首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Murine/human chimeric gamma 1 and K Ig genes were cloned adjacent to the gene coding for methotrexate-resistant dihydrofolate reductase. These constructs were introduced into myeloma cells, and lines containing stably integrated genes were selected. The integrated Ig genes were then amplified by selection of the cells in increasing concentrations of methotrexate. The extent of gene amplification, mRNA accumulation, and production of Ig was studied in transfectomas containing introduced light chain genes, heavy chain genes, or both. When the light chain gene was introduced alone, it was expressed at low levels, but after selection with methotrexate, light chain expression was increased as much as 63-fold. In contrast, the transfected heavy chain genes were highly expressed, but production of the corresponding protein was increased a maximum of only fourfold by methotrexate treatment. Cellular toxicity of unassembled heavy chain monomer was not observed, even at amounts equivalent to 2% of total cellular protein. Cointroduction of the heavy and light chain constructs with subsequent amplification resulted in as much as 25-fold increase in secretion of intact antibody relative to unamplified cells. The results demonstrate that amplification of Ig genes can induce transfectomas to secrete antibody at nearly the rate of hybridomas.  相似文献   

6.
Historically, therapeutic protein production in Chinese hamster ovary (CHO) cells has been accomplished by random integration (RI) of expression plasmids into the host cell genome. More recently, the development of targeted integration (TI) host cells has allowed for recombination of plasmid DNA into a predetermined genomic locus, eliminating one contributor to clone-to-clone variability. In this study, a TI host capable of simultaneously integrating two plasmids at the same genomic site was used to assess the effect of antibody heavy chain and light chain gene dosage on antibody productivity. Our results showed that increasing antibody gene copy number can increase specific productivity, but with diminishing returns as more antibody genes are added to the same TI locus. Random integration of additional antibody DNA copies in to a targeted integration cell line showed a further increase in specific productivity, suggesting that targeting additional genomic sites for gene integration may be beneficial. Additionally, the position of antibody genes in the two plasmids was observed to have a strong effect on antibody expression level. These findings shed light on vector design to maximize production of conventional antibodies or tune expression for proper assembly of complex or bispecific antibodies in a TI system.  相似文献   

7.
Chinese hamster ovary (CHO) cell lines are frequently used as hosts for the production of recombinant therapeutics, such as monoclonal antibodies, due to their ability to perform correct post-translational modifications. A potential issue when utilizing CHO cells for therapeutic protein production is the selection of cell lines that do not retain stable protein expression during long-term culture (LTC). Instability of expression impairs process yields, effective usage of time and money, and regulatory approval for the desired therapeutic. In this study, we investigated a model unstable GS-CHO cell line over a continuous period of approximately 100 generations to determine markers of mechanisms that underlie instability. In this cell line, stability of expression was retained for 40-50 generations after which time a 40% loss in antibody production was detected. The instability observed within the cell line was not due to a loss in recombinant gene copy number or decreased expression of mRNA encoding for recombinant antibody H or L chain, but was associated with lower cumulative cell time values and an apparent increased sensitivity to cellular stress (exemplified by increased mRNA expression of the stress-inducible gene GADD153). Changes were also noted in cellular metabolism during LTC (alterations to extracellular alanine accumulation, and enhanced rates of glucose and lactate utilization, during the exponential and decline phase of batch culture, respectively). Our data indicates the breadth of changes that may occur to recombinant CHO cells during LTC ranging from instability of recombinant target production at a post-mRNA level to metabolic events. Definition of the mechanisms, regulatory events, and linkages underpinning cellular phenotype changes require further detailed analysis at a molecular level.  相似文献   

8.
Some of the problems encountered with human or human-mouse heterohybridomas, such as low growth rates and high serum requirements, have led to the increased use of recombinant cell lines for production of human antibodies. To evaluate the suitability of such alternative cell lines for the production of human antibodies we have analysed several subclones with differing specific production rates of a recombinant CHO cell line. Gene copy number and site of chromosomal integration for the light and heavy chain and the dhfr gene were determined by in-situ hybridisation. Specific mRNA content was analysed by Northern blot. In addition the intracellular content in light and heavy chain was measured by flow cytometry and the specific secretion rates were determined. The stability of gene expression was followed in the highest producing subclone for over a year. As previously seen in heterohybridoma cells a high expression rate of light chain is beneficial in speeding up secretion rates of whole antibody. When grown in the presence of G418 and methotrexate the amplified gene copies in the genome of recombinant CHO cells were stable over more than 100 passages. However, the expression of light chain, and with it the secretion rate, decreased with time. The low intracellular concentration of light chain resulted in accumulation of heavy chain in the endoplasmic reticulum due to retention by chaperones. The specific secretion rate decreased by 50% after 100 passages. When no G418 or methotrexate were present 75% of the gene copies were lost after 100 passages.  相似文献   

9.
10.
Production and application of therapeutic monoclonal antibodies are second only to vaccines in the world pharmaceutical market. The most common therapeutic antibodies are monoclonal antibodies (mAbs) of the IgG isotype that are produced in eukaryotic CHO cells. In recent years, there has been a considerable interest in developing treatment medications based on IgA antibodies, which can have a wide range of effector functions on human mucous membranes. To study the expression level of immunoglobulin A (IgA) in mammal cells, we designed a set of bipromoter (CMV and EF1α) vectors. The vectors contain gene fragments that encode the heavy chain variable domain (VH) and the light chain variable domain (VL) of the human monoclonal antibody FI6v3 against the hemagglutinin of influenza virus A. They also contain gene fragments that encode the light chain (kappa type) constant domain and the heavy chain constant domain of the human antibody IgA1. The expression vectors differed in the orientation of the promoters and the presence or absence of introns. Two variants of the full-length light and heavy chains were cloned into a eukaryotic expression vector in head-to-head and head-to-tail orientations. The resulting plasmids were transfected into CHO-DG44 and HEK-293T cells. The antibody expression level for the stable transfection of CHO-DG44 and HEK-293T cell cultures was determined by ELISA. The results of the experiments showed that the expression of FI6v3-IgA1 antibodies significantly increased when eukaryotic cells were transfected with the plasmid pBiPr-ABIgA1FI6-Iht in which the heavy chain of IgA1 contains introns and the promoters are arranged head-to-tail.  相似文献   

11.
A key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature. To better understand how CHO cells respond to process changes, the changes were implemented in a stepwise manner. The first change was an optimization of the feed formulation, the second was an optimization of the medium, and the third was an optimization of process parameters. Multiple process outputs were evaluated including cell growth, osmolality, lactate production, ammonium concentration, antibody production, and aggregate levels. Additionally, detailed assessment of oxygen uptake, nutrient and amino acid consumption, extracellular and intracellular redox environment, oxidative stress, activation of the unfolded protein response (UPR) pathway, protein disulfide isomerase (PDI) expression, and heavy and light chain mRNA expression provided an in‐depth understanding of the cellular response to process changes. The results demonstrate that mRNA expression and UPR activation were unaffected by process changes, and that increased PDI expression and optimized nutrient supplementation are required for higher productivity processes. Furthermore, our findings demonstrate the role of extra‐ and intracellular redox environment on productivity and antibody aggregation. Processes using the optimized medium, with increased concentrations of redox modifying agents, had the highest overall specific productivity, reduced aggregate levels, and helped cells better withstand the high levels of oxidative stress associated with increased productivity. Specific productivities of different processes positively correlated to average intracellular values of total glutathione. Additionally, processes with the optimized media maintained an oxidizing intracellular environment, important for correct disulfide bond pairing, which likely contributed to reduced aggregate formation. These findings shed important understanding into how cells respond to process changes and can be useful to guide future development efforts to enhance productivity and improve product quality.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
BACKGROUND: The most common cause of chronic heart failure in the US is secondary or primary dilated cardiomyopathy (DCM). The DCM phenotype exhibits changes in the expression of genes that regulate contractile function and pathologic hypertrophy. However, it is unclear if any of these alterations in gene expression are disease producing or modifying. MATERIALS AND METHODS: One approach to providing evidence for cause-effect of a disease-influencing gene is to quantitatively compare changes in phenotype to changes in gene expression by employing serial measurements in a longitudinal experimental design. We investigated the quantitative relationships between changes in gene expression and phenotype n 47 patients with idiopathic DCM. In endomyocardial biopsies at baseline and 6 months later, we measured mRNA expression of genes regulating contractile function (beta-adrenergic receptors, sarcoplasmic reticulum Ca(2) + ATPase, and alpha- and beta-myosin heavy chain isoforms) or associated with pathologic hypertrophy (beta-myosin heavy chain and atrial natriuretic peptide), plus beta-adrenergic receptor protein expression. Left ventricular phenotype was assessed by radionuclide ejection fraction. RESULTS: Improvement in DCM phenotype was directly related to a coordinate increase in alpha- and a decrease in beta-myosin heavy chain mRNA expression. In contrast, modification of phenotype was unrelated to changes in the expression of beta(1)- or beta(2)-adrenergic receptor mRNA or protein, or to the mRNA expression of sarcoplasmic reticulum Ca(2) + ATPase and atrial natriuretic peptide. CONCLUSION: We conclude that in human DCM, phenotypic modification is selectively associated with myosin heavy chain isoform changes. These data support the hypothesis that myosin heavy chain isoform changes contribute to disease progression in human DCM.  相似文献   

20.
Efficient production of large quantities of therapeutic antibodies is becoming a major goal of the pharmaceutical industry. We developed a proprietary expression system using a polyprotein precursor-based approach to antibody expression in mammalian cells. In this approach, the coding regions for heavy and light chains are included within a single open reading frame (sORF) separated by an in-frame intein gene. A single mRNA and subsequent polypeptide are produced upon transient and stable transfection into HEK293 and CHO cells, respectively. Heavy and light chains are separated by the autocatalytic action of the intein and antibody processing proceeds to produce active, secreted antibody. Here, we report advances in sORF technology toward establishment of a viable manufacturing platform for therapeutic antibodies in CHO cells. Increasing expression levels and improving antibody processing by intein and signal peptide selection are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号