oocyte yield and quality were measured. In Experiment 2, the effect of methods of oocyte retrieval and needle gauge on oocyte yield and quality was evaluated with oocytes recovered using slicing and aspiration with 18-, 19- or 20-gauge needle. Oocytes were evaluated microscopically and classified into three categories. The objective of Experiment 3 was to identify the optimum time for oocyte maturation in the dromedary camel. Oocytes were cultured in CR1aa medium at 38.5 degrees C under 5% CO(2) for 24, 32, 36, 48 and 72h. Maturation was calculated as the percentage of cumulus expansion and oocytes reaching metaphase II (MII). The number of small, medium, large and the total number of ovarian follicles were higher (P<0.01) during the breeding than non-breeding season. The recovery of total number of oocytes and Category I oocytes were also greater (P<0.01) during the breeding season. Ovaries without a CL possessed significantly (P<0.01) more ovarian follicles and more (P<0.05) small and large follicles. The total number of oocytes and Category I oocytes were also greater (P<0.01) in ovaries without CL. Slicing of camel ovaries increased (P<0.01) the yield of oocytes as compared to aspiration. The aspiration of follicles using a 20-gauge needle had greater yields of the total number of oocytes and Category I oocytes than when using 19- (P<0.05) and 18-gauge needle (P<0.01). The culture of camel oocytes for 36h produced higher (P<0.01) percentages of cumulus expansion and oocytes at MII. Increasing culture times up to 48 or 72h increased (P<0.01) the percentage of degenerated oocytes.In conclusion, the growth and development of ovarian follicles in the camel as well as yields of Category I oocyte were greater during the breeding season. Slicing or aspirations using a 20-gauge needle yielded greater numbers of total and Category I oocytes. Finally, maturation of oocytes in CR1aa medium for 36h produced higher percentages of cumulus expansion and oocytes at MII stage.  相似文献   

20.
Changes in the organization of germinal vesicle chromatin in mouse oocytes have been analyzed by fluorescence microscopy with respect to progressive stages of follicular development and the disposition of oocyte cytoplasmic microtubules. Four discrete patterns of chromatin organization exist in germinal vesicle (GV)-stage oocytes isolated from the ovaries of 21-25-day-old gonadotropin-primed mice. Analysis of ovarian cryosections stained with the DNA-binding fluorochrome Hoechst 33258 indicates that sequential changes in GV chromatin occur during folliculogenesis that result in the formation of a continuous perinucleolar chromatin sheath at the time of antrum formation. Specific alterations in the cytoplasmic microtubule complex of GV-stage oocytes were observed that correlate with chromatin patterns. The extensive cytoplasmic microtubule complex seen in oocytes of preantral follicles initially localizes to perinuclear areas of the ooplasm. This is followed by a progressive reduction in cytoplasmic microtubules and the appearance of prominent microtubule-organizing centers at the nuclear periphery. Coordinated nuclear and microtubular alterations also occur under in vitro conditions prior to progression of meiosis to prometaphase-1. The results are discussed with respect to the ongoing differentiation of the oocyte nucleus and the microtubule cytoskeleton during folliculogenesis in preparation for the resumption of meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号