首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Seed dispersal by frugivores in tropical rain forests is important for maintaining viable tree populations. Over the years, vertebrate assemblages in tropical forests have been altered by anthropogenic disturbances, leading to concerns about the ability of remnant vertebrates to substitute for the lost or declining vertebrate populations. We compared vertebrate composition and frugivore visitation rates as an indirect measure of rate of seed dispersal in three tropical rain forests in Uganda, namely Mabira, Budongo and Kibale Forests. Mabira is highly disturbed, Kibale is little and Budongo is intermediate. The aim was to determine whether vertebrate assemblages in differentially disturbed forests had comparable abilities to disperse seeds and whether tree species were equally vulnerable to loss of seed dispersers. Assemblages of forest generalist species were similar in all forests, but specialists were less abundant in the heavily disturbed forest. Remnant frugivores in the heavily disturbed forest were mainly small-bodied species that spat seeds beneath fruiting trees compared to large-bodied species observed in the less disturbed forests that ingested and carried away the seeds. We postulate that the quantity of seeds dispersed in heavily disturbed forests is much reduced due to low visitation rates of frugivores and the absence of large frugivores that consume large quantities of fruit. The quality of seed dispersal is affected as well by the distance over which seeds are moved. Assessment of vulnerability of trees shows no evidence for disperser substitution for trees producing large fruits. Fruit trees with low nutritional contents and digestibility were least visited in frugivore-impoverished forests. The loss of large specialist frugivores is likely to affect recruitment of many trees, especially of species that cannot establish beneath adult conspecifics.  相似文献   

2.
Vertical stratification is a key feature of tropical forests and structures plant–frugivore interactions. However, it is unclear whether vertical differences in plant-frugivore interactions are due to differences among strata in plant community composition or inherent preferences of frugivores for specific strata. To test this, we observed fruit removal of a diverse frugivore community on the liana Marcgravia longifolia in a Peruvian rain forest. Unlike most other plants, Marcgravia longifolia produces fruits across forest strata. This enabled us to study effects of vertical stratification on fruit removal without confounding effects of plant species and stratum. We found a high number of visits of a few frugivore species in the understorey and a low number of visits of many different frugivores in the canopy and midstorey. Whereas partial and opportunistic frugivores foraged across strata with differing frequencies, obligate frugivores were only found eating fruits in the higher strata. Avian frugivores foraging in the canopy were mainly large species with pointed wings, whereas under- and midstorey avian foragers were smaller with rounded wings. Our findings suggest a continuous shift in the frugivore community composition along the vertical gradient, from a few generalized frugivores in the understorey to a diverse set of specialized frugivores in the canopy. This shift in the frugivore community leads to correlated, reciprocal changes from specialized to generalized plant-frugivore interactions. Thus, we conclude that vertical niche differentiation between species in tropical forests persists even when food resources are available across strata. This highlights its role for promoting biodiversity and ecosystem functioning.  相似文献   

3.
Forest fragmentation and local disturbance are prevailing threats to tropical forest ecosystems and affect frugivore communities and animal seed dispersal in different ways. However, very little is known about the effects of anthropogenic forest edges and of local disturbance on the structure and robustness of plant–frugivore networks. We carried out focal tree observations to record the frugivore species feeding on eight canopy tree species in the forest interior and at forest–farmland edges in a little and a highly disturbed part of a Kenyan rain forest. For each frugivore species, we recorded its body mass and its forest dependence. We examined how forest edge and local disturbance affected the abundance, the richness and the composition of the frugivore community and tested whether forest edge and local disturbance affected plant frugivore networks. Abundance and species richness of frugivores were higher at edges than in the forest interior. Forest visitors and small‐bodied frugivores increased, while forest specialists decreased in abundance at forest edges. The changes in frugivore community composition resulted in plant–frugivore networks that were more connected, more nested and more robust against species extinctions at forest–farmland edges than in the forest interior. Network specialization was lower at forest edges than in the forest interior because at the edges plant specialization on frugivores was very low in small‐fruited species. In contrast, small‐fruited plants were more specialized than large‐fruited plants in the forest interior. Our findings suggest that forest‐visiting birds may stabilize seed‐dispersal services for small‐fruited plant species at rain forest margins, while seed‐dispersal services for large‐fruited plant species may be disrupted at forest edges due to the decrease of large‐bodied frugviores. To assess the ultimate consequences of bird movements from farmland to forest edges for ecosystem functioning, future studies are required to investigate the seed‐dispersal qualities provided by forest‐visiting bird species in the tropics.  相似文献   

4.
The quality of seed treatment by frugivores has an effect on seed removal after dispersal, seed germination and tree recruitment. We provide information on postdispersal seed removal, germination and subsequent recruitment in tropical forest tree species Antiaris toxicaria in Ghana. We tested whether postdispersal seed removal and germination rates were differentially affected by the following seed treatments: seeds that were spat out by monkeys with all fruit pulp removed and spitting seeds with fruit pulp partially removed as observed in some birds and bats. We used seeds of intact ripened fruits as control. Frugivore seed treatment and distance from bole affected seed removal patterns, whereas intact seeds were significantly removed from all seed stations. The germination success was greater for seeds that were spat out by monkeys and poor for seeds with fruit pulp partially removed and intact fruits. More recruits were recorded at the edge of the adult A. toxicaria canopy radius. There was weak relationship (r2 = 0.042) between the number of recruits and distance away from the adult tree. Results suggest that the subsequent recruitment in tropical forest tree species may be enhanced by some frugivore fruit‐handling behaviour where fruit pulp is removed from the seeds without destroying the seeds.  相似文献   

5.
Understanding the mutualisms between frugivores and plants is essential for developing successful forest management and conservation strategies, especially in tropical rainforests where the majority of plants are dispersed by animals. Gibbons are among the most effective seed dispersers in South East Asia's tropical forests, but are also one of the highly threatened arboreal mammals in the region. Here we studied the seed dispersal of the Pacific walnut (Dracontomelon dao), a canopy tree which produces fruit that are common in the diet of the endangered southern yellow-cheeked crested gibbon (Nomascus gabriellae). We found that gibbons were the most effective disperser for this species; they consumed approximately 45% of the fruit crop, which was four times more than that consumed by macaques – the only other legitimate disperser. Gibbons tracked the temporal (but not spatial) abundance of ripe fruits, indicating this fruit was a preferred species for the gibbon. Both gibbons and macaques dispersed the majority (>90%) of the seeds at least 20 m away from parent crowns, with mean dispersal distances by gibbons measuring 179.3 ± 98.0 m (range: 4–425 m). Seeds defecated by gibbons germinated quicker and at greater rates than seeds spat by macaques, or in undispersed fruits. Gibbon-dispersed seeds were also more likely to be removed by unknown seed predators or unknown secondary dispersers. Overall, gibbons play a key role in the regeneration of the Pacific walnut. Our findings have significant implications both for the management of the Pacific walnut tree dominating tropical rainforest as well as the reintroduction program of the Southern yellow-cheeked crested gibbon.  相似文献   

6.
Seed dispersal is an ecological process crucial for forest regeneration and recruitment. To date, most studies on frugivore seed dispersal have used the seed dispersal effectiveness framework and have documented seed-handling mechanisms, dispersal distances and the effect of seed handling on germination. In contrast, there has been no exploration of “disperser reliability” which is essential to determine if a frugivore is an effective disperser only in particular regions/years/seasons or across a range of spatio-temporal scales. In this paper, we propose a practical framework to assess the spatial reliability of frugivores as seed dispersers. We suggest that a frugivore genus would be a reliable disperser of certain plant families/genera if: (a) fruits of these plant families/genera are represented in the diets of most of the species of that frugivore, (b) these are consumed by the frugivore genus across different kinds of habitats, and (c) these fruits feature among the yearly staples and preferred fruits in the diets of the frugivore genus. Using this framework, we reviewed frugivory by the genus Macaca across Asia to assess its spatial reliability as seed dispersers. We found that the macaques dispersed the seeds of 11 plant families and five plant genera including at least 82 species across habitats. Differences in fruit consumption/preference between different groups of macaques were driven by variation in plant community composition across habitats. We posit that it is essential to maintain viable populations of macaques across their range and keep human interventions at a minimum to ensure that they continue to reliably disperse the seeds of a broad range of plant species in the Anthropocene. We further suggest that this framework be used for assessing the spatial reliability of other taxonomic groups as seed dispersers.  相似文献   

7.
In rain forest, the large numbers of species of fleshy-fruited plants and frugivorous animals result in a large number of potential fruit–frugivore interactions, which are challenging to survey in the field. Yet, knowledge of these relationships is needed to predict consequences of changes in the frugivore assemblage for seed dispersal. In the absence of comprehensive dietary information, it may be possible to delineate between frugivores that disperse different plants using ‘functional traits,’ or morphological and behavioral attributes of frugivores that interact with differences in salient characteristics of plant species. Here we use data on the consumption of 244 Australian rain forest plant species by 38 bird species to test for associations between patterns of frugivory and birds': (1) degree of frugivory, (2) gape width, and (3) seed treatment (seed crushing or seed dispersing). Degree of frugivory and gape width explain 74 percent of the variation in the sizes of fruits consumed by frugivorous birds. Among birds that consume a substantial dietary proportion of fruit, birds with wider gapes consume larger fruits. In contrast, this relationship was not shown by birds for which fruit is only a minor dietary component. Degree of frugivory and gape width, together with seed treatment, also strongly predict the overall taxonomic composition and diversity of plants consumed by bird species. Functional classifications of frugivore species may prove useful in developing a predictive understanding of fruit–frugivore interactions in other rain forest regions where detailed dietary information is not available for most frugivores.  相似文献   

8.
Seed dispersal constitutes a pivotal process in an increasingly fragmented world, promoting population connectivity, colonization and range shifts in plants. Unveiling how multiple frugivore species disperse seeds through fragmented landscapes, operating as mobile links, has remained elusive owing to methodological constraints for monitoring seed dispersal events. We combine for the first time DNA barcoding and DNA microsatellites to identify, respectively, the frugivore species and the source trees of animal‐dispersed seeds in forest and matrix of a fragmented landscape. We found a high functional complementarity among frugivores in terms of seed deposition at different habitats (forest vs. matrix), perches (isolated trees vs. electricity pylons) and matrix sectors (close vs. far from the forest edge), cross‐habitat seed fluxes, dispersal distances and canopy‐cover dependency. Seed rain at the landscape‐scale, from forest to distant matrix sectors, was characterized by turnovers in the contribution of frugivores and source‐tree habitats: open‐habitat frugivores replaced forest‐dependent frugivores, whereas matrix trees replaced forest trees. As a result of such turnovers, the magnitude of seed rain was evenly distributed between habitats and landscape sectors. We thus uncover key mechanisms behind “biodiversity–ecosystem function” relationships, in this case, the relationship between frugivore diversity and landscape‐scale seed dispersal. Our results reveal the importance of open‐habitat frugivores, isolated fruiting trees and anthropogenic perching sites (infrastructures) in generating seed dispersal events far from the remnant forest, highlighting their potential to drive regeneration dynamics through the matrix. This study helps to broaden the “mobile‐link” concept in seed dispersal studies by providing a comprehensive and integrative view of the way in which multiple frugivore species disseminate seeds through real‐world landscapes.  相似文献   

9.
Fragmentation is a major threat factor for plant–frugivore communities in tropical and subtropical forests. Resulting changes in the distribution of traits within these communities, e.g., a loss in large‐bodied frugivores, may lead to strong changes in plant–frugivore interactions in fragmented forests. Yet, we still lack a thorough understanding of the interplay between forest fragmentation, the trait‐composition of communities and resulting plant–frugivore interactions on a community‐scale. In a fragmented South African landscape comprising different forest categories—i.e., continuous natural forest, forest fragments surrounded by natural grassland, and forest fragments surrounded by sugarcane—we investigated the relationship between communities of fruiting plants and their frugivore visitors in response to forest fragmentation, as well as the interactive effects of forest fragmentation and fruit size of the plants on the number of frugivore visitors and their body size. Neither the fruit size of plant nor the body mass of frugivore communities differed between natural forest sites and forest fragments. Moreover, in‐depth analyses of frugivore assemblages visiting plant species revealed no effect of forest category on the number of frugivore visits or their mean body mass. The number of visits and body mass of frugivores were merely determined by the crop and fruit size of the focal plant species. Overall, our results suggest that frugivory of plant species with differently sized fruits was not reduced in forest fragments. Thus, fragments with high fruit availability may be key elements maintaining the functional connectivity of a heterogeneous forest landscape.  相似文献   

10.
Frugivory is a widespread mutualistic interaction in which frugivores obtain nutritional resources while favoring plant recruitment through their seed dispersal services. Nonetheless, how these complex interactions are organized in diverse communities, such as tropical forests, is not fully understood. In this study we evaluated the existence of plant-frugivore sub-assemblages and their phylogenetic organization in an undisturbed western Amazonian forest in Colombia. We also explored for potential keystone plants, based on network analyses and an estimate of the amount of fruit going from plants to frugivores. We carried out diurnal observations on 73 canopy plant species during a period of two years. During focal tree sampling, we recorded frugivore identity, the duration of each individual visit, and feeding rates. We did not find support for the existence of sub assemblages, such as specialized vs. generalized dispersal systems. Visitation rates on the vast majority of canopy species were associated with the relative abundance of frugivores, in which ateline monkeys (i.e. Lagothrix and Ateles) played the most important roles. All fruiting plants were visited by a variety of frugivores and the phylogenetic assemblage was random in more than 67% of the cases. In cases of aggregation, the plant species were consumed by only primates or only birds, and filters were associated with fruit protection and likely chemical content. Plants suggested as keystone species based on the amount of pulp going from plants to frugivores differ from those suggested based on network approaches. Our results suggest that in tropical forests most tree-frugivore interactions are generalized, and abundance should be taken into account when assessing the most important plants for frugivores.  相似文献   

11.
Seed dispersal by avian frugivores is one of the key processes influencing plant spatial patterns, but may fail if there is disruption of plant–frugivore mutualisms, such as decline in abundance of dispersers, fragmentation of habitat, or isolation of individual trees. We used simulation model experiments to examine the interaction between frugivore density and behaviour and the spatial arrangement of fruiting plants and its effect on seed dispersal kernels. We focussed on two New Zealand canopy tree species that produce large fruits and are dispersed predominantly by one avian frugivore (Hemiphaga novaeseelandiae). Although the mean seed dispersal distance decreased when trees became more aggregated, there were more frugivore flights between tree clusters, consequently stretching the tails of the dispersal kernels. Conversely, when trees were less aggregated in the landscape, mean dispersal distances increased because seeds were deposited over larger areas, but the kernels had shorter tails. While there were no statistically meaningful changes in kernel parameters when frugivore density changed, decreases in density did cause a proportional reduction in the total number of dispersed seeds. However, birds were forced to move further when fruit availability and fruit ripening were low. Sensitivity analysis showed that dispersal kernels were primarily influenced by the model parameters relating to disperser behaviour, especially those determining attractiveness based on distance to candidate fruiting trees. Our results suggest that the spatial arrangement of plants plays an important role in seed dispersal processes – although tree aggregation curbed the mean seed dispersal distance, it was accompanied by occasional long distance events, and tree dispersion caused an increase in mean dispersal distance, both potentially increasing the probability of seeds finding suitable habitats for germination and growth. Even though low frugivore densities did not cause dispersal failure, there were negative effects on the quantity of seed dispersal because fewer seeds were dispersed.  相似文献   

12.
Forest destruction and disturbance can have long-term consequences for species diversity and ecosystem processes such as seed dispersal. Understanding these consequences is a crucial component of conserving vulnerable ecosystems. In the heavily fragmented and disturbed Kakamega Forest, western Kenya, we studied seed dispersal of Prunus africana (Rosaceae). In the main forest, five forest fragments, and differently disturbed sites, we quantified the overall frugivore community as an indicator for species diversity. Furthermore, we determined the frugivores on 28 fruiting P. africana trees, estimated seed dispersal, crop size and the general fruit availability of surrounding trees. During the overall frugivore census we recorded 49 frugivorous species; 36 of them were observed visiting P. africana trees and feeding on their fruits. Although overall frugivore species richness was 1.1 times lower in fragments than in main forest sites and 1.02 times higher in highly disturbed than in less disturbed sites, P. africana experienced 1.1 times higher numbers of frugivores in fragments than in main forest sites and 1.5 times higher numbers of frugivores in highly disturbed than in less disturbed sites. Correspondingly, seed dispersal was 1.5 times higher in fragments than in main forest sites and 1.5 times higher in more disturbed than less disturbed sites. Fruit availability of surrounding trees and crop size influenced the number of visitors to some degree. Thus, the number of dispersed seeds seemed to be slightly higher in fragmented and highly disturbed sites. This indicates that loss of single species does not necessarily lead to a decrease of ecosystem services. However, loss of diversity could be a problem in the long term, as a multitude of species might act as buffer against future environmental change.  相似文献   

13.
Habitat degradation and fragmentation are expected to reduce seed dispersal rates by reducing fruit availability as well as the movement and abundance of frugivores. These deleterious impacts may also interact with each other at different spatial scales, leading to nonlinear effects of fruit abundance on seed dispersal. In this study we assessed whether the degradation and fragmentation of southern Chilean forests had the potential to restrict seed dispersal the lingue (Persea lingue) tree, a fleshy-fruited tree species. Of five frugivore bird species, the austral thrush (Turdus falcklandii) and the fire-eyed diucon (Xolmis pyrope) were the only legitimate seed dispersers as well as being the most abundant species visiting lingue trees. The results showed little or no direct effect of habitat fragmentation on seed dispersal estimates, possibly because the assemblage of frugivore birds was comprised habitat-generalist species. Instead, the number of fruits removed per focal tree exhibited an enhanced response to crop size, but only in the more connected fragments. In the fruit-richer fragment networks, there was an increased fragment-size effect on the proportion of fruits removed in comparison to fruit-poor networks in which the fragment size effect was spurious. We suggest that such nonlinear effects are widespread in fragmented forest regions, resulting from the link between the spatial scales over which frugivores sample resources and the spatial heterogeneity in fruiting resources caused by habitat fragmentation and degradation.  相似文献   

14.
The ability of ecosystems to maintain their functions after disturbance (ecological resilience) depends on heterogeneity in the functional capabilities among species within assemblages. Functional heterogeneity may affect resilience by determining multiplicity between species in the provision of functions (redundancy) and complementarity between species in their ability to respond to disturbances (response diversity), but also by promoting the maintenance of biological information that enables ecosystems to reorganize themselves (ecological memory). Here, we assess the role of the components of the functional heterogeneity of a plant–frugivore assemblage on the resilience of seed dispersal to habitat loss. For three years, we quantified the distributions of fruits, frugivorous thrushes (Turdus spp.) and dispersed seeds, as well as frugivore diet and movement, along a gradient of forest cover in N Spain. The abundances and the spatial distributions of fruits and birds varied between years. The different thrushes showed similar diets but differed in spatial behavior and response to habitat loss, suggesting the occurrence of both functional redundancy and response diversity. Forest cover and fruit availability affected the spatial distribution of the whole frugivore assemblage. Fruit tracking was stronger in years when fruits were scarcer but more widespread across the whole fragmented landscape, entailing larger proportions of seeds dispersed to areas of low forest cover and open microhabitats. Rather than depending on redundancy and/or response diversity, seed dispersal resilience mostly emerged from the ecological memory conferred by the inter‐annual variability in fruit production and the ability of thrushes to track fruit resources across the fragmented landscape. Ecological memory also derived from the interaction of plants and frugivores as source organisms (trees in undisturbed forest), mobile links (birds able to disperse seeds into the disturbed habitat), and biological legacies (remnant trees and small forest patches offering scattered fruit resources across the landscape).  相似文献   

15.
We examined frugivore visitation and seed dispersal of five large-seeded (≥ 5 mm) tree species in tropical montane forest based on their occurrence in frugivorous primate diets: Ekebergia capensis, Olea capensis, Parinari excelsa, Prunus africana , and Syzygium guineense. A total of 21 frugivores in five assemblages ( i.e. , chimpanzees, cercopithecines, large-bodied birds, small-bodied birds, and squirrels) were observed over the study period (August 2006 and October–April 2007). We observed seed dispersal in four of five tree species studied; no dispersal was observed for P. excelsa . Frugivore assemblages did not visit tree species equally. Primates spent the most time in trees and had the largest group size. Large-bodied birds (LB) and chimpanzees dispersed the highest number of seeds per minute. LB and cercopithecines potentially dispersed the greatest number of seeds for E. capensis , and chimpanzees for S. guineense . Our analyses indicated that the mean fruiting duration of the focal tree, time in the tree, and number of species present are important predictor variables for seed dispersal by small- and large-bodied birds, and cercopithecines. The number of fruiting trees in the immediate vicinity of the focal tree further predicted seed dispersal for small-bodied birds (SB). Large-bodied birdseed dispersal also was predicted by time in tree by SB, and the number of individuals for SB and cercopithecines. Cercopithecines (CS) were further explained by the time in tree and number of species (SB & LB), and number of individuals for CS. Our study highlights the complexity of describing the relative importance of a frugivore assemblage to the dispersal of a tree species seeds.  相似文献   

16.
Plant–frugivore mutualistic assemblages frequently combine multiple, complementary or not (i.e. redundant), distinct effects of animal species. To a large extent, the outcomes of these interactions crucially depend on the delayed consequences of frugivore effectiveness on plant recruitment. We evaluated seed dispersal effectiveness for three plant species in a Brazilian Atlantic forest with a marked habitat heterogeneity defined by bamboo and non‐bamboo patches. Twenty one, 23 and 14 bird species ate fruits of Euterpe edulis, Sloanea guianensis and Virola bicuhyba trees, respectively. For both Euterpe and Virola, visitation rate was the variable contributing for most variance across frugivore species in the quantitative component of effectiveness (QC, which depends on the combined effects of interaction frequency and per‐interaction effect), while the number of fruits manipulated/visit had the greatest contribution in Sloanea. By combining observational data and experimental seed addition for Euterpe we tested for consistent functional patterns among species in the frugivore assemblage, extending beyond the fruit removal stage. Rankings of QC across Euterpe frugivores remained consistent with their relative contributions to fruit removal and, importantly, with their contributions to seedling establishment. Yet, QC of effectiveness across Euterpe frugivores were more homogeneous at the fruit removal and dispersal stages (contribution to seed dispersal) than for the delayed, dissemination and post‐dispersal effects on recruitment. High complementarity of diversified frugivore assemblages may increase through added variance in their delayed effects related to qualitative components of effectiveness. Our results underscore the importance of assessing how dispersal services provided by mutualistic frugivores play complementary, rather than redundant, roles in seed dispersal within heterogeneous landscapes. Such ecological outcomes highlight the value of combining observational and experimental field designs to assess functional diversity patterns of tropical frugivore assemblages and delayed effects of their interactions with plants.  相似文献   

17.
The movement of frugivores between remnant forests and successional areas is vital for tropical forest tree species to colonize successional habitats. The response of these species to the spatial structure of pasture tree cover is largely unknown. We studied avian frugivores that were found in primary forest edges and large pastures in eastern Amazonia, Brazil. We determined how the small‐scale spatial structure of pasture trees at forest edges affects five response variables: bird presence, visitation rate, duration of visit, species richness, and an index accounting for species’ level of frugivory and abundance in forests. We used hierarchical linear models to estimate the effect of four predictor variables on response variables: (1) clustering of pasture trees; (2) percent canopy cover of pasture trees; (3) distance of pasture tree to forest edge; and (4) tree crown area. The study species, many of which are widely distributed in the Neotropics, were generally insensitive to percent cover and clustering of trees. Frugivore visitation to individual trees remained constant as cover increased. Visitation was positively correlated with focal tree distance to forest edge and crown area. The positive relationship between distance and visitation rates may be due to the increased abundance of some resource further from forests. If pastures were abandoned the distance from forest edges would not likely limit frugivore visitation and seed deposition under large pasture trees in our study (i.e., up to 200 m distant).  相似文献   

18.
Alison Shapcott 《Biotropica》1999,31(4):579-590
Syzygium nervosum is a common monsoon rain forest tree. Its habitat in Australia consists of small rain forest patches that are scattered through a savanna matrix. It is a mast flowering canopy species that produces large quantities of fruits fed on by mobile frugivores such as birds and fruit bats. The genetic diversity of this species was investigated, especially in relation to rain forest patch size, geographic isolation, and geographic distribution. Syzygium nervosum was found to have high levels of genetic diversity within populations (He= 0.307). Diversity among populations, however, was relatively low (Fsr = 0.118), and was not spatially structured across its geographic range in Australia. This is thought to have been caused by relatively frequent gene flow among populations (Nm= 1.67), mediated primarily by mobile frugivores. Genetic diversity was not correlated with patch size or isolation. It is thought that seed dispersal by frugivores has acted to expand the effective population size of this species beyond the individual rain forest patch, and thus has prevented the substantial loss of genetic diversity that otherwise would have been observed. Thus this species is dependent upon these frugivores for the maintenance of its genetic diversity and hence its long-term viability. These results lend support to theories of post-Holocene expansion of rain forest by vagile species in northern Australia.  相似文献   

19.
Seed dispersal systems in degraded areas can be compromised following the decline of large-bodied frugivore populations responsible for their dispersal. In this context we examined the seed dispersal ecology of a large fruited deciduous tree (Dillenia pentagyna) along a forest degradation gradient in India. We examined the effect of structural components of vegetation and frugivore foraging behavior on D. pentagyna seed dispersal. Depauperate mammalian community and declined large avian frugivores e.g. hornbills in our study site make this system a specialized one and currently dependent on only two large bodied avian frugivores. Seed dispersal followed an overall leptokurtic pattern and the seed dispersal kernels were best explained by an inverse power function. Seed dispersal kernels in dense forest indicated longer dispersal distances than moderately dense forest and degraded forest. In degraded areas, no dispersal away from the crown was recorded for D. pentagyna and it occurred at low density. Canopy foliage abundance of the surrounding vegetation of the focal trees was best explained by quantity of seed dispersal by large avian frugivores. The number of avian frugivore species those are effective disperser of D. pentagyna decreased along the degradation gradient. Avian frugivore behavior in terms of visitation and seed swallowed is a determining factor that controls quantity of seed dispersal. Our study underscores deleterious impact of forest degradation on avian disperser community which in turn would affect regeneration capacity of degraded forest.  相似文献   

20.
Tropical forests show periods of scarcity and high fruit production in the same year and/or between years. Palms are an important component of Neotropical rainforests and a significant food resource for several frugivores. Therefore, their role as keystone resource may be exacerbated in highly impoverished areas. In Anchieta Island, São Paulo/Brazil, human settlements have modified and impoverished the forest, mainly through overharvesting and the introduction of exotic plants and several mammal species. We assessed the offer of fruits consumed by vertebrate frugivores at this island, the vegetation of which is belonging to the Brazilian Atlantic rainforest. We compared whether the fruiting patterns and fruit fall differ between palms and trees, and discuss the importance of palms as a food resource for frugivores and the implications for Anchieta Island conservation. Phenological patterns were seasonal for both trees and palms; however, the times of fruiting occurrence differed. Fruit fall biomass was at least twice lower than reported for other Atlantic rain forests and was also different between trees and palms. Palms contributed more than 80% of the overall fruit fall biomass. Palms may constitute an alternative food resource in periods of low fruit availability, although they do not provide resources for the entire assemblage of vertebrate frugivores. Energy-rich fruits, such as those produced by palms, may play an important role in the maintenance of frugivore populations in isolated, disturbed environments with a high density of vertebrate frugivores, low diversity of fruiting species and fruit biomass such as those found on Anchieta Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号