首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周博  范泽鑫  杞金华 《生态学报》2020,40(5):1699-1708
研究采用树木生长环在哀牢山中山湿性常绿阔叶林持续9年(2009—2017年)监测了2个常绿树种(厚皮香,Ternstroemia gymnanthera;南亚枇杷,Eriobotrya bengalensis)和2个落叶树种(西桦,Betula alnoides;珍珠花,Lyonia ovalifolia)的树干月生长量,采用逻辑斯蒂生长模型(Logistic model)模拟树木径向生长量和物候参数,并分析了年、季尺度上径向生长与主要气候因子的关系。结果表明:1)4个树种年平均生长量为6.3 mm,落叶树种年平均生长量(10.6 mm/a)显著高于常绿树种(3.0 mm/a);2)雨季(5—10月)是哀牢山中山湿性常绿阔叶林树木生长的主要时期,4个树种雨季平均生长量为5.9 mm,占全年总生长量的93%,其中落叶树种雨季生长量占全年的96%,而常绿树种雨季生长量占全年的86%;3)常绿树种生长季长度为169天,长于落叶树种(137天),而落叶树种最大生长速率(0.14 mm/d)显著高于常绿树种(0.03 mm/d),最大径向生长速率能很好地预测树种年生长量;4)低温、雾日和光合有效辐射是影响哀牢山亚热带常绿阔叶林4个研究树种径向生长的重要环境因子,其中温度对常绿树种径向生长具有显著影响,而雨日、雾日与空气湿度等水分因子对落叶树种径向生长更为重要。常绿树种年生长量对旱季气候因子的响应相比落叶树种更为敏感,树木旱季生长量除了受低温限制外,也受到水分供给的影响。气候变化可能改变不同物候类型树种在哀牢山中山湿性常绿阔叶林中的生长状态与分布格局。  相似文献   

2.
The availability of exactly dated tree‐ring chronologies is limited in tropical regions. However, these chronologies could contribute widely to studies of the influence of natural and human‐induced factors on tropical forests. We examine the potential for building a chronology based on three sites in the miombo woodland of western Zambia. Brachystegia spiciformis Benth., a dominant species from this vegetation type, is used. Response of the chronology to several climatic factors is examined. All specimens showed very clear growth rings, and cross‐dating between radii of a tree was successful for all trees. Site chronologies could be constructed after cross‐dating of growth ring series of individual trees. The mean growth ring curves of the three sites were significantly similar, allowing for the construction of a regional chronology. Correlation function analysis between the tree‐ring chronology and regional climatic variables revealed that climate at the core of the rainy season, in December and January, has an explicit influence on tree growth. Where precipitation and relative humidity in these months influence tree growth positively, temperature correlates in a negative way. Some 20 percent of the variance in the B. spiciformis tree‐ring chronology is accounted for by wet season rainfall. The successful cross‐dating and correlation between a tree‐ring chronology and climate demonstrated in this study indicate annual ring formation in B. spiciformis trees and sensitivity to climatic conditions.  相似文献   

3.
1 Tree-ring analyses and dendrometer measurements were carried out on 37 tree species in a semi-deciduous forest of the Reserva Forestal de Caparo, Venezuela, where the mean annual rainfall is about 1700 mm and there is a dry season from December to March. The main purposes of the investigation were to show the seasonality of cambial growth, and the connection between precipitation patterns and tree-ring curves. Long-term rates of wood increment were also estimated.
2 Cambial markings in consecutive years showed that annual rings were formed by many species.
3 The distinctiveness of growth zones was usually greater in deciduous species than in evergreen species, although not all deciduous species had distinct rings.
4 Dendrometer measurements showed that the annual growth rhythm was related to precipitation patterns. Evergreen species tended to show only a short interruption of wood growth (during the later part of the dry season), whereas deciduous species stopped growth completely at the end of the rainy season.
5 For deciduous species, regression analyses showed close relations between tree-ring width and the sum of precipitation outside the rainy seasons (i.e. November to April). Evergreen species reacted to the total annual amount of precipitation.
6 Variation in longest available ring chronology (for Terminalia guianensis ) showed little correlation with the El Niño–Southern Oscillation effect.
7 On average trees from natural forests showed relatively constant growth over the entire life span. Plantation trees grew fast up to an age of 15–20 years, but annual increments then decreased to values seen in natural forest trees.  相似文献   

4.
Munessa Forest is a mountain forest in south-eastern Ethiopia experiencing seasonal rainfall variation. We investigated seasonal cambial activity and dormancy from increment rates of four different tree species belonging to varying life forms, namely, evergreen native conifer (Podocarpus falcatus), evergreen introduced conifer (Pinus patula), evergreen broadleaved tree (Prunus africana) and deciduous broadleaved tree (Celtis africana). Measurements of stem radius fluctuations were registered with the help of high-resolution electronic dendrometers. Daily amplitudes of stem diameter variations and daily and monthly net growth rates were determined and related to climatic variables measured at local climate stations. Thin sections of wood collected with a microcorer every 3–6 weeks allowed a visual control of newly formed wood cells during consecutive time intervals. Lack of water availability during the long dry season induced cambial dormancy of 5–7 months depending on life forms. After the onset of the short rainy season, stem swelling started quite synchronously with a variation of only single days in all studied species. Evergreen tree species were able to initiate wood formation during the short rainy season, whereas growth in the deciduous broadleaved species started in the long rainy season. The acquired data provide a basis for delineating the species-specific growth boundaries and the duration of the cambial growing season.  相似文献   

5.
Dendrochronology is a valuable tool to understanding climate-growth and growth-age relationships of native tree species from tropical forests. The information obtained from growth rings can elucidate climate responses of tree-growth under the ongoing environmental changes and support the development of sustainable forest management strategies based on species and site conditions. The Cerrado, which is a vast tropical savannah ecoregion of Brazil, has precipitation seasonality capable of inducing the formation of annual tree rings in moisture sensitive woody species. Hymenaea stigonocarpa is the typical tree species in the Cerrado with proven annual tree rings. It is an important commercial species that has been massively exploited for timber causing the considerable reduction of its natural populations. This study provides information about tree age and growth trajectories as well as climatic-growth signals of H. stigonocarpa in southeastern Brazil. We sampled 13 trees for tree-ring analysis. Tree-ring measurement and analysis were conducted using standard dendrochronological techniques. Sampled trees revealed the young successional stage of the stand, with ages varying from 20 to 35 years old. Nine out of 13 trees were used to build the standard chronology (1981 to 2013) that was positively correlated with precipitation at the end of the growing season (March-April). The chronology was able to capture SST anomalies patterns related to the South American Monsoon System. Growth modeling indicated that minimum logging diameter of 10.4cm is achieved at 24 years of age. The results reported here add valuable contribution to the discussion of sustainable management strategies for Cerrado ecoregion species.  相似文献   

6.
Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate–growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.  相似文献   

7.
Widely documented for temperate and cold forests in both hemispheres, variations in tree growth responses to climate along environmental gradients have rarely been investigated in the tropics. Seven tree‐ring chronologies of Centrolobium microchaete (Fabaceae) in the Cerrado tropical forests of Bolivia are used to determine the growth responses to climate along a precipitation gradient. Chronologies are distributed from the humid Guarayos forests (annual precipitation > 1600 mm) in the transition to the Amazonia to the dry‐mesic Chiquitos forests (annual precipitation < 1200 mm) in the proximity to the dry Chaco. On a large spatial scale, radial growth is positively influenced by rainfall and negatively by temperature at the end of the dry season. However, this regional pattern in climate‐tree growth relationship shows differences along the precipitation gradient. Relationships with climate are highly significant and extend over longer periods of the year in sites with low rainfall and extremely severe dry seasons. At wet sites, larger water soil capacity and endogenous forest dynamics partially mask the direct influence of climate on tree growth. Stronger similarities in tree‐growth responses to climate occur between sites in the dry Central Chiquitos and in the transition to the Guarayos forests. In contrast, the relationships show fewer similarities between sites in the humid Guarayos. We conclude that growth responses to climate in the tropics are more similar between sites with limited rainfall and severe and prolonged dry seasons. Our study points to a convergence in the patterns of growth responses of tropical trees to climate, modulated by scarce rainfall and marked seasonality. The negative impact of water deficits on tree physiological processes induces not only the documented reduction in forest species richness, but also a convergence in tree‐growth responses to climate in dry tropical forests.  相似文献   

8.
Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest – savannah – dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species × forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Niño Southern Oscillation - ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests.  相似文献   

9.

Key message

We demonstrate that tropical trees growing in wet climates can have a marked seasonality in cambium activity and stem growth associated with high temperature and day length of summer.

Abstract

Monitoring the rhythm of tree growth associated with the growth rings can contribute substantially to understanding forest dynamics and the management of tropical forests. In this study, we monitored the girth increment rhythm and described the wood characteristics (anatomy of growth rings, wood specific gravity) in 10 tropical tree species (103 individuals) naturally occurring in a wet and weakly seasonal region of Atlantic Forest in southern Brazil. We aimed to verify whether tree growth dynamics are associated with climate and woody anatomy in tropical trees with contrasting ecological characteristics. We installed permanent dendrometer bands and monthly assessed the girth increment for 22 months. We collected wood samples (non-destructive method), measured wood specific gravity and prepared permanent slides to characterize the growth ring markers. We found growth rings in all species (distinct in six species); deciduous species produced more distinguishable tree rings compared with semi-deciduous and evergreen tree species. Species varied in their accumulated girth growth (in average, from 1.83 to 62.64 mm), growth rates (1–15 %), and annual radial increment (0.16–5.44 mm). Girth increment was positively related to temperature and day length in five out of ten tree species, indicating the possible effects of these climatic variables in triggering cambial activity in these species. The growth pattern varied among species and was marginally associated to the tree deciduousness. We concluded that even in wet and less seasonal climates, there can be an association in the cambium activity and stem growth with the hotter and longer days of summer months.
  相似文献   

10.
Seasonally dry tropical forests are an important global climate regulator and represent one of main drivers of carbon sink dynamics. However, projections of climate change suggest future productivity losses and negative impacts on forest functioning. Understanding the interaction between climate variability and tree growth responses between species with different growth strategies represents a crucial challenge to forecast ecosystem functioning in the future. Here we used tree ring chronology to evaluate changes in growth and climate sensitivity of two tropical tree species that co-occur in a seasonally dry tropical forest in Brazil: Cedrela odorata and Ceiba glaziovii. Using Pearson correlations and linear regressions we explored how growth variability is correlated with local (precipitation, temperature) and global (ocean temperature and El Niño Southern Oscillation - ENSO) climatic factors. Tree growth was closely related with precipitation in C. odorata (r = 0.59) and C. glaziovii (0.24). Differences were found at monthly level, which C. odorata showing greater sensitivity in the beginning of rainy season. The South Atlantic Temperature was positively correlated with C. odorata, while ENSO was negatively correlated. Our results showed a dominant effect of precipitation on tree growth and suggest that are different growth strategies among species, which C. odorata being the most sensitive to drought and C. glaziovii more adapted with parenchyma in trunk. Therefore, C. odorata is probably more vulnerable to the deleterious effects of future climate change than C. glaziovii. Our findings highlight the importance of understanding the climate sensitivity of different seasonally dry tropical forest species, which is critical to predicting carbon dynamics in tropical regions. These also reveal that differences in sensitivity must be considered when prioritizing conservation measures for seasonally dry tropical forests.  相似文献   

11.
A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40‐year tree ring record and a 30‐year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (?10 days) due to winter warming and earlier growth cessation (?26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving‐window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate–growth correlations matches the start of the recent atmospheric warming pause also known as the ‘climate hiatus’. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone.  相似文献   

12.
Tropical dry forests (TDF) are highly important tropical forest ecosystems. Yet, these forests are highly threatened, usually neglected and only poorly studied. Understanding the long-term influences of environmental conditions on tree growth in these forests is crucial to understand the functioning, carbon dynamics and potential responses to future climate change of these forests. Dendrochronology can be used as a tool to provide these insights but has only scantly been applied in (dry) tropical forests. Here we evaluate the dendrochronological potential of four Caatinga neotropical dry forest tree species – Aspidosperma pyrifolium, Ziziphus joazeiro, Tabebuia aurea, and Libidibia ferrea – collected in two locations in northeastern Brazil (Sergipe state). We provide an anatomical characterization of the ring boundaries for the four species and investigate correlations of their growth with local and regional climatic variables. All four species form annual rings and show high inter-correlation (up to 0.806) and sensitivity (up to 0.565). Growth of all species correlated with local precipitation as well as with sea-surface temperatures in the tropical Atlantic and/or tropical Pacific oceans. We also show teleconnections between growth and the El Niño South Oscillation. The strong dependence of tree on precipitation is worrisome, considering that climate change scenarios forecast increased drought conditions in the Caatinga dry forest. Including more species and expanding dendrochronological studies to more areas would greatly improve our understanding of tree growth and functioning in TDFs. This type of knowledge is essential to assist the conservation, management and restoration of these critical tropical ecosystems.  相似文献   

13.
气候变化导致的温度升高和降水格局改变可能会影响到树木的生长速率和季节物候。西双版纳热带季节性湿润林分布在石灰岩山中部,属于热带喀斯特生境。由于土层浅薄,土壤保水能力极差,植物生长更容易遭到受到季节性干旱气候的影响。为探究热带季节性湿润林的树木径向生长季节动态及其对环境因子的响应,利用高精度树木生长仪连续两年监测了云南西双版纳热带季节性湿润林中落叶树种苦楝(Melia azedarach)的树干径向变化,并与同步监测的环境因子进行相关分析。结果表明,苦楝径向生长开始、结束以及持续生长的时间在年际间存在差异。与2018年相比,2019年苦楝生长开始和结束的时间较晚,且年生长量较小,这可能是与2019年雨季开始较晚且在生长季早期经历了严重的高温干旱有关。苦楝的径向日生长量与日降水量和相对湿度呈正相关关系,与光合有效辐射、水汽压亏缺和风速呈负相关关系,表明了在苦楝的径向生长主要受水分条件限制。在干旱年份(2019年),苦楝的日生长量与降水和相对湿度的相关性更强。研究结果有助于进一步了解热带喀斯特生境树木生长对气候变化的敏感性以及树木适应季节性干旱气候的策略。  相似文献   

14.
In temperate climates, tree growth dormancy usually ensures the annual nature of tree rings, but in tropical environments, determination of annual periodicity can be more complex. The purposes of the work are as follows: (1) to generate a reliable tree‐ring width chronology for Prioria copaifera Griseb. (Leguminoceae), a tropical tree species dwelling in the Atrato River floodplains, Colombia; (2) to assess the climate signal recorded by the tree‐ring records; and (3) to validate the annual periodicity of the tree rings using independent methods. We used standard dendrochronological procedures to generate the P. copaifera tree‐ring chronology. We used Pearson correlations to evaluate the relationship of the chronology with the meteorological records, climate regional indices, and gridded precipitation/sea surface temperature products. We also evaluated 24 high‐precision 14C measurements spread over a range of preselected tree rings, with assigned calendar years by dendrochronological techniques, before and after the bomb spike in order to validate the annual nature of the tree rings. The tree‐ring width chronology was statistically reliable, and it correlated significantly with local records of annual and October–December (OND) streamflow and precipitation across the upper river watershed (positive), and OND temperature (negative). It was also significantly related to the Oceanic Niño Index, Pacific Decadal Oscillation, and the Southern Oscillation Index, as well as sea surface temperatures over the Caribbean and the Pacific region. However, 14C high‐precision measurements over the tree rings demonstrated offsets of up to 40 years that indicate that P. copaifera can produce more than one ring in certain years. Results derived from the strongest climate–growth relationship during the most recent years of the record suggest that the climatic signal reported may be due to the presence of annual rings in some of those trees in recent years. Our study alerts about the risk of applying dendrochronology in species with challenging anatomical features defining tree rings, commonly found in the tropics, without an independent validation of annual periodicity of tree rings. High‐precision 14C measurements in multiple trees are a useful method to validate the identification of annual tree rings.  相似文献   

15.
植物叶片的非结构性碳水化合物(non-structural carbohydrates,NSC)不仅为植物的代谢过程提供重要能量,还能一定程度上反映植物对外界环境的适应策略。以温带针阔混交林(长白山)、温带阔叶林(东灵山)、亚热带常绿阔叶林(神农架)和热带雨林(尖峰岭)4种森林类型的树种为研究对象,利用蒽酮比色法测定了163种常见乔木叶片可溶性糖、淀粉和NSC(可溶性糖+淀粉)含量,探讨了不同森林类型植物叶片NSC的差异及其地带性变化规律。结果显示:(1)从森林类型上看,植物叶片NSC含量从北到南递减,即温带针阔混交林(170.79 mg/g)>温带阔叶林(100.27 mg/g)>亚热带常绿阔叶林(91.24 mg/g)>热带雨林(80.13 mg/g)。(2)从生活型上看,无论是落叶树还是阔叶树,其叶片可溶性糖、淀粉和NSC含量均表现为:温带针阔混交林>温带阔叶林>亚热带常绿阔叶林>热带雨林;北方森林叶片可溶性糖、淀粉和NSC含量均表现为落叶树种>常绿树种,或阔叶树种>针叶树种。(3)森林植物叶片NSC含量、可溶性糖与淀粉含量比值与年均温和年均降水量均呈显著负相关。研究表明,森林植物叶片可溶性糖、淀粉和NSC含量以及可溶性糖与淀粉含量比值均具有明显的从北到南递减的地带性规律;其NSC含量以及可溶性糖与淀粉含量比值与温度和水分均呈显著负相关的变化规律可能是植物对外界环境适应的重要机制之一。该研究结果不仅为阐明中国主要森林树种碳代谢和生长适应对策提供了数据基础,而且为理解区域尺度森林植被对未来气候变化的响应机理提供新的视角。  相似文献   

16.
In an old‐growth tropical wet forest at La Selva, Costa Rica, we combined radiocarbon (14C) dating and tree‐ring analysis to estimate the ages of large trees of canopy and emergent species spanning a broad range of wood densities and growth rates. We collected samples from the trunks of 29 fallen, dead individuals. We found that all eight sampled species formed visible growth rings, which varied considerably in distinctiveness. For five of the six species for which we combined wood anatomical studies with 14C‐dates (ring ages), the analyses demonstrated that growth rings were of annual formation. The oldest tree we found by direct ring counting was a Hymenolobium mesoamericanum Lima (Papilionaceae) specimen, with an age of ca. 530 years at the time of death. All other sampled individuals, including very large trees of slow‐growing species, had died at ages between 200 and 300 years. These results show that, even in an everwet tropical rain forest, tree growth of many species can be rhythmic, with an annual periodicity. This study thus raises the possibility of extending tree‐ring analyses throughout the tropical forest types lacking a strong dry season or annual flooding. Our findings and similar measurements from other tropical forests indicate that the maximum ages of tropical emergent trees are unlikely to be much greater than 600 years, and that these trees often die earlier from various natural causes.  相似文献   

17.
Xerophytic thickets occur along the southwestern part of Madagascar. Although providing a wide variety of resources and services to the local population, this particular vegetation is subjected to deforestation. This study focuses on linking dendroclimatology and dendroecology by examining the spatial and temporal variability of the ecological growth conditions. Information from tree rings was retrieved, on one hand, to identify the problem of the limiting effects of past climate on growth and, on the other hand, to show how local environment takes part in the growth pattern of South Soalara species, in the southwestern part of Madagascar. Methods and principles of dendrochronology were applied on nine species belonging to seven botanical families. A total of 42 stem discs from 3 to 5 trees per species were collected at 30 cm height. All discs exhibited visible tree rings, but anatomical distinctness varied between species. This study highlighted the annual formation of tree rings through successful crossdating techniques. Then, from the nine constructed chronologies, species were grouped into three clusters. Analysis between precipitation and radial growth showed that the response to climate occurred mainly in rainy season. Large-scale climatic drivers such as sea surface temperature (SST1) of ENSO2 regions revealed a teleconnection with tree growth in cluster 1. Mean radial increments were computed from the measured tree ring width and varied from 0.66 to 1.98 mm year−1, showing that those species are slow-growing. All species were recorded as having a certain dendrochronological potential, which was ranked as useful for Rhizogum madagascariense and Terminalia gracilipes, poor for Gyrocarpus americanus and problematic for the other species. It is recommended to increase the number of wood samples and to provide more knowledge on the characteristics of the species in order to improve the quality of the chronology and the climatic signal on tree rings.  相似文献   

18.
While forest communities are changing as a result of global environmental change, the impacts of tree species shifts on ecosystem services such as carbon storage are poorly quantified. In many parts of the eastern United States (US), more xeric-adapted oak-hickory dominated stands are being replaced with mesic beech-maple assemblages. To examine the possible impacts of this ongoing change in forest composition, we investigated how two wide-ranging and co-occurring eastern US species – Acer saccharum (sugar maple) and Quercus alba (white oak) – respond to interannual climate variability. Using 781 tree cores from 418 individual trees at 18 locations, we found late-growing season drought reduced A. saccharum growth more than that of Q. alba. A gradient in the growth reduction across latitude was also found in A. saccharum, where southern populations of A. saccharum experienced greater reductions in growth during drought. Drought had a legacy effect on growth for both species, with drought occurring later in the growing season having a larger legacy effect. Consequently, as forests shift from oak to maple dominance, drought in the later part of the growing season is likely to become an increasingly important control on forest productivity. Thus, our findings suggest that co-occurring species are responding to environmental conditions during different times in the growing season and, therefore, the timing of drought conditions will play an important role in forest productivity and carbon sequestration as forest species composition changes. These findings are particularly important because the projected increases in potential evapotranspiration, combined with possible changes in the seasonality of precipitation could have a substantial impact on how tree growth responds to future climatic change.  相似文献   

19.
We measured radial variation of carbon isotope composition and vessel traits in tree species in seasonally dry forests of Northeast Thailand to explore a more reliable and amenable method of tropical dendrochronology for trees that lack visually detectable and consistent growth rings. Six Dipterocarpaceae species (3 Shorea, 2 Dipterocarpus, and 1 Hopea species) with indistinct or irregular growth rings and teak (Tectona grandis), a species which forms distinct growth rings, were examined. The δ13C value variations in all species showed annual cyclicity. Dipterocarpaceae species usually marked the lowest values of δ13C in the middle of the growing season, whereas teak had the lowest values at nearly the end of the growing season. Since the growing season of the species examined almost corresponds to the rainy season in the study area, the δ13C variation was likely caused by the change in moisture availability. The different variation pattern of teak was attributable to its stronger dependence on 13C-enriched reserved material early in the growing season. Changes in tree vessel traits for all species examined also showed annual cyclicity. Dipterocarpaceae species showed significant correlation between δ13C values and vessel measurements. Vessel lumen (mean area, tangential and radial diameter, and proportion of total area) had a negative correlation, whereas vessel frequency showed a positive correlation. The correlations indicated that changes in vessel traits were caused by the seasonal variation of moisture available to the trees. Thus, we concluded that methods using wood anatomy, as well as δ13C, have great potential for use as tools in tropical dendrochronology within the context of seasonal climate.  相似文献   

20.
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree‐ring study over a 30‐year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2) in different combinations to estimate the contribution of each climate factor in explaining the inter‐annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter‐annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and – to a lesser extent – by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter‐annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter‐annual variation in stem growth. Our innovative approach – combining a simulation model with historical data on tree‐ring growth and climate – allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号