首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non‐coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up‐regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR‐212‐5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR‐212‐5p was noticeably low in tumour tissues, and FZD5 expression level was down‐regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR‐212‐5p/ FZD5/ Wnt/β‐catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   

2.
MicroRNAs (miRNAs) are emerging biomarkers in biological processes and the role of miR‐495‐3p has been identified in melanoma, while the detailed molecular mechanisms remain to be further explored. We aim to explore the effect of histone deacetylase 3 (HDAC3) and miR‐495‐3p on epithelial‐mesenchymal transition (EMT) and oncogenicity of melanoma cells by regulating tumour necrosis factor receptor‐associated factor 5 (TRAF5). Levels of HDAC3, miR‐495‐3p and TRAF5 in melanoma tissues and pigmented nevus tissues were determined, and the predictive roles of HDAC3 and miR‐495‐3p in prognosis of melanoma patients were measured. The melanoma cells were screened and transfected with relative oligonucleotides and plasmids, and the expression of HDAC3, miR‐495‐3p and TRAF5, and phenotypes of melanoma cells were gauged by a series of assays. The relations between HDAC3 and miR‐495‐3p, and between miR‐495‐3p and TRAF5 were confirmed. HDAC3 and TRAF5 were increased while miR‐495‐3p was decreased in melanoma cells and tissues, and the low expression of miR‐495‐3p as well as high expression of HDAC3 indicated a poor prognosis of melanoma patients. Inhibited HDAC3 elevated miR‐495‐3p to suppress EMT and oncogenicity of melanoma cells by reducing TRAF5. HDAC3 particularly bound to miR‐495‐3p and TRAF5 was the target gene of miR‐495‐3p. Our results revealed that down‐regulated HDAC3 elevates miR‐495‐3p to suppress malignant phenotypes of melanoma cells by inhibiting TRAF5, thereby repressing EMT progression of melanoma cells. This study may provide novel targets for melanoma treatment.  相似文献   

3.
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that develops in the head and neck area and has high annual mortality despite optimal treatment. microRNA‐218 (miR‐218) is a tumour inhibiting non‐coding RNA that has been reported to suppress the cell proliferation and invasion in various cancers. Thus, our study aims to determine the mechanism underlying the inhibitory role of miR‐218 in OSCC. We conducted a bioinformatics analysis to screen differentially expressed genes in OSCC and their potential upstream miRNAs. After collection of surgical OSCC tissues, we detected GREM1 expression by immunohistochemistry, RT‐qPCR and Western blot analysis, and miR‐218 expression by RT‐qPCR. The target relationship between miR‐218 and GREM1 was assessed by dual‐luciferase reporter gene assay. After loss‐ and gain‐of‐function experiments, OSCC cell proliferation, migration and invasion were determined by MTT assay, scratch test and Transwell assay, respectively. Expression of TGF‐β1, Smad4, p21, E‐cadherin, Vimentin and Snail was measured by RT‐qPCR and Western blot analysis. Finally, effects of miR‐218 and GREM1 on tumour formation and liver metastasis were evaluated in xenograft tumour‐bearing nude mice. GREM1 was up‐regulated, and miR‐218 was down‐regulated in OSCC tissues, and GREM1 was confirmed to be the target gene of miR‐218. Furthermore, after up‐regulating miR‐218 or silencing GREM1, OSCC cell proliferation, migration and invasion were reduced. In addition, expression of TGF‐β signalling pathway‐related genes was diminished by overexpressing miR‐218 or down‐regulating GREM1. Finally, up‐regulated miR‐218 or down‐regulated GREM1 reduced tumour growth and liver metastasis in vivo. Taken together, our findings suggest that the overexpression of miR‐218 may inhibit OSCC progression by inactivating the GREM1‐dependent TGF‐β signalling pathway.  相似文献   

4.
Endometrial cancer is a common gynaecological malignant tumour among women across the world. Circular RNAs (circRNAs) are a novel kind of non‐coding RNAs, and they can play a crucial role in multiple cancers. Nevertheless, the mechanisms of circRNAs in regulating gene expression in endometrial cancer are still unclear. Here, our work sought to focus on the role that circ_0067835 exert in progression and development of endometrial cancer cells. We observed circ_0067835 was markedly elevated in endometrial cancer. Then, changes in endometrial cancer cell (RL95‐2 and HEC‐1B) function were determined after circ_0067835 knockdown. Loss‐of‐functional assays revealed that circ_0067835 down‐regulation significantly repressed RL95‐1 and HEC‐1B cell proliferation, migration and invasion. Bioinformatics analysis, luciferase reporter experiment and RNA pull‐down assay were employed to predict and validate circ_0067835 can bind to miR‐324‐5p. Increase in miR‐324‐5p remarkably depressed the proliferation, migration and invasion of endometrial cancer cells via inhibiting high mobility group A1 (HMGA1). HMGA1 is identified as a vital prognostic biomarker in endometrial cancer. Currently, we reported circ_0067835 was positively correlated with HMGA1 in endometrial cancer. We implied that circ_0067835 was capable of sponging miR‐324‐5p and inducing its downstream target HMGA1 in vitro and in vivo. In conclusion, circ_0067835 can compete with miR‐324‐5p, resulting in HMGA1 up‐regulation, and therefore induce the development of endometrial cancer.  相似文献   

5.
Epilepsy is a chronic brain disease characterized by recurrent seizures. Circular RNA (circRNA) is a novel family of endogenous non‐coding RNAs that have been proposed to regulate gene expression. However, there is a lack of data on the role of circRNA in epilepsy. In this study, the circRNA profiles were evaluated by microarray analysis. In total, 627 circRNAs were up‐regulated, whereas 892 were down‐regulated in the hippocampus in mice with kainic acid (KA)‐induced epileptic seizures compared with control. The expression of circHivep2 was significantly down‐regulated in hippocampus tissues of mice with KA‐induced epileptic seizures and BV‐2 microglia cells upon KA treatment. Bioinformatics analysis predicted that circHivep2 interacts with miR‐181a‐5p to regulate SOCS2 expression, which was validated using a dual‐luciferase reporter assay. Moreover, overexpression of circHivep2 significantly inhibited KA‐induced microglial activation and the expression of inflammatory factors in vitro, which was blocked by miR‐181a‐5p, whereas circHivep2 knockdown further induced microglia cell activation and the release of pro‐inflammatory proteins in BV‐2 microglia cells after KA treatment. The application of circHivep2+ exosomes derived from adipose‐derived stem cells (ADSCs) exerted significant beneficial effects on the behavioural seizure scores of mice with KA‐induced epilepsy compared to control exosomes. The circHivep2+ exosomes also inhibited microglial activation, the expression of inflammatory factors, and the miR‐181a‐5p/SOCS2 axis in vivo. Our results suggest that circHivep2 regulates microglia activation in the progression of epilepsy by interfering with miR‐181a‐5p to promote SOCS2 expression, indicating that circHivep2 may serve as a therapeutic tool to prevent the development of epilepsy.  相似文献   

6.
Wnt/β‐catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/β‐catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell‐specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/β‐catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of β‐catenin to stabilize β‐catenin–TCF4 complex and facilitate the transactivation of Wnt/β‐catenin signaling targets. Accordingly, activated β‐catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/β‐catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.  相似文献   

7.
High fructose intake is a risk factor for liver fibrosis. Polydatin is a main constituent of the rhizome of Polygonum cuspidatum, which has been used in traditional Chinese medicine to treat liver fibrosis. However, the underlying mechanisms of fructose‐driven liver fibrosis as well as the actions of polydatin are not fully understood. In this study, fructose was found to promote zinc finger E‐box binding homeobox 1 (ZEB1) nuclear translocation, decrease microRNA‐203 (miR‐203) expression, increase survivin, activate transforming growth factor β1 (TGF‐β1)/Smad signalling, down‐regulate E‐cadherin, and up‐regulate fibroblast specific protein 1 (FSP1), vimentin, N‐cadherin and collagen I (COL1A1) in rat livers and BRL‐3A cells, in parallel with fructose‐induced liver fibrosis. Furthermore, ZEB1 nuclear translocation‐mediated miR‐203 low‐expression was found to target survivin to activate TGF‐β1/Smad signalling, causing the EMT in fructose‐exposed BRL‐3A cells. Polydatin antagonized ZEB1 nuclear translocation to up‐regulate miR‐203, subsequently blocked survivin‐activated TGF‐β1/Smad signalling, which were consistent with its protection against fructose‐induced EMT and liver fibrosis. These results suggest that ZEB1 nuclear translocation may play an essential role in fructose‐induced EMT in liver fibrosis by targeting survivin to activate TGF‐β1/Smad signalling. The suppression of ZEB1 nuclear translocation by polydatin may be a novel strategy for attenuating the EMT in liver fibrosis associated with high fructose diet.  相似文献   

8.
Melanoma is one of the most aggressive and life‐threatening skin cancers, and in this research, we aimed to explore the functional role of circular RNA VANGL1 (circVANGL1) in melanoma progression. The expression levels of circVANGL1 were observed to be significantly increased in clinical melanoma tissues and cell lines. Moreover, circVANGL1 knockdown suppressed, while circVANGL1 overexpression promoted the proliferation, migration and invasion abilities of melanoma cells. Further investigations confirmed the direct binding relation between circVANGL1 and miR‐150‐5p in melanoma, and restoration of miR‐150‐5p blocked the effects of circVANGL1 overexpression in melanoma cells. We further found that circVANGL1 was up‐regulated by TGF‐β treatment, and the enhanced EMT of TGF‐β‐treated melanoma cells was blocked by circVANGL1 knockdown. In conclusion, these results indicated that circVANGL1 might serve as a promising therapeutic target for melanoma.  相似文献   

9.
Recent studies have demonstrated that one‐carbon metabolism plays a significant role in cancer development. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme of one‐carbon metabolism, has been reported to be dysregulated in many cancers. However, the specific role and mechanism of MTHFD2 in lung adenocarcinoma (LUAD) still remains unclear. In this study, we evaluated the clinicopathological and prognostic values of MTHFD2 in LUAD patients. We conducted a series of functional experiments in vivo and in vitro to explore novel mechanism of MTHFD2 in LUAD. The results showed that MTHFD2 was significantly up‐regulated in LUAD tissues and predicted poor prognosis of LUAD patients. Knockdown of MTHFD2 dramatically inhibited cell proliferation and migration by blocking the cell cycle and inducing the epithelial‐mesenchymal transition (EMT). In addition, MTHFD2 knockdown suppressed LUAD growth and metastasis in cell‐derived xenografts. Mechanically, we found that MTHFD2 promoted LUAD cell growth and metastasis via AKT/GSK‐3β/β‐catenin signalling. Finally, we identified miR‐30a‐3p as a novel regulator of MTHFD2 in LUAD. Collectively, MTHFD2 plays an oncogenic role in LUAD progression and is a promising target for LUAD diagnosis and therapy.  相似文献   

10.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR‐411‐3p in bleomycin (BLM)‐induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real‐time quantitative polymerase chain reaction assess the expression levels of miR‐411‐3p, collagen (COLI) and transforming growth factor (TGF)‐β/Smad ubiquitin regulatory factor (Smurf)‐2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR‐411‐3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR‐411‐3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson''s staining. We found that miR‐411‐3p expression was decreased in bleomycin (BLM)‐induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)‐β signalling and collagen production. Overexpression of miR‐411‐3p inhibited the expression of collagen, F‐actin and the TGF‐β/Smad signalling pathway factors in BLM‐induced skin fibrosis and fibroblasts. In addition, miR‐411‐3p inhibited the target Smad ubiquitin regulatory factor (Smurf)‐2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF‐β/Smad signalling pathway. We demonstrated that miR‐411‐3p exerts antifibrotic effects by inhibiting the TGF‐β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

11.
BackgroundEndothelial‐to‐mesenchymal transition (EndMT) is a common pathophysiology in valvular calcification (VC) among non‐chronic kidney disease (CKD) patients. However, few studies were investigated in CKD‐induced VC. Parathyroid hormone (PTH) was considered to be an important component of EndMT in CKD‐induced cardiovascular diseases. Therefore, determining whether PTH could induce valvular EndMT and elucidating corresponding mechanism involved further study.MethodsPerforming a 5/6 nephrectomy with a high phosphorus diet was done to construct VC models in rats with CKD. miRNA sequencing was used to ascertain changes in microRNA in human umbilical vein endothelial cells (HUVECs) intervened by PTH. VC was observed by Von Kossa staining and scanning electron microscope.ResultsPTH induced valvular EndMT in VC. Global microRNA expression profiling of HUVECs was examined in PTH versus the control in vitro, in which miR‐29a‐5p was most notably decreased and was resumed by PTHrP(7‐34) (PTH‐receptor1 inhibitor). Overexpression of miR‐29a‐5p could inhibit PTH‐induced EndMT in vitro and valvular EndMT in vivo. The dual‐luciferase assay verified that γ‐secretase‐activating protein (GASP) served as the target of miR‐29a‐5p. miR‐29a‐5p‐mimics, si‐GSAP and DAPT (γ‐secretase inhibitor) inhibited PTH‐induced γ‐secretase activation, thus blocking Notch1 pathway activation to inhibit EndMT in vitro. Moreover, Notch1 pathway activation was observed in VC. Blocking Notch1 pathway activation via AAV‐miR‐29a and DAPT inhibited valvular EndMT. In addition, blocking Notch1 pathway activation was also shown to alleviate VC.ConclusionPTH activates valvular EndMT via miR‐29a‐5p/GSAP/Notch1 pathway, which can contribute to VC in CKD rats.  相似文献   

12.
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell development and function. Numerous studies have shown the significant roles of miRNAs in regulating immune cells including natural killer (NK) cells. However, little is known about the role of miRNAs in NK cells with aging. We previously demonstrated that the aged C57BL/6 mice have significantly decreased proportion of mature (CD27CD11b+) NK cells compared with young mice, indicating impaired maturation of NK cells with aging. Here, we performed deep sequencing of CD27+ NK cells from young and aged mice. Profiling of the miRNome (global miRNA expression levels) revealed that 49 miRNAs displayed a twofold or greater difference in expression between young and aged NK cells. Among these, 30 miRNAs were upregulated and 19 miRNAs were downregulated in the aged NK cells. We found that the expression level of miR‐l8la‐5p was increased with the maturation of NK cells, and significantly decreased in NK cells from the aged mice. Knockdown of miR‐181a‐5p inhibited NK cell development in vitro and in vivo. Furthermore, miR‐181a‐5p is highly conserved in mice and human. MiR‐181a‐5p promoted the production of IFN‐γ and cytotoxicity in stimulated NK cells from both mice and human. Importantly, miR‐181a‐5p level markedly decreased in NK cells from PBMC of elderly people. Thus, our results demonstrated that the miRNAs profiles in NK cells change with aging, the decreased level of miR‐181a‐5p contributes to the defective NK cell development and function with aging. This opens new strategies to preserve or restore NK cell function in the elderly.  相似文献   

13.
Pancreatic cancer (PC) is a leading cause of cancer‐related mortality globally. Though increasing evidence has demonstrated that circular RNAs (circRNAs) are linked to the development and progression of cancers, the biological functions of circRNAs in PC remain largely unexplored so far. Based on previous studies, Hsc_circ_0075829 (circ_0075829) was screened out and then further identified in PC clinical specimens and cell lines by real‐time PCR. After the stability tests, a series of in vitro and in vivo functional experiments were performed to investigate the role of circ_0075829 in PC development. Furthermore, fluorescent in situ hybridization (FISH), bioinformatics tools, dual‐luciferase assays and rescue experiments were conducted to clarify the regulatory mechanisms of circ_0075829 in SW1990 and BxPC‐3 cells. Compared with paracancerous tissues, the expression of circ_0075829 was increased in PC tissues, which was positively correlated with the clinical features of PC. Knockdown of circ_0075829 significantly suppressed the proliferative, migratory and invasive rates of SW1990 and BxPC‐3 cells both in vitro and in vivo. Bioinformatics analysis and dual‐luciferase reporter gene assay indicated that circ_0075829 could bind to miR‐1287‐5p. Mechanism research and rescue experiments demonstrated that circ_0075829 could regulate the LAMTOR3/p‐ERK signalling pathway via sponging miR‐1287‐5p in PC cell lines. Our data reveal that the circ_0075829 could facilitate the proliferation and metastasis of PC through circ_0075829/miR‐1287‐5p/LAMTOR3 axis.  相似文献   

14.
15.
The incidence of syphilis caused by Treponema pallidum subsp pallidum (T pallidum) infection is accompanied by inflammatory injuries of vascular endothelial cells. Studies have revealed that T pallidum infection could induce inflammasome activation and pyroptosis in macrophages. MicroRNA‐223‐3p (miR‐223‐3p) was reported to be a negative regulator in inflammatory diseases. The present study aimed to explore whether miR‐223‐3p regulates T pallidum‐induced inflammasome activation and pyroptosis in vascular endothelial cells, and determine the mechanisms which underlie this process. MiR‐223‐3p levels in syphilis and control samples were determined. The biological function of miR‐223‐3p in the NLRP3 inflammasome and pyroptosis was evaluated in T pallidum‐infected human umbilical vein endothelial cells (HUVECs). We observed a dramatic decrease in miR‐223‐3p levels in syphilis patients (n = 20) when compared to healthy controls (n = 20). Moreover, miR‐223‐3p showed a notable inhibitory effect on recombinant Tp17 (rTP17)‐induced caspase‐1 activation, resulting in decrease in IL‐1β production and pyroptosis, which was accompanied by the release of lactate dehydrogenase (LDH) in HUVECs. Additionally, the dual‐luciferase assay confirmed that NLRP3 is a direct target of miR‐223‐3p. Moreover, NLRP3 overexpression or knockdown largely blocked the effects of miR‐223‐3p on T pallidum‐induced inflammasome activation and pyroptosis in HUVECs. Most importantly, a notable negative correlation was observed between miR‐223‐3p and NLRP3, caspase‐1, and IL‐1β, respectively, in the serum of syphilis patients and healthy controls. Taken together, our results reveal that miR‐223‐3p targets NLRP3 to suppress inflammasome activation and pyroptosis in T pallidum‐infected endothelial cells, implying that miR‐223‐3p could be a potential target for syphilis patients.  相似文献   

16.
Circular RNAs (circRNAs) have been demonstrated to play important roles in cancer progress. However, the roles in hepatocellular carcinoma (HCC) are still unclear. Here, we found has_circRNA_001306 (circ_1306) was up‐regulated in HCC tissues and cell lines. Knockdown the expression circ_1306 significantly suppressed HCC cell proliferation and induced the cell apoptosis in vitro and in vivo. Furthermore, we identified circ_1306 could up‐regulate the expression of CDK16 by sponging miR‐584‐5p. The expression of miR‐584‐5p was decreased, and the expression of CDK16 was increased in HCC tissues and cell lines. Meanwhile, either knockdown of miR‐584‐5p or overexpression of CDK16 could suppress the HCC cell proliferation. In vivo, overexpression of miR‐584‐5p or knockdown of circ_1306 could inhibit the expression of CDK16, and suppress tumour growth. Altogether, our findings suggested that circ_1306 could promoter HCC progress by miR‐584‐5p/CDK16 axis, which provided a novel marker for HCC diagnosis and treatment.  相似文献   

17.
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.  相似文献   

18.
A disintegrin and metalloproteinase 8 (ADAM8) protein is a multi‐domain transmembrane glycoprotein which involves in extracellular matrix remodelling, cell adhesion, invasion and migration. ADAM8 and epithelial‐mesenchymal transition (EMT) play an important role in tumour invasion has been well established. However, the interaction between ADAM8 and EMT has remained unclear. The data of colon cancer patients obtained from TCGA (The Cancer Genome Atlas) and GTEx (Genotype‐Tissue Expression Project) were analysed by the bioinformatics research method. The expression of ADAM8 in colon cancer cells was up‐regulated and down‐regulated by transfecting with the expression plasmid and small interfering RNA, respectively. Transwell invasion assay, immunohistochemistry, immunocytochemistry, Western blotting and qRT‐PCR were utilized to study the effect of ADAM8 on colon cancer cell''s EMT and its related mechanisms. Analysis of TCGA and GTEx data revealed that ADAM8 was linked to poor overall survival in colon cancer patients. Besides, ADAM8 was correlated with multiple EMT biomarkers (E‐cadherin, N‐cadherin, Vimentin, Snail2 and ZEB2). In vitro, we also proved that the up‐regulation of ADAM8 could promote EMT effect and enhance the invasive ability of colon cancer cells. On the contrary, the down‐regulation of ADAM8 in colon cancer cells attenuated these effects above. Further studies suggested that ADAM8 modulated EMT on colon cancer cells through TGF‐β/Smad2/3 signalling pathway. Our research suggested that ADAM8 could be a potential biomarker for the prognosis of colon cancer and induced EMT to promote the invasion of colon cancer cells via activating TGF‐β/Smad2/3 signalling pathway.  相似文献   

19.
Although most gastrointestinal tumours are sensitive to 5‐fluorouracil (5FU), drug resistance is commonly occurred after 5FU therapy in gastric cancer (GC). Loganetin is the primary active compound in Cornus officinali. However, the synergetic effects of loganetin and 5FU on GC remain unknown. Here, we investigated the synergetic effects and the underlying mechanism of loganetin and 5FU on proliferation, stem‐like properties, migration, and invasion of GC both in vitro and in vivo. We found that loganetin alone inhibited the proliferation, stem‐like properties, migration and invasion of GC cells in vitro. Importantly, the loganetin remarkably enhanced the anti‐cancer effect of 5FU on GC cells and the Wnt/β‐catenin pathway might be involved in this process. Animal experiments further confirmed the synergistic effects of 5FU and loganetin on inhibiting cell growth and metastasis of GC. These results suggested that loganetin could synergistically increase the effect of 5FU against GC, which sheds light on effective combinational drug strategies for GC treatment.  相似文献   

20.
Renal fibrosis induced by urinary tract obstruction is a common clinical occurrence; however, effective treatment is lacking, and a deeper understanding of the mechanism of renal fibrosis is needed. Previous studies have revealed that miR‐21 impacts liver and lung fibrosis progression by activating the SPRY1/ERK/NF‐kB signalling pathway. However, whether miR‐21 mediates obstructive renal fibrosis through the same signalling pathway has not been determined. Additionally, studies have shown that N6‐methyladenosine (m6A) modification‐dependent primary microRNA (pri‐microRNA) processing is essential for maturation of microRNAs, but its role in the maturation of miR‐21 in obstructive renal fibrosis has not yet been investigated in detail. To address these issues, we employed a mouse model of unilateral ureteral obstruction (UUO) in which the left ureters were ligated for 3, 7 and 14 days to simulate the fibrotic process. In vitro, human renal proximal tubular epithelial (HK‐2) cells were transfected with plasmids containing the corresponding sequence of METTL3, miR‐21‐5p mimic or miR‐21‐5p inhibitor. We found that the levels of miR‐21‐5p and m6A modification in the UUO model groups increased significantly, and as predicted, the SPRY1/ERK/NF‐kB pathway was activated by miR‐21‐5p, confirming that miR‐21‐5p plays an important role in obstructive renal fibrosis by enhancing inflammation. METTL3 was found to play a major catalytic role in m6A modification in UUO mice and drove obstructive renal fibrosis development by promoting miR‐21‐5p maturation. Our research is the first to demonstrate the role of the METTL3‐m6A‐miR‐21‐5p‐SPRY1/ERK/NF‐kB axis in obstructive renal fibrosis and provides a deeper understanding of renal fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号