首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Habitat modeling across a landscape that has gradients of habitat conditions requires potential predictor data that can be quantified at biologically relevant scales. We used remotely sensed data to develop a multi-scale density model in 2018 for the golden-cheeked warbler (Setophaga chrysoparia; warbler), a species that breeds in Ashe juniper (Juniperus ashei)-oak (Quercus spp.) woodlands in central Texas, USA. We first classified Ashe juniper and broadleaf tree cover at a 1-m resolution and used this to map potential habitat across the warbler's >67,000-km2 breeding range. We then designed a survey for estimating warbler density based on hierarchical distance sampling. We used stratified random sampling to survey for male warblers at 1,804 points across the continuum of tree canopy cover and composition and detected 810 warblers during our surveys. We developed a suite of potential predictor variables for modeling warbler density that reflected vegetation, topography, climate, and anthropogenic land use conditions across the breeding range and developed these at 3 scales representing the territory, site, and landscape. We modeled warbler density and used the best fit model to produce a spatially explicit estimate. Predicted warbler density was influenced by tree canopy cover and canopy height at the territory scale (100-m radius); tree canopy cover, percent of the canopy comprised of juniper, and an interaction between canopy cover and compound topographic index at the site scale (1-km radius); and annual temperature range at the landscape scale (5-km radius). We estimated a population size of 217,444 male warblers (95% CI = 153,917–311,965) and >3,000 males in each recovery unit. After controlling for the duration of point count surveys, our estimate of population size was similar to that reported from the only previous breeding range survey conducted in 2008–2009. Our model results indicated that management activities to increase warbler density should promote woodlands with high tree canopy cover, approximately 60–80% Ashe juniper composition, and tree heights >3 m. In contrast to a patch-based approach, our treatment of habitat variables as continuous helped to credibly map the warbler distribution across areas with broad transitions from woodlands to shrublands. By measuring these predictor variables at biologically relevant scales, we allowed the warbler survey data to define habitat relationships instead of using anthropogenically defined habitat patches. Outcomes from our study show the benefits of developing spatial products tailored to individual species of interest for conservation and management decisions.  相似文献   

2.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

3.
Insect outbreaks are major natural disturbance events that affect communities of forest birds, either directly by affecting the food supply or indirectly by changing the vegetation composition of forest canopies. An examination of correlations between measures of bird and insect abundance across different spatial scales and over varying time lag effects may provide insight into underlying mechanisms. We developed a hierarchical Bayesian model to assess correlations between counts of eight warbler species from the Breeding Bird Survey in eastern Canada, 1966 to 2009, with the presence of spruce budworm (Choristoneura fumiferana Clem.) at immediate local scales and time‐lagged regional scales, as measured by extent of defoliation on host tree species. Budworm‐associated species Cape May warbler (Setophaga tigrina), bay‐breasted warbler (Setophaga castanea), and Tennessee warbler (Oreothlypis peregrina) responded strongly and positively to both local and regional effects. In contrast, non‐budworm‐associated species, Blackburnian warbler (Setophaga fusca), magnolia warbler (Setophaga magnolia), Canada warbler (Cardellina canadensis), black‐throated blue warbler (Setophaga caerulescens), and black‐throated green warbler (Setophaga virens), only responded to regional effects in a manner that varied across eastern Canada. The complex responses by forest birds to insect outbreaks involve both increased numerical responses to food supply and to longer term responses to changes in forest structure and composition. These effects can vary across spatial scales and be captured in hierarchical population models, which can serve to disentangle common trends from data when examining drivers of population dynamics like forest management or climate change.  相似文献   

4.
Conservation of biodiversity on forest landscapes dominated by plantations has become an increasingly important topic, and opportunities to maintain or enhance biodiversity within these forests need to be recognized and applied. Riparian buffers of mature forest retained along streams in managed forest landscapes offer an opportunity to enhance biodiversity across these landscapes. However, influence of buffer width and structure of adjacent plantations on habitat use by birds is not well understood. We modeled probability of occupancy, while accounting for variable detection probabilities, for 16 bird species of regional conservation importance in the Ouachita Mountains of Arkansas, USA. We examined occurrence of breeding birds in streamside management zone (SMZ) buffers embedded in three structural classes of pine plantation: young open-canopy, closed-canopy, and older thinned plantations. Our occupancy models included a positive association with SMZ width for nine bird species associated with mature forests. Models for three early successional species (prairie warbler [Dendroica discolor], white-eyed vireo [Vireo griseus], and northern bobwhite [Colinus virginianus]) included a negative association with SMZ width. Occupancy models for Acadian flycatcher (Empidonax virescens), summer tanager (Piranga rubra), pine warbler (Dendroica pinus), prairie warbler, and northern bobwhite also included structural condition of adjacent plantations, but most species did not appear affected by condition of surrounding plantations. We found diverse responses among species to width of retained SMZs and structure of adjacent plantations; some species apparently benefitted from SMZs >100 m wide, while others benefitted from narrow buffers. Furthermore, most species traditionally associated with mature forests were common in narrow SMZs, regardless of width. Thus, optimal width of SMZs relative to avian conservation depends on the species of greatest conservation interest.  相似文献   

5.
Wild pigs (Sus scrofa; i.e., feral hogs, feral swine) are considered an invasive species in the United States. Where they occur, they damage agricultural crops and wildlife habitat. Wild pigs also depredate native wildlife, particularly ground-nesting bird species during nesting season. In areas inhabited by wild turkeys (Meleagris gallopavo), nest destruction caused by wild pigs may affect recruitment. There is debate whether wild pigs actively seek ground-nesting bird nests or depredate them opportunistically. To address this debate, in 2016 we examined the movements of wild pigs relative to artificial wild turkey nests (i.e., control [no artificial nests], moderate density [12.5–25 nests/km2], and high density [25–50 nests/km2]) throughout the nesting season (i.e., early, peak, and late) in south-central Texas, USA. We found no evidence that wild pigs learned to seek and depredate wild turkey nests relative to nest density or nesting periods. Despite wild pigs being important nest predators, depredation was not a functional response to a pulsed food resource and can only be associated with overlapping densities of wild pigs and nests. Protecting reproductive success of wild turkeys will require reducing wild pig densities in nesting habitat prior to nesting season. © 2019 The Wildlife Society.  相似文献   

6.
伏牛山自然保护区森林冠层结构对林下植被特征的影响   总被引:4,自引:0,他引:4  
卢训令  丁圣彦  游莉  张恒月 《生态学报》2013,33(15):4715-4723
在伏牛山自然保护区典型地段设立样方,测定了森林生态系统内几种典型群落类型的冠层结构、光环境特征,调查了林下植被的特征,分析了它们之间的相互关系.结果显示:各群落的冠层结构和光环境有一定的差异,单因素方差分析表明,部分群落间的差异性达到显著水平;各群落灌木层物种丰富度、多样性和均匀度均高于草本层,而优势度正相反;线性拟合的结果表明,草本层的物种丰富度、多样性与冠下光合量子通量密度间呈极显著负相关,优势度与冠下光合量子通量密度间呈显著正相关,灌木层各参数与冠层结构特征间相关性不显著.研究表明,冠层结构的变化对草本层(包括更新幼苗)的影响显著高于灌木层.林隙/林窗或林中空地的出现可能对草本物种或其他阳性及先锋物种具有促进作用,而对优势种幼苗的萌发和定植产生负效应.推测在典型的落叶阔叶林生态系统演替进程中,林下光照强度可能不是最主要的限制因素,优势种种子的扩散、萌发和定植限制可能更重要.  相似文献   

7.
Abstract: We used a 60-yr forest simulation of the Cherokee National Forest, Tennessee, USA, to model the effects of timber harvest and natural disturbance upon habitat availability for 6 songbird species: Acadian flycatcher (Epidonax virescens), blue-headed vireo (Vireo solitarius), chestnut-sided warbler (Dendroica pensylvanica), tufted titmouse (Parus bicolor), yellow-billed cuckoo (Coccyzus americanus), and yellow-throated warbler (Dendroica dominica). Forest simulations, based on expected harvest intensities and historic levels of natural disturbance, were used to update a stand inventory database at 10-yr intervals between 1993 and 2053. Habitat models for the 6 bird species were applied to the updated stand inventory and available habitat quantified for each decade. Late-successional species showed substantial increases in habitat availability over the 60-yr period at most harvest intensities, whereas habitat for early-successional species was stable or declined at most harvest intensities. Acadian flycatcher, yellow-throated warbler, and blue-headed vireo habitat increased by 200%, 213%, and 40%, respectively, whereas tufted titmouse habitat remained relatively constant at expected harvest levels. Chestnut-sided warbler habitat was stable at expected harvest levels but declined at lower harvest intensities, and yellow-billed cuckoo habitat declined by 37% at expected harvest levels. Natural disturbance had little effect on habitat availability for any bird species compared to the effects of timber harvests and increasing forest age. Our models suggest that anthropogenic disturbance, and lack thereof, can play a definitive role determining habitat availability and population viability for forest songbirds.  相似文献   

8.
Interest in regenerating oaks (Quercus spp.) has promoted use of partial harvesting techniques that create an open forest structure. From 2007 to 2009, we studied songbirds in mixed-oak forests in southeastern Ohio, comparing shelterwoods recently harvested to 50% stocking and closed-canopy mature second-growth. We surveyed birds using distance-based methods (56 line transects in 18 stands at 4 forests). We intensively investigated suitability of shelterwoods for canopy-nesting species by examining habitat preferences, as measured by settlement patterns, age distributions, and site fidelity; we also examined nesting success. Several midstory and ground-nesting species were 26–73% less abundant in shelterwood than unharvested stands, whereas shrub-nesting species increased >100% several years post-harvesting. Canopy-nesting species were 31–98% more abundant in shelterwoods, but cerulean warbler (Setophaga cerulea) responses varied by forest. Patterns of settlement and site fidelity were generally similar among stands. Proportions of young males were actually greater for several species in shelterwood than unharvested stands, which may have been a consequence of young birds colonizing newly created (or improved) habitat. Even in our predominantly forested study system, nesting success (>700 nests) was low, ranging from 15% to 19% for yellow-throated vireos (Vireo flavifrons) and cerulean warblers, to 27–36% for scarlet tanagers, blue-gray gnatcatchers (Polioptila caerulea) and eastern wood-pewees (Contopus virens). However, nest survival did not differ between shelterwood and unharvested stands, possibly because numbers of avian predators did not change with harvesting. Despite increased numbers of brown-headed cowbirds (Molothrus ater) in shelterwoods, only 2% of canopy nests in which young could be identified were parasitized. Although these results suggest shelterwood harvests containing abundant overstory trees can provide short-term breeding habitat for canopy songbirds, long-term responses of birds to partial harvesting may differ from those documented here depending on different management options employed. Management for oak regeneration will typically remove all overstory trees later in the cutting cycle, initially resulting in loss of nesting substrates and hence breeding habitat for canopy songbirds. © 2011 The Wildlife Society.  相似文献   

9.
Prescribed fire is one tool for restoring fire-suppressed forests, but application of fire during spring coincides with breeding and arrival of migrant birds. We examined effects of low-severity prescribed fires on counts of birds in a managed forest in the Sierra Nevada of California immediately, 1 year, and 3–6 years after fire was applied in spring. Of 26 species analyzed, counts of 3 species increased after fire (Pacific-slope flycatcher [Empidonax difficilis], brown creeper [Certhia americana], and American robin [Turdus migratorius]), and 6 species decreased after fire (Anna's hummingbird [Calypte anna], Hutton's vireo [Vireo huttoni], warbling vireo [Vireo gilvus], golden-crowned kinglet [Regulus satrapa], Nashville warbler [Vermivora ruficapilla], hermit warbler [Dendroica occidentalis]). Black-throated gray warbler (Dendroica nigrescens) increased in the first year following fire but decreased 3–6 years after fire. When grouped into guilds, habitat association and foraging guild best explained responses to fire, with the greatest changes occurring for oak-associated species (negative), riparian-associated species (positive), aerial foragers (positive), and bark foragers (positive). Lastly, when we compared our counts to those collected during the 1910s, changes were consistent with those predicted from fire suppression and species' affinity for burned forests, suggesting that results from contemporary fire studies should be interpreted within an ecological context that includes effects of fire suppression. We found that low-severity prescribed fires applied in spring served to drive the bird community towards pre-suppression conditions. © 2011 The Wildlife Society.  相似文献   

10.
Canopy trees are largely responsible for the environmental heterogeneity in the understory of tropical and subtropical species‐rich forests, which in turn may influence sapling community dynamics. We tested the effect of the specific identity of four cloud forest canopy trees on total solar radiation, canopy openness, soil moisture, litter depth, and soil temperature, as well as on the structure and dynamics of the sapling community growing beneath their canopies. We observed significant effects of the specific identity of canopy trees on most understory microenvironmental variables. Soil moisture was higher and canopy openness lower beneath Cornus disciflora. In turn, canopy openness and total solar radiation were higher beneath Oreopanax xalapensis, while the lowest soil moisture occurred beneath Quercus laurina. Moreover, Chiranthodendron pentadactylon was the only species having a positive effect on litter depth under its canopy. In spite of these between‐species environmental differences, only C. pentadactylon had significant, negative effects on sapling density and species richness, which may be associated to low seed germination and seedling establishment due to an increased litter depth in its vicinity. The relevance of the specific identity of canopy trees for natural regeneration processes and species richness maintenance depends on its potential to differentially affect sapling dynamics through species‐specific modifications of microenvironmental conditions.  相似文献   

11.
Habitat complexity in reforested stands has been acknowledged as a key factor that influences habitat use by birds, being especially critical for habitat disturbance-sensitive species such as tropical understory insectivorous birds. Most studies regarding the relationship between forest structure and species diversity were conducted at the landscape scale, but different diversity patterns may emerge at a finer scale (i.e., within a habitat patch). We examined a tropical reforested area (State of Caldas, Colombia), hypothesizing that insectivorous bird richness, abundance, and foraging guild abundance would increase as intra-habitat complexity increases. We established 40 monitoring plots within a reforested area, measured their structural features, and determined their relationships with species richness, total abundance, and foraging guild abundance, using Generalized Additive Models. We found that the increasing variation in basal area, stem diameter, and number of stems was positively correlated with species richness, total abundance, and foraging guild abundance. Relationships between richness or abundance and structural features were not lineal, but showing curvilinear responses and thresholds. Our results show that heterogeneity on basal area, stem diameter, and the number of stems was more correlated to insectivorous bird richness and abundance than the average of those structural features. Promoting structural variation on reforested areas by planting species with different growth rates may contribute to increase the richness and abundance of a tropical vulnerable group of species such as the understory insectivorous birds.  相似文献   

12.
ABSTRACT Models of habitat suitability in postfire landscapes are needed by land managers to make timely decisions regarding postfire timber harvest and other management activities. Many species of cavity-nesting birds are dependent on postfire landscapes for breeding and other aspects of their life history and are responsive to postfire management activities (e.g., timber harvest). In addition, several cavity nesters are designated as species at risk. We compare the ability of 2 types of models to distinguish between nest and non-nest locations of 6 cavity-nesting bird species (Lewis's woodpecker [Melanerpes lewis], black-backed woodpecker [Picoides arcticus], hairy woodpecker [P. villosus], northern flicker [Colaptes auratus], western bluebird [Sialia mexicana], and mountain bluebird [S. currucoides]) in the early postfire years for a ponderosa pine (Pinus ponderosa) forest in Idaho, USA. The 2 model sets consisted of 1) models based on readily available remotely sensed data and 2) models containing field-collected data in addition to remotely sensed data (combination models). We evaluated models of nesting habitat by quantifying the model's ability to correctly identify nest and non-nest locations and by determining the percentage of correctly identified nest locations. Additionally, we developed relative habitat-suitability maps for nesting habitat of black-backed and Lewis's woodpeckers from the best models. For all species except Lewis's woodpeckers, model performance improved with the addition of field-collected data. Models containing remotely sensed data adequately distinguished between nest and non-nest locations for black-backed woodpecker and Lewis's woodpecker only, whereas models containing both field-collected and remotely sensed data were adequate for all 6 species. Improvements in the availability of more accurate remote sensing technology would likely lead to improvements in the ability of the models to predict nesting locations. External validation with data from other wildfires is necessary to confirm the general applicability of our habitat-suitability models to other forests. Land managers responsible for maintaining habitat for cavity-nesting birds in postfire landscapes can use these models to identify potential nesting areas for these species and select areas in burned forests where postfire salvage logging is most likely to have minimal impacts on cavity-nesting bird habitats.  相似文献   

13.
以2011年建设的山西灵空山4 hm2天然松栎混交林森林动态监测样地为研究平台,以400个10 m×10 m样方为测量单元,于2016年进行群落特征研究,采用半球面影像法(DHP)分析冠层结构和林下光照特征.结果表明: 样地内共有乔木5558株,共计25种,分属于10科15属.冠层开阔度(CO)集中在15.0%~25.0%,叶面积指数(LAI)集中在1.5~2.5,林下光环境参数集中在10.0%~30.0%.建群种在样地内的分布对冠层结构和林下光环境影响显著;冠层结构对林下光环境所有参数的影响方向一致,其中采用叶面积指数评价冠层结构动态的效果更佳;冠层开阔度和叶面积指数对林下光环境产生相反的影响,且均对散射光入射率影响程度最大.温性松栎混交林的林冠层整体较为均匀,林下光分布较为集中,林分树种组成与冠层结构对林下光照影响显著.  相似文献   

14.
Habitat preferences need to be understood if species are to be adequately managed or conserved. Habitat preferences are presumed to reflect requirements for food, shelter and breeding, as well as interactions with predators and competitors. However, one or more of these requirements may dominate. Tree‐cavity‐dependent wildlife species are one example where shelter or breeding site requirements may dominate. We installed 120 nest boxes across 40 sites to target the vulnerable Brush‐tailed Phascogale (Phascogale tapoatafa) and the non‐threatened Sugar Glider (Petaurus breviceps). The provision of shelter sites where few of quality are available may enable better resolution of habitat preferences. Over three years, we observed the Brush‐tailed Phascogale at 17 sites, whereas the Sugar Glider was observed at 39 sites. We tested four broad hypotheses (H1–H4) relating to habitat that may influence occupancy by these species. There was no influence of hollow (cavity) abundance (H1) on either species suggesting our nest boxes had satisfied their shelter requirements. There was no influence of habitat structure (canopy and tree proximity) (H2) immediately around the nest box trees. We found no influence of distance to the forest edge (H3). Variables at and away from the nest box site that appear to reflect foraging substrates (H4) were influential on the Brush‐tailed Phascogale. Sugar Glider occupancy was only influenced by a single variable at the nest box site. The lack of influence of any other variables is consistent with the very high occupancy observed, suggesting most of the forest habitat is suitable when shelter sites are available. We found no evidence that the Sugar Glider reduced site use by the Brush‐tailed Phascogale.  相似文献   

15.
Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.  相似文献   

16.
The effects of habitat edges on nest survival of shrubland birds, many of which have experienced significant declines in the eastern United States, have not been thoroughly studied. In 2007 and 2008, we collected data on nests of 5 shrubland passerine species in 12 early successional forest patches in North Carolina, USA. We used model selection methods to assess the effect of distance to cropland and mature forest edge on nest predation rates and additionally accounted for temporal trends, nest stage, vegetation structure, and landscape context. For nests of all species combined, nest predation decreased with increasing distance to cropland edge, by nearly 50% at 250 m from the cropland edge. Nest predation of all species combined also was higher in patches with taller saplings and less understory vegetation, especially in the second year of our study when trees were 4–6 m tall. Predation of field sparrow (Spizella pusilla) nests was lower in landscapes with higher agricultural landcover. Nest predation risk for shrubland birds appears to be greater near agricultural edges than mature forest edges, and natural forest succession may drive patterns of local extirpation of shrubland birds in early successional forest patches. Thus, we suggest that habitat patches managed for shrubland bird populations should be considerably large or wide (>250 m) when adjacent to crop fields and maintained in structurally diverse early seral stages. © 2011 The Wildlife Society.  相似文献   

17.
Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.  相似文献   

18.
We investigated avian nest distribution and success in understoryforest, sun coffee plantations, and pasture in southern Costa Rica. Nestsearching occurred in plantations and forest in 1999 and 2000 and in pastures in2000. Nests were monitored until they failed or fledged young. Antbirds(Thamnophilidae) were the most common understory forest nesters and were notfound nesting in the plantations or pastures. Common nesting species in theplantations included Turdidae, Tyrannidae, Cardinalidae, and Thraupidae, many ofwhich are typical of forest edge/canopy or open, scrubby habitats. Two speciesassociated with forest interior, Henicorhina leucostictaand Buarremon brunneinucha, were found nesting in theplantations. Pastures supported similar types of nesting species as theplantations, with the exception of the forest-interior species. Daily mortalityrates (DMRs) for above-ground cup-nesting species in plantations and pastureswere similar to those for species nesting in forest at our site and a site inPanama. The results indicate that conversion from forest to pastures and suncoffee plantations diminishes nesting habitat for forest-interior species, whilenumerous forest edge/canopy species and open-country species are able to nest inthese agricultural land-cover types. As a group, species nesting in theplantations and pastures do not have unusually high nest mortality rates,although species-specific studies are lacking. Nesting species distributionsacross habitat types and DMRs at our study site may be influenced by the largeamount of forest in the landscape.  相似文献   

19.
郑芬  李兆佳  邱治军  赵厚本  周光益 《生态学报》2020,40(13):4516-4527
光环境与幼树功能性状的关系对天然林的更新与演替具有重要的生态学意义。以广东南岭区域天然常绿阔叶林下不同林龄(幼龄林,中龄林,老龄林)的森林群落为研究对象,通过监测冠层结构、林下光照数据和林下幼树功能性状等指标,研究林龄梯度下其冠层结构与林下光环境之间的关系,以及林下幼树功能性状对光环境的响应。结果表明:(1)中龄林叶面积指数显著高于幼龄林和老龄林(P0.05),随着林龄的增长,林冠开度和透光率逐渐下降,林龄梯度下透光率、R/FR(红光/远红光比值)、Bw/Rw(宽带蓝光/宽带红光比值)差异极显著(P0.001);(2)天然常绿阔叶林中透光率与光质之间极显著相关(P0.001),R/FR随着透光率的增加而增加,Bw/Rw随着透光率的增加而减少。(3)林下幼树功能性状在光环境之间差异显著(P0.05),老龄林林下幼树叶片氮含量显著高于幼龄林,而叶片重叠率显著低于幼龄林;(4)在本试验地中,R/FR和Bw/Rw的变化对林下幼树的高径比和光合作用并无显著影响,光强对同种植物不同光环境下最大净光合速率的影响较大。总体而言,林龄梯度冠层结构和光环境的差异能在一定程度上解释幼树功能性状的差异,这将有助于我们理解光环境对林下幼树更新的影响机制,同时为天然植被恢复和森林经营提供指导。  相似文献   

20.
Habitat fragmentation results in landscape configuration, which affects the species that inhabit it. As a consequence, natural habitat is replaced by different anthropogenic plantation types (e.g. pasture, agriculture, forestry plantations and urban areas). Anthropogenic plantations are important for biodiversity maintenance because some species or functional groups can use it as a complementary habitat. However, depending on plantation permeability, it can act as a barrier to the movement of organisms between habitat patches, such as forest fragments, reducing functional connectivity for many species. Anthropogenic plantations are becoming the most common land use and cover type in the Anthropocene and biodiversity conservation in fragmented landscapes requires information on how different plantation types affect the capacity of the species to move through the landscape. In this study, we evaluated the influence of the type and structure of plantations on the movement of two forest‐dependent understory bird species – plain antvireo (Dysithamnus mentalis) and flavescent warbler (Myiothlyps flaveola) – within a highly fragmented landscape of Atlantic Forest hotspot. Knowing that forestry plantation is assumed to be more permeable to dependent forest bird species than open ones, we selected six study areas containing a forest fragment and surrounding plantation: three with sugarcane plantation and three with Eucalyptus sp. plantation. We used playback calls to stimulate the birds to leave forest fragments and traverse the plantations. Control trials were also carried out inside the forest fragments to compare the distances crossed. We observed that individuals moved longer distances inside forest than between plantation types, which demonstrate that plantations do constrict the movements of both species. The two plantation types equally impeded the movements of the species, suggesting the opposite of the general assumption that forestry plantations are more permeable. Our results indicate that, for generalist species, plantation type does not matter, but its presence negatively impacts movement of these bird species. We highlight that plantations have negative influences on the movements of common bird species, and discuss why this is important when setting conservation priorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号