首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Abstract: The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (Λ = 1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of Λ = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.  相似文献   

2.
3.
    
Abstract: Survival and cause-specific mortality of pronghorns (Antilocapra americana) have been well-documented in several western states and Canadian provinces. However, no information has been collected in western South Dakota, USA, where mixed-grass prairie habitats characterize rangelands. The objectives of our study were to determine survival and cause-specific mortality of adult (>18 months) and yearling (6-18 months) pronghorns and to determine monthly and summer (Jun-Aug) survival for neonatal (<1 month of age) pronghorns in South Dakota. We radiocollared 93 adult female and 142 neonatal pronghorns on 3 areas in western South Dakota. We used bed sites from initial neonate captures to collect microhabitat information throughout Harding and Fall River counties. We measured vegetation understory and overstory height, shrub canopy, and distance to nearest concealment cover to the nearest centimeter inside 1-m2 quadrats by collecting measurements at 15 random points within a 30-m radius of the bed site. We documented that coyote (Canis latrans) predation was the primary cause of mortality for neonates in western South Dakota and that microhabitat characteristics at neonate bed sites differed between northwestern and southwestern South Dakota. More intensive aerial predator control may increase neonate survival in Fall River County. Management of rangelands by state and federal employees throughout western South Dakota and Wind Cave National Park that maximizes height of overstory and understory vegetation would provide neonates with adequate concealment cover for protection from predators, thereby increasing 4-week and 12-week postcapture survival. Our study provides South Dakota game managers with region-specific, annual and seasonal survival rates that were previously only estimated, thus improving the accuracy of simulated pronghorn population model output. Hunting was the primary cause of mortality (26%) for adult females in Harding and Fall River counties, thereby confirming the continued use of annual harvest by South Dakota game managers as the primary management tool for maintaining pronghorn populations within statewide population management goals.  相似文献   

4.
    
Abundant evidence supports the benefits accrued to the Florida panther (Puma concolor coryi) population via the genetic introgression project implemented in South Florida, USA, in 1995. Since then, genetic diversity has improved, the frequency of morphological and biomedical correlates of inbreeding depression have declined, and the population size has increased. Nevertheless, the panther population remains small and isolated and faces substantial challenges due to deterministic and stochastic forces. Our goals were 1) to comprehensively assess the demographics of the Florida panther population using long-term (1981–2015) field data and modeling to gauge the persistence of benefits accrued via genetic introgression and 2) to evaluate the effectiveness of various potential genetic management strategies. Translocation and introduction of female pumas (Puma concolor stanleyana) from Texas, USA, substantially improved genetic diversity. The average individual heterozygosity of canonical (non-introgressed) panthers was 0.386 ± 0.012 (SE); for admixed panthers, it was 0.615 ± 0.007. Survival rates were strongly age-dependent (kittens had the lowest survival rates), were positively affected by individual heterozygosity, and decreased with increasing population abundance. Overall annual kitten survival was 0.32 ± 0.09; sex did not have a clear effect on kitten survival. Annual survival of subadult and adult panthers differed by sex; regardless of age, females exhibited higher survival than males. Annual survival rates of subadult, prime adult, and old adult females were 0.97 ± 0.02, 0.86 ± 0.03, and 0.78 ± 0.09, respectively. Survival rates of subadult, prime adult, and old adult males were 0.66 ± 0.06, 0.77 ± 0.05, and 0.65 ± 0.10, respectively. For panthers of all ages, genetic ancestry strongly affected survival rate, where first filial generation (F1) admixed panthers of all ages exhibited the highest rates and canonical (mostly pre-introgression panthers and their post-introgression descendants) individuals exhibited the lowest rates. The most frequently observed causes of death of radio-collared panthers were intraspecific aggression and vehicle collision. Cause-specific mortality analyses revealed that mortality rates from vehicle collision, intraspecific aggression, other causes, and unknown causes were generally similar for males and females, although males were more likely to die from intraspecific aggression than females. The probability of reproduction and the annual number of kittens produced varied by age; evidence that ancestry or abundance influenced these parameters was weak. Predicted annual probabilities of reproduction were 0.35 ± 0.08, 0.50 ± 0.05, and 0.25 ± 0.06 for subadult, prime adult, and old adult females, respectively. The number of kittens predicted to be produced annually by subadult, prime adult, and old adult females were 2.80 ± 0.75, 2.67 ± 0.43, and 2.28 ± 0.83, respectively. The stochastic annual population growth rate estimated using a matrix population model was 1.04 (95% CI = 0.72–1.41). An individual-based population model predicted that the probability that the population would fall below 10 panthers within 100 years (quasi-extinction) was 1.4% (0–0.8%) if the adverse effects of genetic erosion were ignored. However, when the effect of genetic erosion was considered, the probability of quasi-extinction within 100 years increased to 17% (0–100%). Mean times to quasi-extinction, conditioned on going quasi-extinct within 100 years, was 22 (0–75) years when the effect of genetic erosion was considered. Sensitivity analyses revealed that the probability of quasi-extinction and expected time until quasi-extinction were most sensitive to changes in kitten survival parameters. Without genetic management intervention, the Florida panther population would face a substantially increased risk of quasi-extinction. The question, therefore, is not whether genetic management of the Florida panther population is needed but when and how it should be implemented. Thus, we evaluated genetic and population consequences of alternative genetic introgression strategies to identify optimal management actions using individual-based simulation models. Releasing 5 pumas every 20 years would cost much less ($200,000 over 100 years) than releasing 15 pumas every 10 years ($1,200,000 over 100 years) yet would reduce the risk of quasi-extinction by comparable amount (44–59% vs. 40–58%). Generally, releasing more females per introgression attempt provided little added benefit. The positive effects of the genetic introgression project persist in the panther population after 20 years. We suggest that managers contemplate repeating genetic introgression by releasing 5–10 individuals from other puma populations every 20–40 years. We also recommend that managers continue to collect data that will permit estimation and monitoring of kitten, adult, and subadult survival. We identified these parameters via sensitivity analyses as most critical in terms of their impact on the probability of and expected times to quasi-extinction. The continuation of long-term monitoring should permit the adaptation of genetic management strategies as necessary while collecting data that have proved essential in assessing the genetic and demographic health of the population. The prospects for recovery of the panther will certainly be improved by following these guidelines. © 2019 The Authors. Wildlife Monographs published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

5.
    
Male and female predators are often assumed to have the same effects on prey. Because of differences in body size and behavior, however, male and female predators may use different species, sexes, and ages of prey, which could have important implications for wildlife conservation and management. We tested for differential prey use by male and female cougars (Puma concolor) from 2003 to 2008 in Washington State. We predicted that male cougars would kill a greater proportion of larger and older prey (i.e., adult elk [Cervus elaphus]), whereas females would kill smaller and younger prey (i.e., elk calves, mule deer [Odocoileus hemionus]). We marked cougars with Global Positioning System (GPS) radio collars and investigated 436 predation sites. We located prey remains at 345 sites from 9 male and 9 female cougars. We detected 184 mule deer, 142 elk, and 17 remains from 4 other species. We used log-linear modeling to detect differences in species and age of prey killed among cougar reproductive classes. Solitary females and females with dependent offspring killed more mule deer than elk (143 vs. 83, P < 0.01), whereas males killed more elk than mule deer (59 vs. 41, P < 0.01). Proportionately, males killed 4 times more adult elk than did females (24% vs. 6% of kills) and females killed 2 times more adult mule deer than did males (26% vs. 15% of kills). Managers should consider the effects of sex of predator in conservation and management of ungulates, particularly when managing for sensitive species. © 2011 The Wildlife Society.  相似文献   

6.
7.
    
ABSTRACT We assessed the potential for reestablishing elk (Cervus elaphus) in Great Smoky Mountains National Park (GSMNP), USA, by estimating vital rates of experimentally released animals from 2001 to 2006. Annual survival rates for calves ranged from 0.333 to 1.0 and averaged 0.592. Annual survival for subadult and adult elk (i.e., ≥ 1 yr of age) ranged from 0.690 to 0.933, depending on age and sex. We used those and other vital rates to model projected population growth and viability using a stochastic individual-based model. The annual growth rate (λ) of the modeled population over a 25-year period averaged 0.996 and declined from 1.059 the first year to 0.990 at year 25. The modeled population failed to attain a positive 25-year mean growth rate in 46.0% of the projections. Poor calf recruitment was an important determinant of low population growth. Predation by black bears (Ursus americanus) was the dominant calf mortality factor. Most of the variance of growth projections was due to demographic variation resulting from the small population size (n = 61). Management actions such as predator control may help increase calf recruitment, but our projections suggest that the GSMNP elk population may be at risk for some time because of high demographic variation.  相似文献   

8.
    
Abstract: Home-range size and population abundance indices of coyotes (Canis latrans) have not been documented in Wind Cave National Park, South Dakota, USA. In 2003 and 2004, we captured a total of 26 coyotes and radiocollared 22 adults (12 F, 10 M). In 2003 and 2004, 2 of 17 (12%) and 5 of 9 (56%) coyotes, respectively, were infected with sarcoptic mange (Sarcoptes scabiei) at the time of capture. Thus, objectives were modified to document effects of the mange epizootic on the coyote population. In 2003, home-range (adaptive-kernel) sizes for male coyotes with mange and those considered healthy were 8.26 ± 1.63 (SE) km2 and 9.67 ± 2.80 km2, respectively. In 2004, home-range sizes for those male coyotes with and without mange were 22.69 ± 9.06 km2 and 12.51 ± 2.73 km2, respectively. Male home-range size did not differ between years (P = 0.14) or by status (with or without mange; P = 0.84). Survival of collared coyotes was 60% at the end of 2003. Results from fecal line transects, an index of relative abundance, indicated that the coyote population decreased by 48% from 2003 to 2004. Continued monitoring of sarcoptic mange epizootics will enable managers to assess the effects of mange on coyote populations.  相似文献   

9.
10.
    
Abstract: Direct and indirect contact between wild and farmed cervids along perimeter fences may play a role in transmission of diseases like chronic wasting disease (CWD), but no studies have quantified such interactions. At 9 high-fenced commercial elk (Cervus elaphus) farms in Colorado, USA, during October 2003 to January 2005, we used animal-activated video to estimate rates of fence-line use by wild cervids, rates of direct contact between farmed and wild cervids, and probability of direct contact when wild cervids were present. We recorded 8-fold-more wild elk per unit time than mule deer (Odocoileus hemionus) at fence lines. Depending on site, we recorded 0.66 to 46.90 wild elk per 1,000 hours of camera monitoring. We documented 77 interactions between wild and farmed elk involving naso-oral contact and no contact between wild mule deer and farmed elk. Rate of direct contact ranged from 0.00 to 1.92 direct contacts per 1,000 hours of camera monitoring among sites. Given recorded presence of wild elk, estimated probability of observing direct contact during a 2-minute video recording ranged from 0.00 to 0.11 among sites. Risk of direct contact was about 3.5 times greater for single woven-wire fence compared with offset electric fence attached to a single woven-wire fence. We observed no direct contact through double woven-wire fences. Because little is currently known about infection rates associated with infection mechanisms, we cannot infer a level of CWD infection risk from our results, but some form of double fencing should reduce potential for direct and indirect transmission of disease into or out of elk farms.  相似文献   

11.
    
Previous research from 2001 to 2006 on an experimentally released elk (Cervus elaphus) population at Great Smoky Mountains National Park (GSMNP or Park) indicated that calf recruitment (i.e., calves reaching 1 yr of age per adult female elk) was low (0.306, total SE = 0.090) resulting in low or negative population growth (λ = 0.996, 95% CI = 0.945–1.047). Black bear (Ursus americanus) predation was the primary calf mortality factor. From 2006 to 2008, we trapped and relocated 49 bears (30 of which were radiocollared) from the primary calving areas in the Park and radiomonitored 67 (28 M:39 F) adult elk and 42 calves to compare vital rates and population growth with the earlier study. A model with annual calf recruitment rate correlating with the number of bears relocated each year was supported (ΔAICc = 0.000; β = 0.070, 95% CI = 0.028–0.112) and a model with annual calf recruitment differing from before to during bear relocation revealed an increase to 0.544 (total SE = 0.098; β = −1.092, 95% CI = −1.180 to −0.375). Using vital rates and estimates of process standard errors observed during our study, 25-yr simulations maintained a mean positive growth rate in 100% of the stochastic trials with λ averaging 1.118 (95% CI = 1.096–1.140), an increase compared with rates before bear relocation. A life table response experiment revealed that increases in population growth were mostly (67.1%) due to changes in calf recruitment. We speculate that behavioral adaptation of the elk since release also contributed to the observed increases in recruitment and population growth. Our results suggest that managers interested in elk reintroduction within bear range should consider bear relocation as a temporary means of increasing calf recruitment. © 2011 The Wildlife Society.  相似文献   

12.
    
In 2001 and 2002, 52 elk (Cervus canadensis; 21 males, 31 females), originally obtained from Elk Island National Park, Alberta, Canada, were transported and released into Cataloochee Valley in the northeastern portion of Great Smoky Mountains National Park (GRSM, Park), North Carolina, USA. The annual population growth rate (λ) was negative (0.996, 95% CI = 0.945–1.047) and predation by black bears (Ursus americanus) on elk calves was identified as an important determinant of population growth. From 2006 to 2008, 49 bears from the primary elk calving area (i.e., Cataloochee Valley) were trapped and translocated about 70 km to the southwestern portion of the Park just prior to elk calving. Per capita recruitment (i.e., the number of calves produced per adult female that survive to 1 year of age) increased from 0.306 prior to bear translocation (2001–2005) to 0.544 during years when bears were translocated (2006–2008) and λ increased to 1.118 (95% CI = 1.096–1.140). Our objective was to determine whether per capita calf recruitment rates after bear removal (2009–2019) at Cataloochee were similar to the higher rates estimated during bear removal (i.e., long-term response) or if they returned to rates before bear removal (i.e., short-term response), and how those rates compared with recruitment from portions of our study area where bears were not relocated. We documented 419 potential elk calving events and monitored 129 yearling and adult elk from 2001 to 2019. Known-fate models based on radio-telemetry and observational data supported calf recruitment returning to pre-2006 levels at Cataloochee (short-term response); recruitment of Cataloochee elk before and after bear relocation was lower (0.184) than during bear relocation (0.492). Recruitment rates of elk outside the removal area during the bear relocation period (0.478) were similar to before and after rates (0.420). In the Cataloochee Valley, cause-specific annual calf mortality rates due to predation by bears were 0.319 before, 0.120 during, and 0.306 after bear relocation. In contrast, the cause-specific annual mortality rate of calves in areas where bears were not relocated was 0.033 after the bear relocation period, with no bear predation on calves before or during bear relocation. The mean annual population growth rate for all monitored elk was 1.062 (95% CI = 0.979–1.140) after bear relocation based on the recruitment and survival data. Even though the effects of bear removal were temporary, the relocations were effective in achieving a short-term increase in elk recruitment, which was important for the reintroduction program given that the elk population was small and vulnerable to extirpation.  相似文献   

13.
    
Abstract: The realized impact of a vital rate on population growth (λ) is determined by both the relative influence of the vital rate on λ (elasticity) and its magnitude of variability. We estimated mean survival and reproductive rates in elk (Cervus elaphus) and spatial and temporal variation in these rates from 37 sources located primarily across the Rocky Mountain region and northwestern United States. We removed sampling variance from estimates of process variance both within and across vital-rate data sets using the variance discounting method developed by White (2000). Deterministic elasticities calculated from a population matrix model parameterized with these mean vital rates ranked adult female survival (eScow = 0.869) much higher than calf survival (eScalf = 0.131). However, process variance in calf survival was >11 times greater than process variance in female survival across data sets and 10 times greater on average within studies. We conducted Life-Stage Simulation Analysis to incorporate both vital-rate elasticity patterns and empirical estimates of variability to identify those vital rates most influential in elk population dynamics. The overwhelming magnitude of variation in calf survival explained 75% of the variation in the population growth rates generated from 1,000 matrix replicates, compared to just 16% of the variation in λ explained by variation in female survival. Variation in calf survival greatly impacts elk population growth and calls into question the utility of classical elasticity analysis alone for guiding elk management. These results also suggest that the majority of interannual variability that wildlife managers document in late-winter and spring elk surveys is attributable to variation in calf survival over the previous year and less influenced by variation in the harvest of females during the preceding autumn. To meet elk population size objectives, managers should consider the inherent variation in calf survival, and its apparent sensitivity to management, in addition to female harvest.  相似文献   

14.
    
We studied survival and causes of mortality of radiocollared cougars (Puma concolor) on the Greater Yellowstone Northern Range (GYNR) prior to (1987–1994) and after wolf (Canis lupus) reintroduction (1998–2005) and evaluated temporal, spatial, and environmental factors that explain variation in adult, subadult, and kitten survival. Using Program MARK and multimodel inference, we modeled cougar survival based on demographic status, season, and landscape attributes. Our best models for adult and independent subadults indicated that females survived better than males and survival increased with age until cougars reached older ages. Lower elevations and increasing density of roads, particularly in areas open to cougar hunting north of Yellowstone National Park (YNP), increased mortality risks for cougars on the GYNR. Indices of ungulate biomass, cougar and wolf population size, winter severity, rainfall, and individual characteristics such as the presence of dependent young, age class, and use of Park or Wilderness were not important predictors of survival. Kitten survival increased with age, was lower during winter, increased with increasing minimum estimates of elk calf biomass, and increased with increasing density of adult male cougars. Using our best model, we mapped adult cougar survival on the GYNR landscape. Results of receiver operating characteristic (ROC) analysis indicated a good model fit for both female (area under the curve [AUC] = 0.81, 95%CI = 0.70–0.92, n = 35 locations) and male cougars (AUC = 0.84, 95%CI = 0.74–0.94, n = 49 locations) relative to hunter harvest locations in our study area. Using minimum estimates of survival necessary to sustain the study population, we developed a source-sink surface and we identify several measures that resource management agencies can take to enhance cougar population management based on a source-sink strategy. © 2011 The Wildlife Society.  相似文献   

15.
16.
    
Each spring, migratory herbivores around the world track or ‘surf’ green waves of newly emergent vegetation to distant summer or wet‐season ranges. This foraging tactic may help explain the great abundance of migratory herbivores on many seasonal landscapes. However, the underlying fitness benefits of this life‐history strategy remain poorly understood. A fundamental prediction of the green‐wave hypothesis is that migratory herbivores obtain fitness benefits from surfing waves of newly emergent vegetation more closely than their resident counterparts. Here we evaluate whether this behavior increases body‐fat levels – a critically important correlate of reproduction and survival for most ungulates – in elk Cervus elaphus of the Greater Yellowstone Ecosystem. Using satellite imagery and GPS tracking data, we found evidence that migrants (n = 23) indeed surfed the green wave, occupying sites 12.7 days closer to peak green‐up than residents (n = 16). Importantly, individual variation in surfing may help account for up to 6 kg of variation in autumn body‐fat levels. Our findings point to a pathway for anthropogenic changes to the green wave (e.g. climate change) or migrants’ ability to surf it (e.g. development) to impact migratory populations. To explore this possibility, we evaluated potential population‐level consequences of constrained surfing with a heuristic model. If green‐wave surfing deteriorates by 5–15 days from observed, our model predicts up to a 20% decrease in pregnancy rates, a 2.5% decrease in population growth, and a 30% decrease in abundance over 50 years. By linking green‐wave surfing to fitness and illustrating potential effects on population growth, our study provides new insights into the evolution of migratory behavior and the prospects for the persistence of migratory ungulate populations in a changing world.  相似文献   

17.
    
ABSTRACT We assessed whether use of 2 methods, intensive very high frequency (VHF) radiotelemetry and Global Positioning System (GPS) cluster sampling, yielded similar estimates of cougar (Puma concolor) kill rates in Yellowstone National Park, 1998–2005. We additionally determined biases (underestimation or overestimation of rates) resulting from each method. We used modeling to evaluate what characteristics of clusters best predicted a kill versus no kill and further evaluated which predictor(s) minimized effort and the number of missed kills. We conducted 16 VHF ground predation sequences resulting in 37 kill intervals (KIs) and 21 GPS sequences resulting in 84 KIs on 6 solitary adult females, 4 maternal females, and 5 adult males. Kill rates (days/kill and biomass [kg] killed/day) did not differ between VHF and GPS predation sampling methods for maternal females, solitary adult females, and adult males. Sixteen of 142 (11.3%) kills detected via GPS clusters were missed through VHF ground-based sampling, and the kill rate was underestimated by an average of 5.2 (95% CI = 3.8–6.6) days/kill over all cougar social classes. Five of 142 (3.5%) kills identified by GPS cluster sampling were incorrectly identified as the focal individual's kill from scavenging, and the kill rate was overestimated within the adult male social class by an average of 5.8 (95% CI = 3.0–8.5) days/ungulate kill. The number of nights (locations between 2000 hours and 0500 hours) a cougar spent at a cluster was the most efficient variable at predicting predation, minimizing the missed kills, and minimizing number of extra clusters that needed to be searched. In Yellowstone National Park, where competing carnivores displaced cougars from their kills, it was necessary to search extra sites where a kill may not have been present to ensure we did not miss small, ungulate prey kills or kills with displacement. Using predictions from models to assign unvisited clusters as no kill, small prey kill, or large prey kill can bias downward the number of kills a cougar made and bias upward kills made by competitors that displace cougars or scavenge cougar kills. Our findings emphasize that field visitation is crucial in determining displacement and scavenging events that can result in biases when using GPS cluster methods in multicarnivore systems.  相似文献   

18.
    
Abstract: Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:cow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (Λ) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and Λ. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.  相似文献   

19.
20.
    
Abstract: The area in and around Banff National Park (BNP) in southwestern Alberta, Canada, is 1 of the most heavily used and developed areas where grizzly bears (Ursus arctos) still exist. During 1994–2002, we radiomarked and monitored 37 female and 34 male bears in this area to estimate rates of survival, reproduction, and population growth. Annual survival rates of bears other than dependent young averaged 95% for females and 81–85% for males. Although this area was largely unhunted, humans caused 75% of female mortality and 86% of male mortality. Females produced their first surviving litter at 6–12 years of age ( = 8.4 years). Litters averaged 1.84 cubs spaced at 4.4-year intervals. Adult (≥6-years-old) females produced 0.24 female cubs per year and were expected to produce an average of 1.7 female cubs in their lifetime, based on rates of reproduction and survival. Cub survival was 79%, yearling survival was 91%, and survival through independence at 2.5–5.5 years of age was 72%, as no dependent young older than yearlings died. Although this is the slowest-reproducing grizzly bear population yet studied, high rates of survival seem to have enabled positive population growth (Λ = 1.04, 95% CI = 0.99–1.09), based on analyses using Leslie matrices. Current management practices, instituted in the late 1980s, focus on alleviating human-caused bear mortality. If the 1970–1980s style of management had continued, we estimated that an average of 1 more radiomarked female would have been killed each year, reducing female survival to the point that the population would have declined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号