首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behaviour of West Greenland caribou during a population decline   总被引:1,自引:0,他引:1  
The major decline of the West Greenland caribou herd during the 1970s prompted a study in 1977–78 of caribou behaviour in relation to environmental factors associated with the decline. Quantification of caribou activity revealed behavioural responses to critically low standing crops of preferred winter forage. Caribou on poor winter range were mostly inactive with low feeding intensities and abnormal diurnal activity patterns. In addition, these animals exhibited very restricted movements, frequently occurred alone or in small groups, and were unable to maintain normal social bonds. In contrast, where fruticose lichen winter forage was available, caribou did not display these behavioural traits. After the initiation of new vegetative growth, feeding intensity increased and social tendency returned. Comparison with behavioural data from other Rangifer populations suggests that the observed responses to low forage quality are not restricted to Greenland but are a normal response of barren-ground caribou to winter ranges poor in lichen forage.  相似文献   

2.
Animals use a variety of proximate cues to assess habitat quality when resources vary spatiotemporally. Two nonmutually exclusive strategies to assess habitat quality involve either direct assessment of landscape features or observation of social cues from conspecifics as a form of information transfer about forage resources. The conspecific attraction hypothesis proposes that individual space use is dependent on the distribution of conspecifics rather than the location of resource patches, whereas the resource dispersion hypothesis proposes that individual space use and social association are driven by the abundance and distribution of resources. We tested the conspecific attraction and the resource dispersion hypotheses as two nonmutually exclusive hypotheses explaining social association and of adult female caribou (Rangifer tarandus). We used location data from GPS collars to estimate interannual site fidelity and networks representing home range overlap and social associations among individual caribou. We found that home range overlap and social associations were correlated with resource distribution in summer and conspecific attraction in winter. In summer, when resources were distributed relatively homogeneously, interannual site fidelity was high and home range overlap and social associations were low. Conversely, in winter when resources were distributed relatively heterogeneously, interannual site fidelity was low and home range overlap and social associations were high. As access to resources changes across seasons, caribou appear to alter social behavior and space use. In summer, caribou may use cues associated with the distribution of forage, and in winter caribou may use cues from conspecifics to access forage. Our results have broad implications for our understanding of caribou socioecology, suggesting that caribou use season‐specific strategies to locate forage. Caribou populations continue to decline globally, and our finding that conspecific attraction is likely related to access to forage suggests that further fragmentation of caribou habitat could limit social association among caribou, particularly in winter when access to resources may be limited.  相似文献   

3.
Fire regimes are changing throughout the North American boreal forest in complex ways. Fire is also a major factor governing access to high‐quality forage such as terricholous lichens for barren‐ground caribou (Rangifer tarandus groenlandicus). Additionally, fire alters forest structure which can affect barren‐ground caribou's ability to navigate in a landscape. Here, we characterize how the size and severity of fires are changing across five barren‐ground caribou herd ranges in the Northwest Territories and Nunavut, Canada. Additionally, we demonstrate how time since fire, fire severity, and season result in complex changes in caribou behavioural metrics estimated using telemetry data. Fire disturbances were identified using novel gap‐free Landsat surface reflectance composites from 1985 to 2011 across all herd ranges. Burn severity was estimated using the differenced normalized burn ratio. Annual area burned and burn severity were assessed through time for each herd and related to two behavioural metrics: velocity and relative turning angle. Neither annual area burned nor burn severity displayed any temporal trend within the study period. However, certain herds, such as the Ahiak/Beverly, have more exposure to fire than other herds (i.e. Cape Bathurst had a maximum forested area burned of less than 4 km2). Time since fire and burn severity both significantly affected velocity and relative turning angles. During fall, winter, and spring, fire virtually eliminated foraging‐focused behaviour for all 26 years of analysis while more severe fires resulted in a marked increase in movement‐focused behaviour compared to unburnt patches. Between seasons, caribou used burned areas as early as 1‐year postfire, demonstrating complex, nonlinear reactions to time since fire, fire severity, and season. In all cases, increases in movement‐focused behaviour were detected postfire. We conclude that changes in caribou behaviour immediately postfire are primarily driven by changes in forest structure rather than changes in terricholous lichen availability.  相似文献   

4.
We examined the foraging behavior of woodland caribou (Rangifer tarandus caribou) relative to the spatial and temporal heterogeneity of their environment. We assessed (1) whether caribou altered their behavior over time while making trade-offs between forage abundance and accessibility; and (2) whether foraging decisions were consistent across spatial scales (i.e., as scale increased, similar decision criteria were used at each scale). We discuss whether caribou adjusted their behavior to take advantage of changing forage availability through time and space. At the scale of the feeding site (as revealed by discriminant function analyses), caribou in both forested and alpine (above tree-line) environments selected sites where the biomass of particular lichen species was greatest and snow the least deep. Caribou did not select those species with the highest nutritional value (i.e., digestible protein and energy) in either area. Where snow depth, density, and hardness limited access to terrestrial lichens in the forest, caribou foraged instead at those trees with the greatest amount of arboreal lichen. Selection of lichen species and the influence of snow differed across time, indicating that in this system the abundance or accessibility of forage temporally influenced foraging behavior. A path analysis of forest data and multiple regression analysis of alpine data were used to test the hypothesis that variables important at the scale of the feeding site explained foraging effort at the scale of the patch. For forest patches, our hypothesized model reliably explained foraging effort, but not all variables that were statistically important at the scale of the feeding site were significant predictors at the scale of the patch. For alpine patches, our hypothesized model did not explain a statistically significant portion of the variation in the number of feeding sites within the patch, and none of the individual variables from the feeding site remained statistically significant at the patch scale. The incongruity between those variables important at the scale of the feeding site and those important at the patch showed that spatial scale affects the foraging decisions of woodland caribou. At the scale of the landscape, there was a trade-off between forage abundance and accessibility. Relative to the alpine environment, caribou in the forest foraged at feeding sites and patches with greater amounts of less variably distributed lichen, but deeper less variable snow depths. Considering the behavioral plasticity of woodland caribou, there may be no distinct advantage to foraging in one landscape over the other.  相似文献   

5.
Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.  相似文献   

6.
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.  相似文献   

7.
Abstract: I investigated local and regional differences in percent moss in the feces of muskoxen (Ovibos moschatus) and reindeer or caribou (Rangifer tarandus) in northwestern Alaska, USA, and related fecal moss to forage availability, snow conditions, animal density, and terrain ruggedness on wintering areas. Reindeer are a partially domesticated form of Rangifer tarandus originating from Europe and Asia and differ physiologically and ecologically from caribou. Percent moss in feces of muskoxen differed locally among individual wintering areas. Because of the large local variation in moss content of muskox feces, regional differences between the 2 study areas were difficult to resolve. Percent of moss in the feces of reindeer–caribou did not differ between wintering areas within the same study area but did differ between study areas. On muskox wintering areas, fecal moss correlated negatively with graminoid cover and snow hardness and positively with moss cover and muskox density, but fecal moss did not correlate with snow depth or terrain ruggedness. On reindeer–caribou wintering areas, fecal moss correlated positively with moss availability but not with lichen cover or snow depth or hardness. Because muskox groups in Alaska are isolated from each other in winter, even groups wintering on neighboring hills may face different foraging availability and might, therefore, exhibit differences in growth or productivity. Reindeer–caribou are more mobile than muskoxen in winter, and fecal samples may not be representative of vegetative and snow conditions at the wintering area where I collected them. I conclude that managers can use fecal moss as an indicator of overgrazed ranges, severe snow conditions, or crowded conditions on muskox wintering areas, but that the association between fecal moss and range conditions has to be drawn with caution for the more mobile reindeer–caribou.  相似文献   

8.
The impact of surface fires varying intensity on the living ground vegetation in the middle-taiga forests of Central Siberia are studied. It is revealed that fires, regardless of their intensity, decrease the percentage cover and the biomass of living ground vegetation; they also destroy the moss and lichen layer. The postfire recovery of the ground vegetation at the initial stage of postfire succession is determined by the prefire forest type, the fire intensity, and the burn depth of the litter.  相似文献   

9.
Recent research has linked climate warming to global declines in caribou and reindeer (both Rangifer tarandus) populations. We hypothesize large‐scale climate patterns are a contributing factor explaining why these declines are not universal. To test our hypothesis for such relationships among Alaska caribou herds, we calculated the population growth rate and percent change of four arctic herds using existing population estimates, and explored associations with indices of the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO). The AO, which more strongly affects eastern Alaska, was negatively associated with the population trends of the Porcupine Caribou Herd and Central Arctic Herd, the easternmost of the herds. We hypothesize that either increased snowfall or suboptimal growing conditions for summer forage plants could explain this negative relationship. Intensity of the PDO, which has greatest effects in western Alaska, was negatively associated with the growth rate of the Teshekpuk Caribou Herd in northwestern Alaska, but the Western Arctic Herd in western Alaska displayed the opposite trend. We suggest that the contrasting patterns of association relate to the spatial variability of the effects of the PDO on western and northwestern Alaska. Although predation and winter range quality have often been considered the primary causes of population variation, our results show that large‐scale climate patterns may play an important role in caribou population dynamics in arctic Alaska. Our findings reveal that climate warming has not acted uniformly to reduce caribou populations globally. Further research should focus on the relative importance of mechanisms by which climate indices influence caribou population dynamics.  相似文献   

10.

Earth’s tropical savannas typically support high biomass of diverse grazing herbivores that depend on a highly fluctuating resource: high-quality forage. An annual wet–dry cycle, fire and herbivory combine to influence forage quality and availability throughout the year. In the savannas of northern Australia, a depauperate suite of large native (marsupial) herbivores (wallaroos [Osphranter spp.] and the agile wallaby [Notamacropus agilis]) compete for resources with non-native large herbivores introduced in the late nineteenth century, particularly bovines (feral and managed cattle [Bos spp.] and feral water buffalo [Bubalus bubalis]) that now dominate the landscape. Anecdotal reports of recent population declines of large macropods and negative impacts of bovines highlight the need to better understand the complex relationship between forage, fire and abundance of native and introduced large herbivores. The pyric herbivory conceptual model, which posits complex feedbacks between fire and herbivory and was developed outside Australia, predicts that native and introduced large herbivores will both respond positively to post-fire forage production in Australian savannas where they co-occur. We used grazing exclosures, forage biomass and nutrient analyses and motion-sensor camera-trapping to evaluate the overall robustness of the pyric herbivory model in the Australian context, specifically whether forage quantity and quality are impacted by herbivory, season and fire activity, and which forage attributes most influence large grazing herbivore abundance. Forage quantity, as measured by live, dead and total herbaceous biomass and proportion of biomass alive, was higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage quality, as measured by fibre content, was not affected by herbivory, however, crude protein content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire was an important predictor of all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity (biomass) but increased quality (decreased fibre content and increased crude protein content); late dry season fires resulted in forage with the highest crude protein content. The predictions of the pyric herbivory conceptual model are consistent with observations of the feeding behaviour of introduced bovines and some large macropods in northern Australian savannas, lending support to the global generality of pyric herbivory in fire-prone grassy biomes.

  相似文献   

11.
ABSTRACT The roles that diet and prey abundance play in habitat selection of Canada lynx (Lynx canadensis) in the contiguous United States is poorly understood. From 1998–2002, we back-tracked radiocollared lynx (6 F, 9 M) for a distance of 582 km and we located 86 kills in northwestern Montana, USA. Lynx preyed on 7 species that included blue grouse (Dendragapus obscurus), spruce grouse (Canachites canadensis), northern flying squirrel (Glaucomys sabrinus), red squirrel (Tamiasciurus hudsonicus), snowshoe hare (Lepus americanus), least weasel (Mustela nivalis), and white-tailed deer (Odocoileus virginianus). Snowshoe hares (69 kills) accounted for 96% (4-yr average, range = 94–99%) of prey biomass during the sample period. Red squirrels were the second-most-common prey (11 kills), but they only provided 2% biomass of the winter diet. Red squirrels contributed little to the lynx diet despite low hare densities. A logistic regression model of snowshoe hare, red squirrel, and grouse abundance, as indexed by the number of track crossings of use and available lynx back-tracks, was a significant (Wald statistic = 19.03, df = 3, P < 0.001) predictor of habitat use. As we expected, lynx (P < 0.001) selected use-areas with higher snowshoe hare abundance compared to random expectation. However, the red squirrel index had a weak (P = 0.087) negative relationship to lynx use, and grouse was nonsignificant (P = 0.432). Our results indicate that lynx in western Montana prey almost exclusively on snowshoe hares during the winter with little use of alternative prey. Thus, reductions in horizontal cover for hares would degrade lynx habitat.  相似文献   

12.
Greater understanding of habitat selection requires investigation at the scales at which organisms perceive and respond to their environment. Such knowledge could reveal the relative importance of factors limiting populations and the extent of response to habitat changes, and so guide conservation initiatives. We conducted a novel, spatially explicit analysis of winter habitat selection by caribou (Rangifer tarandus) in Newfoundland, Canada, to elucidate the spatial scales of habitat selection. We combined conventional hierarchical habitat analysis with a newly developed geospatial approach that quantifies selection across scales as the difference in variance between available and used sites. We used both ordination and univariate analyses of lichen and plant cover, snow hardness and depth. This represents the first use of ordination with geostatistics for the assessment of habitat selection. Caribou habitat selection was driven by shallow, soft snow and high cover of Cladina lichens and was strongest at feeding microsites (craters) and broader feeding areas. Habitat selection was most evident at distance lags of up to 15 km, perhaps an indication of the perceptual abilities of caribou.  相似文献   

13.
In northern Fennoscandia, the spatial and temporal grazing practices of semi-domesticated reindeer (Rangifer tarandus tarandus) vary, which implies different grazing effects dependent on natural conditions as well as management regime (i.e., timing and intensity of grazing). We compared density and biomass of main plant groups in semi-dry mountain birch forests exposed to either long-term summer or winter grazing in three reindeer herding districts in the northernmost Finland. Percent plant cover, height, and biomass of reindeer lichens (Cladonia spp.) and dwarf shrubs (Vaccinium uliginosum, Calluna vulgaris, and Betula nana) were lower on summer ranges compared with winter ranges. The biomass of other dwarf shrubs (Vaccinium myrtillus and V. vitis-idaea), and graminoids and herbs, and the % cover of non-vegetated bare soil and litter were, however, higher on summer ranges than on winter ranges. Young mountain birch shoots (Betula pubescens ssp. czerepanovii) were less frequent on summer ranges than on winter ranges. The total leaf biomass under the browsing height of reindeer (<1.5 m) was also lower on summer ranges compared with winter ranges. Especially in drier and nutrient poor mountain birch forests, intensive summer grazing reduces the quantity of lichens and total plant biomass which affects the ecological state and productivity of these forests and also reduces especially their winter grazing value for reindeer. Therefore, in addition to regulating the maximum sustained numbers of reindeer, pasture rotation systems that effectively protect dry and nutrient poor vegetation from summer grazing and trampling should be encouraged.  相似文献   

14.
Questions: Can prescribed fire restore C4 perennial grasses in grassland ecosystems that have become dominated by fire‐resistant C3 shrubs (Prosopis glandulosa) and C3 grasses? Do fires in different seasons alter the direction of change in grass composition? Location: Texas, USA. Methods: We quantified short‐ and long‐term (12 yr post‐fire) herbaceous functional group cover and diversity responses to replicated seasonal fire treatments: (1) repeated‐winter fires (three in 5 yr), (2) repeated‐summer fires (two in 3 yr), and (3) alternate‐season fires (two winter and one summer in 4 yr), compared with a no‐fire control. Results: Summer fires were more intense than winter fires, but all fire treatments temporarily decreased Prosopis and C3 annual grass cover. The alternate‐season fire treatment caused a long‐term increase in C4 mid‐grass cover and functional group diversity. The repeated‐summer fire treatment increased C4 short‐grass cover but also caused a long‐term increase in bare ground. The repeated winter fire treatment had no long‐term effects on perennial grass cover. Mesquite post‐fire regrowth had increasingly negative impacts on herbaceous cover in all fire treatments. Conclusions: Summer fire was necessary to shift herbaceous composition toward C4 mid‐grasses. However, the repeated‐summer fire treatment may have been too extreme and caused post‐fire herbaceous composition to “over‐shift” toward less productive C4 short‐grasses rather than C4 mid‐grasses. This study provides some of the first long‐term data showing a possible benefit of mixing seasonal fires (i.e., the alternate‐season fire treatment) in a prescribed burning management plan to restore C4 mid‐grass cover and enhance overall herbaceous diversity.  相似文献   

15.
Abstract. Effective management of rangelands requires the development of landscape‐scale models for predicting spatial and temporal variability of forage. In the Magellanic tussock steppes, as in other cold‐temperate regions, grazing capacity is dependent on the winter season. To develop a management tool for the region, we analysed links between winter forage availability, weather, stocking rate and vegetation structure. We studied four paddocks over five years with a range of stocking rates from 0 to 1.53 sheep.ha‐1. We sampled forb and non‐tussock graminoid biomass, vegetation structure and faecal pellet abundance at the end of each summer. Daily temperature and rainfall data were also recorded. A regression model explained the amount of winter forage as a positive function of graminoid cover, spring minimum temperature, annual precipitation and a negative function of dwarf shrub canopy, bare soil and stocking rate (R2= 0.59). Interactions of structural variables with precipitation and stocking rate were detected, indicating strong fluctuations of forage availability in lawn communities dominated by short graminoids. The most probable causes of this response would be higher utilisation and lack of canopy structure. Our results illustrate how maps of vegetation structure, obtainable from satellite images, with weather and stocking rate data could be used for predicting optimal stocking rates in large, heterogeneous sheep paddocks.ed.  相似文献   

16.
Reindeer and caribou Rangifer tarandus are reported to avoid human infrastructure such as roads, high-voltage power lines, pipelines, and tourist resorts. Lichens are important forage for reindeer during winter, and their relatively slow growth rates make them vulnerable to overgrazing. Height and volume of lichens are often used as an indicator of grazing pressure by reindeer and, thus, as an indirect measure of Rangifer avoidance of human infrastructure. We sampled lichen height in Cetraria nivalis-dominated communities along 4 and 3 parallel transects located on two parallel mountain ridges in Hardangervidda, south central Norway. The lichen measurements were analyzed in relation to altitude and the distance from four tourist cabins in the area and a highway (Rv7) running perpendicular to the 7 transects. The mountain ridge with 4 transects is part of a much used migratory corridor for wild reindeer R. tarandus tarandus. Along the nonmigratory ridge, lichen height decreased 35% over an 8-km distance from Rv7 and a tourist cabin, indicating reindeer aversion toward Rv7 and/or a tourist cabin. No similar relationship was found for the migration ridge in relation to distance from Rv7 or the tourist cabins. Our results suggest that avoidance of human infrastructure by wild reindeer might be limited where reindeer use of winter pastures is influenced by herd traditions and/or motivation to follow established migration corridors. This has important implications for addressing the use of similar pasture measurements when testing for Rangifer aversion toward human disturbances.  相似文献   

17.
Summary The biomass of forage, herbivores (caribou and moose) and predators (wolf) were estimated for four assemblages of large mammals along a latitudinal gradient in the Québec-Labrador peninsula and related to predictions made by two types of multitrophic level models. Wolves were present in three study areas, but they had been extirpated in the last one. Annual production of preferred forage exhibited a clear north-south increase for moose, but not for caribou. Neither the herbivore nor predator biomass increased along the latitudinal gradient: the highest herbivore biomass occurred in the wolf-free area and in the northernmost site, while the greatest predator density was observed in the southernmost site. Consequently, the ratio of the herbivore to forage biomass was the highest in the area devoid of wolves and in the northernmost site occupied by migratory caribou. Availability of forage per herbivore was the greatest in the moose-wolf and the caribou-moose-wolf assemblages. The observed data supported the multitrophic level model incorporating classical predator-prey relationships and producing stepwise accrual of trophic level biomass with increasing food chain length. In the northernmost site, the system was limited to two functional trophic levels and caribou were regulated by summer forage. Three functional trophic levels appeared to exist in the central study area where caribou and moose were preyed upon by wolves. Both herbivores were at very low density, the first one due probably to its poor adaptation to predation and the second because of an unproductive range. In the southernmost site, moose were clearly regulated by predation and kept much below the carrying capacity. With the extirpation of wolves in the last study area, moose were regulated by forage and the density exceeded that in the moose-wolf system by seven times even in a less productive range. Caribou, having primarily evolved under resource limitation, is replaced by a cervid better adapted to predation, the moose, in more productive three-link ecosystems.  相似文献   

18.
Herbivores and their forage interact in many ways, in some instances to the benefit or detriment of herbivore and vegetation. Studies of wildebeest (Connochaetes taurinus) in Africa and snow geese (Chen caerulescens) in the Arctic have suggested that these grazers enhance graminoid production in certain sites by repeatedly using them. Other studies have concluded that herbivores are sensitive to local variation in forage quality and quantity, and preferentially use those sites that are intrinsically more productive. In this study, caribou (Rangifer tarandus) were observed foraging at different densities on two adjacent Alaskan ranges, within which particular feeding sites contained predictably high, medium, or low densities of caribou. Vegetation from one high- and one low-use site on each of the high- and low-density ranges was sampled and monitored for productivity, measured as re-growth following clipping, with the objectives of determining which forage characteristics influence usage by grazers and whether the productivity and nature of graminoid growth after clipping were related to grazing history. Forage biomass density (g/m3), shoot density (number/m2), stand densities of nutrients and minerals (g/m3), and forage concentrations of nutrients and minerals (g/100 g tissue) correlated positively with use of sites by caribou. Productivity was independent of previous use by grazers, but consistent within ranges. These results indicate that caribou are sensitive to local variation in forage quality and quantity, preferentially use those sites with higher returns of nutrients and minerals, and have the potential to enhance graminoid growth on sites that are inherently more productive.  相似文献   

19.
Quantifying abundance and distribution of plant species can be difficult because data are often inflated with zero values due to rarity or absence from many ecosystems. Terrestrial fruticose lichens (Cladonia and Cetraria spp.) occupy a narrow ecological niche and have been linked to the diets of declining caribou and reindeer populations (Rangifer tarandus) across their global distribution, and conditions related to their abundance and distribution are not well understood. We attempted to measure effects related to the occupancy and abundance of terrestrial fruticose lichens by sampling and simultaneously modeling two discrete conditions: absence and abundance. We sampled the proportion cover of terrestrial lichens at 438 vegetation plots, including 98 plots having zero lichens. A zero‐inflated beta regression model was employed to simultaneously estimate both the absence and the proportion cover of terrestrial fruticose lichens using fine resolution satellite imagery and light detection and ranging (LiDAR) derived covariates. The probability of lichen absence significantly increased with shallower groundwater, taller vegetation, and increased Sphagnum moss cover. Vegetation productivity, Sphagnum moss cover, and seasonal changes in photosynthetic capacity were negatively related to the abundances of terrestrial lichens. Inflated beta regression reliably estimated the abundance of terrestrial lichens (R2 = .74) which was interpolated on a map at fine resolution across a caribou range to support ecological conservation and reclamation. Results demonstrate that sampling for and simultaneously estimating both occupancy and abundance offer a powerful approach to improve statistical estimation and expand ecological inference in an applied setting. Learnings are broadly applicable to studying species that are rare, occupy narrow niches, or where the response variable is a proportion value containing zero or one, which is typical of vegetation cover data.  相似文献   

20.
In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition into account. In a salt-marsh system, the long-term effects of exclusion of a large herbivore (cattle) on the abundance of a small herbivore (hare) were studied. Excluding cattle grazing for 30 years resulted in large changes in vegetation composition. In general, the cover of tall-growing species increased in the absence of cattle grazing. These long-term changes negatively affected hare grazing intensity. Hares preferentially fed on Festuca rubra and negatively selected tall growing plants, such as Elymus athericus, both in cattle-grazed and long-term ungrazed areas. However, the intensity of hare grazing was not related to the cover of F. rubra. The cover of tall-growing plants (E. athericus, Atriplex prostrata and Juncus maritimus) appeared to be the best predictor and hare grazing intensity decreased sharply with an increase of the cover of tall plants. When cover of tall plants did not increase, hare grazing intensity was not affected. The study shows that the time-scale of the experiment is of prime importance in studying interactions between herbivores. Species that do not seem to influence the abundance of one another or are competing for the same resources on a short time-scale might well be facilitating each other when looking at larger time-scales while taking plant species replacement into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号