首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 2004–2007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n = 84), Global Positioning System (GPS) telemetry (n = 115), or both (n = 6). Aerial survey crews detected 77% and 79% of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied Horvitz-Thompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85% but ranged 0.75–0.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.  相似文献   

2.
ABSTRACT Sightability models have been used to estimate population size of many wildlife species; however, a limitation of these models is an assumption that groups of animals observed and counted during aerial surveys are enumerated completely. Replacing these unknown counts with maximum observed counts, as is typically done, produces population size estimates that are negatively biased. This bias can be substantial depending on the degree of undercounting occurring. We first investigated a method-of-moments estimator of group sizes. We then defined a population size estimator using the method-of-moments estimator of group sizes in place of maximum counts in the traditional sightability models, thereby correcting for bias associated with undercounting group size. We also provide associated equations for calculating the variance of our estimator. This estimator is an improvement over existing sightability model techniques because it significantly reduces bias, and variance estimates provide near nominal confidence interval coverage. The data needed for this estimator can be easily collected and implemented by wildlife managers with a field crew of only 3 individuals and little additional flight or personnel time beyond the normal requirements for developing sightability models.  相似文献   

3.
Sightability models are binary logistic-regression models used to estimate and adjust for visibility bias in wildlife-population surveys. Like many models in wildlife and ecology, sightability models are typically developed from small observational datasets with many candidate predictors. Aggressive model-selection methods are often employed to choose a best model for prediction and effect estimation, despite evidence that such methods can lead to overfitting (i.e., selected models may describe random error or noise rather than true predictor–response curves) and poor predictive ability. We used moose (Alces alces) sightability data from northeastern Minnesota (2005–2007) as a case study to illustrate an alternative approach, which we refer to as degrees-of-freedom (df) spending: sample-size guidelines are used to determine an acceptable level of model complexity and then a pre-specified model is fit to the data and used for inference. For comparison, we also constructed sightability models using Akaike's Information Criterion (AIC) step-down procedures and model averaging (based on a small set of models developed using df-spending guidelines). We used bootstrap procedures to mimic the process of model fitting and prediction, and to compute an index of overfitting, expected predictive accuracy, and model-selection uncertainty. The index of overfitting increased 13% when the number of candidate predictors was increased from three to eight and a best model was selected using step-down procedures. Likewise, model-selection uncertainty increased when the number of candidate predictors increased. Model averaging (based on R = 30 models with 1–3 predictors) effectively shrunk regression coefficients toward zero and produced similar estimates of precision to our 3-df pre-specified model. As such, model averaging may help to guard against overfitting when too many predictors are considered (relative to available sample size). The set of candidate models will influence the extent to which coefficients are shrunk toward zero, which has implications for how one might apply model averaging to problems traditionally approached using variable-selection methods. We often recommend the df-spending approach in our consulting work because it is easy to implement and it naturally forces investigators to think carefully about their models and predictors. Nonetheless, similar concepts should apply whether one is fitting 1 model or using multi-model inference. For example, model-building decisions should consider the effective sample size, and potential predictors should be screened (without looking at their relationship to the response) for missing data, narrow distributions, collinearity, potentially overly influential observations, and measurement errors (e.g., via logical error checks). © 2011 The Wildlife Society.  相似文献   

4.
The North Cascades (Nooksack) elk (Cervus elaphus) population declined during the 1980s, prompting a closure to state and tribal hunting in 1997 and an effort to restore the herd to former abundance. In 2005, we began a study to assess the size of the elk population, judge the effectiveness of restoration efforts, and develop a practical monitoring strategy. We concurrently evaluated 2 monitoring approaches: sightability correction modeling and mark-resight modeling. We collected data during February–April helicopter surveys and fit logistic regression models to predict the sightability of elk groups based on group and environmental variables. We used an information-theoretic criterion to compare 9 models of varying complexity; the best model predicted sightability of elk groups based on 1) transformed (log2) group size, 2) forest canopy cover (%), and 3) a categorical activity variable (active vs. bedded). The sightability model indicated relatively steady and modest herd growth during 2006–2011, but estimates were less than minimum-known-alive counts. We also used the logit-normal mixed effects (LNME) mark-resight model to generate estimates of total elk population size and the sizes of the adult female and branch-antlered male subpopulations. We explored 15 LNME models to predict total population size and 12 models to predict subpopulations. Our results indicated individual heterogeneity in resighting probabilities and variation in resighting probabilities across sexes and some years. Model-averaged estimates of total population size increased from 639 (95% CI = 570–706) in spring 2006 to 1,248 (95% CI = 1,094–1,401) in 2011. We estimated the adult female subpopulation increased from 381 (95% CI = 338–424) in spring 2006 to 573 (95% CI = 507–639) by 2011. The branch-antlered male subpopulation estimates increased from 87 (95% CI = 54–119) to 180 (95% CI = 118–241) from spring 2006 to spring 2011. The LNME model estimates were greater than sightability model estimates and minimum-known-alive counts. We concluded that mark-resight performed better and was a viable approach for monitoring this small elk population and possibly others with similar characteristics (i.e., small population and landscape scales), but this approach requires periodic marking of elk; we estimated mark-resight costs would be about 40% greater than sightability model application costs. The utility of sightability-correction modeling was limited by a high proportion of groups with low detectability on our densely forested landscape. © 2012 The Wildlife Society.  相似文献   

5.
6.
Andreas Lindén  Jonas Knape 《Oikos》2009,118(5):675-680
Within the paradigm of population dynamics a central task is to identify environmental factors affecting population change and to estimate the strength of these effects. We here investigate the impact of observation errors in measurements of population densities on estimates of environmental effects. Adding observation errors may change the autocorrelation of a population time series with potential consequences for estimates of effects of autocorrelated environmental covariates. Using Monte Carlo simulations, we compare the performance of maximum likelihood estimates from three stochastic versions of the Gompertz model (log–linear first order autoregressive model), assuming 1) process error only, 2) observation error only, and 3) both process and observation error (the linear state–space model on log‐scale). We also simulated population dynamics using the Ricker model, and evaluated the corresponding maximum likelihood estimates for process error models. When there is observation error in the data and the considered environmental variable is strongly autocorrelated, its estimated effect is likely to be biased when using process error models. The environmental effect is overestimated when the sign of the autocorrelations of the intrinsic dynamics and the environment are the same and underestimated when the signs differ. With non‐autocorrelated environmental covariates, process error models produce fairly exact point estimates as well as reliable confidence intervals for environmental effects. In all scenarios, observation error models produce unbiased estimates with reasonable precision, but confidence intervals derived from the likelihood profiles are far too optimistic if there is process error present. The safest approach is to use state–space models in presence of observation error. These are factors worthwhile to consider when interpreting earlier empirical results on population time series, and in future studies, we recommend choosing carefully the modelling approach with respect to intrinsic population dynamics and covariate autocorrelation.  相似文献   

7.
Minimum counts are commonly used to estimate population size and trend for wildlife conservation and management; however, the scope of inference based on such data is limited by untestable assumptions regarding the detection process. Alternative approaches, such as distance sampling, occupancy surveys, and repeated counts, can be employed to produce detection-corrected estimates of population parameters. Unfortunately, these approaches can be more complicated and costly to implement, potentially limiting their use. We explored a conceptual framework linking datasets collected at different spatial scales under different survey designs, with the goal of improving inference. Specifically, we link landscape-scale distance sampling surveys with local-scale minimum counts in an integrated modeling framework to estimate mountain goat (Oreamnos americanus) abundance at both the local and regional scale in south-central Alaska, USA, and provide an estimate of detection probability (i.e., sightability) for the minimum counts. Estimated sightability for the minimum count surveys was 0.67 (95% credible interval [CrI] = 0.52–0.83) and abundance for the entire area was 5,600 goats (CV = 9%), both in broad agreement with estimates from previous studies. Abundance estimates at the local scale (i.e., individual min. count unit) were reasonably precise ( = 18%), suggesting the integrated approach can increase the amount of information produced at both spatial scales by linking minimum count approaches with more rigorous survey designs. We propose that our integrated approach may be implemented in the context of a modified split-panel monitoring design by altering survey protocols to include frequent minimum counts within local count units and intermittent but more rigorous survey designs with inference to the entire study area or population of interest. Doing so would provide estimates of abundance with appropriate measures of uncertainty at multiple spatial scales, thereby improving inference for population monitoring and management. © 2019 The Wildlife Society.  相似文献   

8.
We present theoretical explanations and show through simulation that the individual admixture proportion estimates obtained by using ancestry informative markers should be seen as an error-contaminated measurement of the underlying individual ancestry proportion. These estimates can be used in structured association tests as a control variable to limit type I error inflation or reduce loss of power due to population stratification observed in studies of admixed populations. However, the inclusion of such error-containing variables as covariates in regression models can bias parameter estimates and reduce ability to control for the confounding effect of admixture in genetic association tests. Measurement error correction methods offer a way to overcome this problem but require an a priori estimate of the measurement error variance. We show how an upper bound of this variance can be obtained, present four measurement error correction methods that are applicable to this problem, and conduct a simulation study to compare their utility in the case where the admixed population results from the intermating between two ancestral populations. Our results show that the quadratic measurement error correction (QMEC) method performs better than the other methods and maintains the type I error to its nominal level.  相似文献   

9.
Although monitoring population trends is an essential component of game species management, wildlife managers rarely have complete counts of abundance. Often, they rely on population models to monitor population trends. As imperfect representations of real-world populations, models must be rigorously evaluated to be applied appropriately. Previous research has evaluated population models for white-tailed deer (Odocoileus virginianus); however, the precision and reliability of these models when tested against empirical measures of variability and bias largely is untested. We were able to statistically evaluate the Pennsylvania sex-age-kill (PASAK) population model using realistic error measured using data from 1,131 radiocollared white-tailed deer in Pennsylvania from 2002 to 2008. We used these data and harvest data (number killed, age-sex structure, etc.) to estimate precision of abundance estimates, identify the most efficient harvest data collection with respect to precision of parameter estimates, and evaluate PASAK model robustness to violation of assumptions. Median coefficient of variation (CV) estimates by Wildlife Management Unit, 13.2% in the most recent year, were slightly above benchmarks recommended for managing game species populations. Doubling reporting rates by hunters or doubling the number of deer checked by personnel in the field reduced median CVs to recommended levels. The PASAK model was robust to errors in estimates for adult male harvest rates but was sensitive to errors in subadult male harvest rates, especially in populations with lower harvest rates. In particular, an error in subadult (1.5-yr-old) male harvest rates resulted in the opposite error in subadult male, adult female, and juvenile population estimates. Also, evidence of a greater harvest probability for subadult female deer when compared with adult (≥2.5-yr-old) female deer resulted in a 9.5% underestimate of the population using the PASAK model. Because obtaining appropriate sample sizes, by management unit, to estimate harvest rate parameters each year may be too expensive, assumptions of constant annual harvest rates may be necessary. However, if changes in harvest regulations or hunter behavior influence subadult male harvest rates, the PASAK model could provide an unreliable index to population changes. © 2012 The Wildlife Society.  相似文献   

10.
ABSTRACT Variance in population estimates is affected by the number of samples that are chosen to genotype when multiple samples are available during a sampling period. Using genetic data obtained from noninvasive hair-snags used to sample black bears (Ursus americanus) in the Northern Lower Peninsula of Michigan, USA, we developed a bootstrapping simulation to determine how precision of population estimates varied based on the number of samples genotyped. Improvements in precision of population estimates were not monotonic over all samples sizes available for genotyping. Estimates of cost, both financially and in terms of bias associated with increasing genotyping error and benefits in terms of greater estimate precision, will vary by species and field conditions and should be determined empirically.  相似文献   

11.
Abstract: Although previous research and theory has suggested that wild turkey (Meleagris gallopavo) populations may be subject to some form of density dependence, there has been no effort to estimate and incorporate a density-dependence parameter into wild turkey population models. To estimate a functional relationship for density dependence in wild turkey, we analyzed a set of harvest-index time series from 11 state wildlife agencies. We tested for lagged correlations between annual harvest indices using partial autocorrelation analysis. We assessed the ability of the density-dependent theta-Ricker model to explain harvest indices over time relative to exponential or random walk growth models. We tested the homogeneity of the density-dependence parameter estimates (θ) from 3 different harvest indices (spring harvest no. reported harvest/effort, survey harvest/effort) and calculated a weighted average based on each estimate's variance and its estimated covariance with the other indices. To estimate the potential bias in parameter estimates from measurement error, we conducted a simulation study using the theta-Ricker with known values and lognormally distributed measurement error. Partial autocorrelation function analysis indicated that harvest indices were significantly correlated only with their value at the previous time step. The theta-Ricker model performed better than the exponential growth or random walk models for all 3 indices. Simulation of known parameters and measurement error indicated a strong positive upward bias in the density-dependent parameter estimate, with increasing measurement error. The average density-dependence estimate, corrected for measurement error ranged 0.25 ≤ θC ≤ 0.49, depending on the amount of measurement error and assumed spring harvest rate. We infer that density dependence is nonlinear in wild turkey, where growth rates are maximized at 39-42% of carrying capacity. The annual yield produced by density-dependent population growth will tend to be less than that caused by extrinsic environmental factors. This study indicates that both density-dependent and density-independent processes are important to wild turkey population growth, and we make initial suggestions on incorporating both into harvest management strategies.  相似文献   

12.
Participant-level meta-analysis across multiple studies increases the sample size for pooled analyses, thereby improving precision in effect estimates and enabling subgroup analyses. For analyses involving biomarker measurements as an exposure of interest, investigators must first calibrate the data to address measurement variability arising from usage of different laboratories and/or assays. In practice, the calibration process involves reassaying a random subset of biospecimens from each study at a central laboratory and fitting models that relate the study-specific “local” and central laboratory measurements. Previous work in this area treats the calibration process from the perspective of measurement error techniques and imputes the estimated central laboratory value among individuals with only a local laboratory measurement. In this work, we propose a repeated measures method to calibrate biomarker measurements pooled from multiple studies with study-specific calibration subsets. We account for correlation between measurements made on the same person and between measurements made at the same laboratory. We demonstrate that the repeated measures approach provides valid inference, and compare it to existing calibration approaches grounded in measurement error techniques in an example describing the association between circulating vitamin D and stroke.  相似文献   

13.
Population abundances are rarely, if ever, known. Instead, they are estimated with some amount of uncertainty. The resulting measurement error has its consequences on subsequent analyses that model population dynamics and estimate probabilities about abundances at future points in time. This article addresses some outstanding questions on the consequences of measurement error in one such dynamic model, the random walk with drift model, and proposes some new ways to correct for measurement error. We present a broad and realistic class of measurement error models that allows both heteroskedasticity and possible correlation in the measurement errors, and we provide analytical results about the biases of estimators that ignore the measurement error. Our new estimators include both method of moments estimators and "pseudo"-estimators that proceed from both observed estimates of population abundance and estimates of parameters in the measurement error model. We derive the asymptotic properties of our methods and existing methods, and we compare their finite-sample performance with a simulation experiment. We also examine the practical implications of the methods by using them to analyze two existing population dynamics data sets.  相似文献   

14.
The availability of suitable habitat is a key predictor of the changing status of biodiversity. Quantifying habitat availability over large spatial scales is, however, challenging. Although remote sensing techniques have high spatial coverage, there is uncertainty associated with these estimates due to errors in classification. Alternatively, the extent of habitats can be estimated from ground‐based field survey. Financial and logistical constraints mean that on‐the‐ground surveys have much lower coverage, but they can produce much higher quality estimates of habitat extent in the areas that are surveyed. Here, we demonstrate a new combined model which uses both types of data to produce unified national estimates of the extent of four key habitats across Great Britain based on Countryside Survey and Land Cover Map. This approach considers that the true proportion of habitat per km2 (Zi) is unobserved, but both ground survey and remote sensing can be used to estimate Zi. The model allows the relationship between remote sensing data and Zi to be spatially biased while ground survey is assumed to be unbiased. Taking a statistical model‐based approach to integrating field survey and remote sensing data allows for information on bias and precision to be captured and propagated such that estimates produced and parameters estimated are robust and interpretable. A simulation study shows that the combined model should perform best when error in the ground survey data is low. We use repeat surveys to parameterize the variance of ground survey data and demonstrate that error in this data source is small. The model produced revised national estimates of broadleaved woodland, arable land, bog, and fen, marsh and swamp extent across Britain in 2007.  相似文献   

15.
早期的中华白海豚考察主要依赖样线调查法了解其资源分布,而近期研究更多采纳标记重捕法获取种群动态信息。在辨识个体的基础上,后者能够获取多种种群参数开展种群生存力分析。本文回顾在我国海域开展的中华白海豚种群动态研究进展及各地区种群标记重捕数据的累积情况;通过数据模拟评估努力值如何影响种群大小统计的误差和偏差;综合阐述野外考察方案设计、标志筛选和数据处理对数据分析的潜在影响;强调模型拟合优度检验和模型选择的重要性;最后,针对比较不同时期或不同方法获取的种群信息时的常见误解提出我们的意见。本文旨在帮助完善我国中华白海豚的后期资源监测工作。  相似文献   

16.
ABSTRACT The status of recolonizing elk (Cervus elaphus) populations in Ontario, Canada, is unclear and there is a need for effective population survey methods that can be applied locally. We sought to develop a sightability model that could account for both low densities of elk and dense forest cover in elk-release areas in Ontario. We corrected winter aerial survey counts for sightability based on radiocollared animals known to be within observable distance of the aircraft. The multivariate model with the highest Akaike's Information Criterion corrected for sample size weight (wi = 0.427) revealed that elk group size, elk activity, dominant tree type, percent canopy cover, and percent conifer cover were significant predictors of elk sightability. The group-size effect indicated that odds of sighting an elk increased by 1.353 (95% CI = 0.874-3.689) for every additional elk. Standing elk were 5.033 (95% CI = 0.936-15.541) times more likely to be observed than were resting elk, and those located in conifer cover were 0.013 (95% CI = 0.001-0.278) times less likely to be sighted than elk in deciduous cover. Furthermore, elk located in >50% canopy cover and >50% conifer cover were 0.041 (95% CI = 0.003-0.619) times and 0.484 (95% CI = 0.024-9.721) times less likely to be sighted than elk in more open habitat, respectively. During model validation, observers detected 79% (113/143) of known elk in any given area, and population and sightability model predictions (±90% CI) overlapped with the population estimate, implying that our predictive model was robust. Unsurprisingly, large groups of elk in open habitat increased model precision, which highlights difficulties of counting Ontario elk in their northern range. We conclude that our model provided increased reliability for estimating elk numbers in Ontario compared to existing methods, and that the estimator may be useful in other areas where elk density is low and sightability is poor due to dense forest cover.  相似文献   

17.
Apex carnivores are wide‐ranging, low‐density, hard to detect, and declining throughout most of their range, making population monitoring both critical and challenging. Rapid and inexpensive index calibration survey (ICS) methods have been developed to monitor large African carnivores. ICS methods assume constant detection probability and a predictable relationship between the index and the actual population of interest. The precision and utility of the resulting estimates from ICS methods have been questioned. We assessed the performance of one ICS method for large carnivores—track counts—with data from two long‐term studies of African lion populations. We conducted Monte Carlo simulation of intersections between transects (road segments) and lion movement paths (from GPS collar data) at varying survey intensities. Then, using the track count method we estimated population size and its confidence limits. We found that estimates either overstate precision or are too imprecise to be meaningful. Overstated precision stemmed from discarding the variance from population estimates when developing the method and from treating the conversion from tracks counts to population density as a back‐transformation, rather than applying the equation for the variance of a linear function. To effectively assess the status of species, the IUCN has set guidelines, and these should be integrated in survey designs. We propose reporting the half relative confidence interval width (HRCIW) as an easily calculable and interpretable measure of precision. We show that track counts do not adhere to IUCN criteria, and we argue that ICS methods for wide‐ranging low‐density species are unlikely to meet those criteria. Established, intensive methods lead to precise estimates, but some new approaches, like short, intensive, (spatial) capture–mark–recapture (CMR/SECR) studies, aided by camera trapping and/or genetic identification of individuals, hold promise. A handbook of best practices in monitoring populations of apex carnivores is strongly recommended.  相似文献   

18.
The manta tow technique has been extensively used in broadscale surveys of A. planci on the Great Barrier Reef (Kenchington 1984; Moran et al. 1990). Frequently the unit of interest is an entire reef, or large part thereof, although Kenchington and Morton (1976) indicated that manta tow counts could be calibrated to give accurate estimates of scuba counts over smaller reef areas. This was experimentally tested by Fernandes et al. (1990) using the concept of sightability and they conclude that The manta tow technique obviously cannot provide accurate estimates of the absolute number of starfish. The aims of this note are: (i) to indicate logical flaws in Fernandes et al. (1990) which invalidate the above conclusion; (ii) to provide a survey data set with similar characteristics to the data of Fernandes et al. (1990) which demonstrates that manta tow counts can provide accurate estimates of scuba counts; (iii) to suggest a more appropriate perspective than sightability to address questions of bias, precision and accuracy of survey data.  相似文献   

19.
Geometric morphometrics is routinely used in ecology and evolution and morphometric datasets are increasingly shared among researchers, allowing for more comprehensive studies and higher statistical power (as a consequence of increased sample size). However, sharing of morphometric data opens up the question of how much nonbiologically relevant variation (i.e., measurement error) is introduced in the resulting datasets and how this variation affects analyses. We perform a set of analyses based on an empirical 3D geometric morphometric dataset. In particular, we quantify the amount of error associated with combining data from multiple devices and digitized by multiple operators and test for the presence of bias. We also extend these analyses to a dataset obtained with a recently developed automated method, which does not require human‐digitized landmarks. Further, we analyze how measurement error affects estimates of phylogenetic signal and how its effect compares with the effect of phylogenetic uncertainty. We show that measurement error can be substantial when combining surface models produced by different devices and even more among landmarks digitized by different operators. We also document the presence of small, but significant, amounts of nonrandom error (i.e., bias). Measurement error is heavily reduced by excluding landmarks that are difficult to digitize. The automated method we tested had low levels of error, if used in combination with a procedure for dimensionality reduction. Estimates of phylogenetic signal can be more affected by measurement error than by phylogenetic uncertainty. Our results generally highlight the importance of landmark choice and the usefulness of estimating measurement error. Further, measurement error may limit comparisons of estimates of phylogenetic signal across studies if these have been performed using different devices or by different operators. Finally, we also show how widely held assumptions do not always hold true, particularly that measurement error affects inference more at a shallower phylogenetic scale and that automated methods perform worse than human digitization.  相似文献   

20.
Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free‐ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross‐species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra‐ and interpopulation relationships using kinship and identity by state metrics, as well as FST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号