首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Noninvasive fecal sampling combined with genetic analysis is a technique allowing the study of elusive or otherwise difficult to monitor species without the need for direct contact. Although this method is widely used in birds and mammals, it has never been successfully applied on a large scale in reptiles. The blunt-nosed leopard lizard (Gambelia sila) is an endangered species endemic to the San Joaquin Desert, California, USA. Presently, acquiring data on the species for research and management involves more traditional methods such as live capture or visual surveys, the latter of which are required for regulatory monitoring in accordance with wildlife agency protocols. We used an approach for gathering additional information that combines conservation detection dogs trained to locate blunt-nosed leopard lizard scat samples with genetic analysis for identifying and distinguishing among sympatric lizard species. We developed 2 polymerase chain reaction assays that produce fluorescently labelled amplicons of species-specific fragment length for 6 lizard species in the study area. Using these assays, we genetically identified to species 78% (255 of 327) of samples collected by dog-handler teams across 4 years. The majority of the genetically identified samples (82.4%; 210 of 255) were confirmed as originating from blunt-nosed leopard lizards. Although an assessment of the viability of detection dogs in regulatory monitoring efforts is required, our ability to recover usable DNA and to differentiate among a diverse group of lizards highlights the broad potential of our methodology for noninvasive sampling in reptiles. © 2019 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

2.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

3.
Abstract: Grazing is thought to be incompatible with nesting by dabbling ducks (Anas spp.), but this belief is based on little data. We therefore conducted a 2-year, replicated field experiment to determine whether the habitat requirements of nesting ducks could be met on uplands managed by rotational grazing (1 Jul-1 Nov) in the northern San Joaquin Valley, California, USA. Grazed fields had shorter vegetation than ungrazed fields throughout the winter, but vegetation height did not differ by the beginning of the nesting season in late March, and by the end of the nesting season in late May, previously grazed fields had taller vegetation than did ungrazed fields. In 1996, densities of duck nests were >3 times higher in grazed than in ungrazed fields (least-squares means [± 1 SE]: grazed = 2.18 [0.34] nests/ha, ungrazed = 0.59 [0.34] nests/ha), but nest densities were substantially lower in 1997 and did not differ between treatment groups (grazed = 0.65 [0.32] nests/ha, ungrazed = 0.39 [0.32] nests/ha). Mayfield nest success did not differ between grazed fields (5.3%) and ungrazed fields (2.9%). We conclude that rotational grazing was successful in providing summer nesting habitat for dabbling ducks, and we recommend that it be considered for other managed habitats within the Central Valley, California, USA.  相似文献   

4.
Summary Few field studies have attempted to relate effects of actual livestock grazing on soil and plant water status. The present study was initiated to determine the effects of periodic defoliations by cattle during spring on soil moisture and plant water status in a crested wheatgrass (Agropyron cristatum (L.) Gaertn. and A. desertorum (Fisch. ex Link) Schult.) pasture in central Utah. Soil moisture in the top 130 cm of the soil profile was depleted more rapidly in ungrazed plots than in grazed plots during spring and early summer. Soil moisture depletion was more rapid in grazed plots in one paddock after 1 July due to differential regrowth, but there was no difference in soil water depletion between plots in another paddock during the same period. This difference in soil water depletion between paddocks was related to a difference in date of grazing. Although more water had been extracted from the 60 cm to 130 cm depths in ungrazed plots by late September, cumulative soil moisture depletion over the entire 193 cm profile was similar in grazed and ungrazed plots. Prior to 1 July, grazing had no effect on predawn leaf water potentials as estimated by a pressure chamber technique; however, after 1 July, predawn leaf water potentials were lower for ungrazed plants. Midday leaf water potentials were lower for grazed plants before 1 July, but did not differ between grazed and ungrazed plants after 1 July. A 4- to 8-day difference in date of defoliation did not affect either predawn or midday leaf water potentials. The observed differences in water use patterns during spring and early-summer may be important in influencing growth and competitive interactions in crested wheatgrass communities that are subject to grazing by domestic livestock.  相似文献   

5.
Abstract. Spatial heterogeneity, an important characteristic in semi‐arid grassland vegetation, may be altered through grazing by large herbivores. We used Moran's I, a measure of autocorrelation, to test the effect of livestock grazing on the fine scale spatial heterogeneity of dominant plant species in the shortgrass steppe of northeastern Colorado. Autocorrelation in ungrazed plots was significantly higher than in grazed plots for the cover of the dominant species Bouteloua gracilis, litter cover and density of other bunchgrasses. No species had higher autocorrelation in grazed compared to ungrazed sites. B. gracilis cover was significantly auto‐correlated in seven of eight 60‐yr ungrazed exclosures, four of six 8‐yr exclosures, and only three of eight grazed sites. Autocorrelograms showed that B. gracilis cover in ungrazed sites was frequently and positively spatially correlated at lag distances less than 5 m. B. gracilis cover was rarely autocorrelated at any sampled lag distance in grazed sites. The greater spatial heterogeneity in ungrazed sites appeared linked to patches characterized by uniformly low cover of B. gracilis and high cover of C3 grasses. This interpretation was supported by simple simulations that modified data from grazed sites by reducing the cover of B. gracilis in patches of ca. 8 m diameter and produced patterns quite similar to those observed in ungrazed sites. In the one exclosure where we intensively sampled soil texture, autocorrelation coefficients for sand content and B. gracilis cover were similar at lag distances up to 12 m. We suggest that the negative effect of sand content on B. gracilis generates spatial heterogeneity, but only in the absence of grazing. An additional source of heterogeneity in ungrazed sites may be the negative interaction between livestock exclusion and B. gracilis recovery following patchy disturbance.  相似文献   

6.
Abstract The majority of existing remnants of wandoo Eucalyptus capillosa woodland in the Western Australian wheatbelt have been grazed by sheep for several decades and are often visibly degraded. A pilot survey was conducted into the effects of sheep on vegetation and soil variables, and the abundance, diversity and species frequency of occurrence of subterranean termite communities. Ten 1/4 ha study plots were used for paired grazed/ungrazed comparisons. Ungrazed plots had more litter mass (dry weight), leaf and woody litter, canopy cover (%) and soil moisture (moisture content <1.2% across study plots); grazed plots had a higher percentage of bare ground. Termites were as abundant, and as diverse, in grazed as in ungrazed plots, and were equally often sampled in the soil and surface wood. Termite species eating sound wood, decayed wood/debris and grass were sampled equally often, and were of equal diversity in sheep-grazed as in ungrazed plots. The mounds of Drepanotermes tamminensis were more abundant in grazed plots. These findings indicate that prolonged sheep grazing in remnants of wandoo woodland of the Western Australian wheatbelt has had no detrimental or beneficial effect on its subterranean termites.  相似文献   

7.
Livestock grazing can have a strong impact on herbivore abundance, distribution and community. However, not all species of herbivores respond the same way to livestock grazing, and we still have a poor understanding of the underlying mechanisms driving these differential responses. Here, we investigate the effect of light intensity cattle grazing on the abundance of two grasshoppers (Euchorthippus cheui and E. unicolor) that co-occur in the same grasslands and feed on the same food plant (the dominant grass Leymus chinensis). The two grasshopper species differ in phenology so that their peak abundances are separated into early- and late-growing seasons. We used an exclosure experiment to monitor grasshopper abundance and food quality in the field under grazed and ungrazed conditions, and performed feeding trials to examine grasshopper preference for grazed or ungrazed food plants in the laboratory. We found that the nitrogen content of L. chinensis leaves continuously declined in the ungrazed areas, but was significantly enhanced by cattle grazing over the growing season. Cattle grazing facilitated the early-season grasshopper E. cheui, whereas it suppressed the late-season grasshopper E. unicolor. Moreover, feeding trials showed that E. cheui preferred L. chinensis from grazed plots, while E. unicolor preferred the leaves from ungrazed plots. We conclude that livestock grazing has opposite effects on the two grasshopper species, and that these effects may be driven by grazing-induced changes in plant nutrient content and the unique nutritional niches of the grasshoppers. These results suggest that insects that belong to the same guild can have opposite nutrient requirements, related to their distinct phenologies, and that this can ultimately affect their response to cattle grazing. Our results show that phenology may link insect physiological needs to local resource availabilities, and should be given more attention in future work on interactions between large herbivores and insects.  相似文献   

8.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

9.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

10.
Anemone coronaria, an attractive Mediterranean geophyte, seems to disappear from grazing-protected areas in Israel. We experimentally examined the ecological mechanism driving the decline of this geophyte. Ten plot-pairs were established, half we fenced as grazing exclosures and half were grazed by beef cattle. Grazing clearly reduced herbaceous biomass, increased relative solar photosynthetic active radiation (PAR) at ground level, but had almost no effect on soil properties. Grazing did not affect the number of flowers and young fruits produced by A. coronaria, nor the percentage fruit-set at the plot scale, indicating no effect on flowering, pollination, or on resource allocation to reproduction. Five years after grazing exclusion, Anemone seedling and adult plant densities were higher in grazed than in ungrazed plots. We propose a model explaining our results that can be applied also to other similar ecosystems: excluding grazing increased biomass and height of the herbaceous community and reduced relative PAR at ground level. Consequently, seedling, adult plant and flowering Anemone plant densities were lower in ungrazed plots. We recommend adding seasonal grazing as a management tool when vegetation outcompete light demanding geophytes that we wish to conserve.  相似文献   

11.
Since the late 1950s, governmental rangeland policies have changed the grazing management on the Tibetan Plateau (TP). Increasing grazing pressure and, since the 1980s, the privatization and fencing of pastures near villages has led to land degradation, whereas remote pastures have recovered from stronger overgrazing. To clarify the effect of moderate grazing on the carbon (C) cycle of the TP, we investigated differences in below‐ground C stocks and C allocation using in situ 13CO2 pulse labeling of (i) a montane Kobresia winter pasture of yaks, with moderate grazing regime and (ii) a 7‐year‐old grazing exclosure plot, both in 3440 m asl. Twenty‐seven days after the labeling, 13C incorporated into shoots did not differ between the grazed (43% of recovered 13C) and ungrazed (38%) plots. In the grazed plots, however, less C was lost by shoot respiration (17% vs. 42%), and more was translocated below‐ground (40% vs. 20%). Within the below‐ground pools, <2% of 13C was incorporated into living root tissue of both land use types. In the grazed plots about twice the amount of 13C remained in soil (18%) and was mineralized to CO2 (20%) as compared to the ungrazed plots (soil 10%; CO2 9%). Despite the higher contribution of root‐derived C to CO2 efflux, total CO2 efflux did not differ between the two land use types. C stocks in the soil layers 0–5 and 5–15 cm under grazed grassland were significantly larger than in the ungrazed grassland. However, C stocks below 15 cm were not affected after 7 years without grazing. We conclude that the larger below‐ground C allocation of plants, the larger amount of recently assimilated C remaining in the soil, and less soil organic matter‐derived CO2 efflux create a positive effect of moderate grazing on soil C input and C sequestration.  相似文献   

12.
Livestock browsing and grazing are considered serious threats to the conservation of the Juan Fernández Islands’ flora, Chile. Nowadays the elimination of grazing by cattle is very difficult. In order to prevent the␣entrance of cattle into the native forests, an 8.3 km-long fence was established on the main island (Robinson Crusoe). The response of the vegetation was evaluated during 27 months of exclusion. The changes in abundances and composition of species were monitored in 12 permanent plots, each of 25 m2, located in ungrazed and grazed areas. We expected an increase in plant height and total ground cover in the ungrazed area, and also a directional compositional change towards forest species. We found five different patterns of variation or non-variation for the 22 species observed: (i) one species (Acaena argentea) diminished in abundance in the ungrazed area; (ii) another one (Conium maculatum) increased in the ungrazed area; (iii) one species (Vulpia bromoides) increased in the grazing area; and some species displayed no net variation, but they showed (iv) a nearly constant occurrence, or (v) they appeared and disappeared sporadically. Contrary to our hypothesis, the vegetation showed no net differences in cover on both sides of the fence. As expected, plant height increased in the ungrazed area. In this area, we detected no noteworthy changes in floristic composition towards forest species. On the contrary, four new pastureland species appeared outside of the exclusion area during the last year of evaluation. Other ungrazed sectors of the island showed qualitative differences from grazed sectors, such as major height and density of plants, and lower intensity of browsing, grazing, and trampling, attributable to a reduction of herbivorous pressure. The modest responses reported in this study could be related to the short lapse of time since the exclusion, soil compaction, overgrowth by a single species (A. argentea), great seasonal variations in different species’ abundances, the reduction in the number of cattle grazing the area previous to the fence’s installation, and persistent herbivory by rabbits (Oryctolagus cuniculus L.). We conclude that the effect of grazing by cattle is␣less than expected, and that there are other factors that delay the recovery of the Juan Fernández pasturelands.  相似文献   

13.
A perennial ryegrass sward was established in the autumn of 1989 in an enclosed 0.3 ha site and was exposed to captive wild rabbit (Oryctolagus cuniculus) grazing. Rabbit numbers were varied from 16 rabbits ha-1 in winter to 55 rabbits ha-1 corresponding to natural fluctuations in the field. The original sward was grown for three seasons (1989/1990 to 1990/1991) and a range of grazing regimes imposed. In 1989/1990 four grazing regimes were arranged in a replicated split block design in the experimental area. These were ungrazed, winter grazed, spring grazed and totally grazed. In the second year of the experiment all plots were exposed to grazing with the exception of the originally protected plots. This was to examine the effects of longer-term grazing damage on a ryegrass sward. In the final year half of all treatments were protected to study recovery of a sward which had been damaged previously. The remainder of the plots were exposed to grazing. Three cuts were harvested in each year and the productivity assessed in terms of yield and botanical composition. There was a significant reduction in ryegrass proportion in grazed swards following the first winter of grazing, while clover, other grasses and weeds were enhanced. The promotion of clover content in grazed swards was a feature throughout the 3 yr of the study. In the second year, protection of grazed swards led to a restoration of yields, although the botanical composition remained altered. The exposure of previously ungrazed plots in the final year of the experiment showed that these swards were particularly attractive to rabbits and they suffered the greatest yield losses relative to the protected plots at the first cut in 1991. In this year dry weather conditions were experienced following the first cut and demonstrated that yield losses are exacerbated when rabbit grazing is compounded with adverse growing conditions. The results overall indicate that protection of ryegrass swards at the establishment phase is important, but that a degree of recovery is possible by providing protection at a later stage, although the ryegrass component is still impaired in swards which suffer early damage.  相似文献   

14.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

15.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

16.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

17.
To control shrubs, which are increasing in dominance in wetlands worldwide, winter burning may be an important tool, especially from the perspective of minimizing urban hazards. The goal of this project was to determine if winter burning was successful in reducing the dominance (mean percentage cover and maximum height) of Cornus sericea in sedge meadows in southern Wisconsin, where shrubs proliferated after cattle were excluded. Experimental burn and control plots were set up within sedge meadows, including an ungrazed “reference” site that had been little, if ever, grazed and a “historically grazed” site, a recovery site that had not been grazed by cattle since 1973. None of the dominant species including C. sericea was significantly affected by burning for either mean percentage cover or maximum height (analysis of variance: no burning × species interaction). Both mean percentage cover and maximum height were only weakly related to burning (28.1 and 14.3% of the variability contributed to the cumulative percentage of the coefficient of determination, respectively) at both sites based on non‐metric multidimensional scaling analysis. Although species richness increased in burned plots in 1999 and 2000, no differences were apparent between pre‐burned and unburned plots in 1997 and unburned plots in 1999 and 2000 (analysis of variance: year × burning interaction). After burning in the ungrazed site, herbaceous species appeared that had not been detected for decades, including Chelone glabra and Lathyrus palustris. Exotic species were present in both the ungrazed reference and recovery site. Although winter burning treatments did not reduce the dominance of woody shrub species in the site recovering from cattle grazing, burning was useful in stimulating the maintenance of species richness in the ungrazed sedge meadow.  相似文献   

18.
Abstract. The first objective of this paper was to assess the effects of grazing on seedling establishment of two species whose relative abundance at the adult stage is affected by grazing in a contrasting fashion. Second, we evaluated the relative importance of seed versus safe-site availability in explaining the effect of grazing on seedling establishment. We monitored seedling establishment on a grazed area, on two areas which had not been grazed for two and seven years, and on plots which had been experimentally defoliated. The species compared were Dan-thonia montevidensis, a native perennial grass which dominates both grazed and ungrazed communities, and Leontodón taraxacoides, an invading exotic rosette species from the Compositae family. Continuous grazing enhanced seedling establishment of both species through its effect on the availability of safe sites. Seed availability accounted for only one, but very important, grazing effect: the lack of response by L. taraxacoides to the defoliation in the seven-year old exclosure. Its seed supply was depleted by exclusion of grazing and, consequently, its short-term regeneration capacity after disturbance was lost.  相似文献   

19.
Otso Suominen 《Ecography》1999,22(6):651-658
Selective foraging by cervids can affect vegetation, and that in turn can have far-reaching effects on various components of the boreal forest ecosystem. Since terrestrial gastropods are sensitive to habitat alterations, they can be expected to respond to changes caused by grazing. This study is based on gastropod specimens from two data sets that were collected with pitfall traps in order to study the effects of moose and reindeer on ground-layer invertebrates. Invertebrates were trapped from 23 pairs of plots, where one plot was open to all animals while the other one was fenced to exclude large mammals. Half of the sites were in Finnish Lapland, where reindeer grazing was the main cause of differences between the plots; the rest were located in central Sweden and southern Finland, where moose was the most important cervid grazer. The composition of the gastropod fauna differed between grazed and ungrazed plots in both areas, and the abundance of gastropods in general and that of many species was higher in ungrazed plots (the number of gastropods caught was 17% lower in grazed than in ungrazed plots in moose sites, and 24% smaller in reindeer sites). Species richness differed significantly between grazed and ungrazed plots in the combined data of both site types, and was 15% higher in ungrazed plots. In moose sites the relative diversity (H′/H′max) of gastropods was 17% higher in grazed plots. In reindeer sites, the means of richness and diversity (H′) were considerably higher in ungrazed plots (35% and 40% respectively) but the differences were only marginally significant. By indirectly modifying the microclimate within the forest, cervids fulfil the criteria for a ‘physical ecosystem engineer’. Since the population density and distribution of terrestrial gastropods depend largely on the physical conditions of the microhabitat, the engineering effects of cervids are the most likely cause of the changes observed in the density and composition of the gastropod fauna in the boreal forest.  相似文献   

20.
Sand shinnery oak (Quercus havardii) communities are a unique component of grassland bird habitat in eastern New Mexico and have been impacted by human activities for decades. These communities are frequently managed with livestock grazing and herbicide application for shrub control, strategies that potentially can be used to restore the historical shrub–grass composition of this plant community. During spring migration and the breeding seasons of 2004 and 2005, we compared density and community structure of grassland bird species among four combinations of tebuthiuron application and grazing treatments that were being evaluated for restoration of shinnery oak communities. We performed biweekly point transects on sixteen 65‐ha study plots in these communities. Density of all avian species combined did not differ between grazed and ungrazed plots. Tebuthiuron‐treated plots had a 40% higher average density for combined species than untreated plots. There was a 41% higher average density of all species during spring 2005 than 2004, but density was similar during the breeding season of both years. These trends were predominantly influenced by densities of migratory Cassin’s Sparrow (Aimophila cassinii), which were greater in tebuthiuron‐treated plots in both years. Densities of resident Meadowlarks (Sturnella spp.) exhibited little response to tebuthiuron or grazing treatments. Avian species richness, evenness, and diversity were only minimally affected by the tebuthiuron and grazing treatments. This study occurred over a period of highly variable precipitation, so future assessments, spanning longer wet–dry cycles and maturing plant communities, may be necessary to completely determine avian response to these restoration efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号