首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The donor-recipient protoplast fusion method was used to produce cybrid plants and to transfer cytoplasmic male sterility (CMS) from two cytoplasmic male-sterile lines MTC-5A and MTC-9A into a fertile japonica cultivar, Sasanishiki. The CMS was expressed in the cybrid plants and was stably transmitted to their progenies. Only cytoplasmic traits of the male-sterile lines, especially the mitochondrial DNAs, were introduced into the cells of the fertile rice cultivar. More than 80% of the cybrid plants did not set any seeds upon selfing. Sterile cybrid plants set seeds only when they were fertilized with normal pollen by hand and yielded only sterile progenies. This maternally inherited sterility of the cybrid plants showed that they were characterized by CMS. The CMS of cybrid plants could be restored completely by crossing with MTC-10R which had the single dominant gene Rf-1 for restoring fertility. These results indicated that CMS was caused by the mitochondrial genome introduced through protoplast fusion. The introduced CMS was stably transmitted to their progenies during at least eight backcross generations. These results demonstrate that cybrids generated by the donor-recipient protoplast fusion technique can be used in hybrid rice breeding for the creation of new cytoplasmic male-sterile rice lines.  相似文献   

2.
Cytoplasmic male-sterile (CMS) chicories have been previously obtained by somatic hybridisation between fertile industrial chicory protoplasts and CMS sunflower protoplasts. In this study, we compared three different CMS chicory cybrids that originated from three different fusion events. The cybrids were backcrossed with different witloof chicories in order to transfer the three male-sterile cytoplasms from an industrial chicory nuclear environment to a witloof chicory nuclear context. Southern hybridisation, using different mitochondrial genes as probes, revealed that the three cybrid mitochondrial genomes were different and that they were stable throughout backcrossing generations regardless of the pollinator. However, pollinators were found to influence floral morphologies – with one being able to restore fertility – showing that nuclear context can affect the sterility of the cybrids. PCR and RFLP analyses revealed that the orf522 sequence, responsiblefor CMS in PET1 sunflower, was present in two out of the three cytoplasms studied, namely 411 and 523, but was absent from the other cytoplasm, 524. We thus concluded that orf522 is not responsible for CMS in the 524 cybrid. Although the orf522 gene is present in the 411 and 523 cytoplasms, it is probably not responsible for the sterile phenotype of these cybrids. Received: 3 June 1998 / Accepted: 30 April 1999  相似文献   

3.
Kim DH  Kim BD 《Molecules and cells》2005,20(3):416-422
We previously used Southern blot analysis to detect restriction-length polymorphisms between male fertile and cytoplasmic male sterile (CMS) cytoplasms at the coxII and atp6 loci of the mtDNA of Capsicum annuum L. Two copies of atp6 were found in each male fertile and CMS pepper lines. Interestingly, one of the copies of atp6 in CMS pepper was a 3'-truncated pseudogene. The open reading frame of the coxII gene was the same in the fertile (N-) and CMS (S-) lines. However, the nucleotide sequence in the S-cytoplasm diverged from that in the N-cytoplasm 41 bp downstream of the stop codon. To develop CMS-specific sequence-characterized amplified region (SCAR) markers, inverse PCR was performed to characterize the nucleotide sequences of the 5' and 3' flanking regions of mitochondrial atp6 and coxII from the cytoplasms of male fertile (N-) and CMS (S-) pepper plants. Based on these data, two CMS-specific SCAR markers, 607 and 708 bp long, were developed to distinguish N-cytoplasm from S-cytoplasm by PCR. The CMS-specific PCR bands were verified for 20 cultivars containing either N- or S-cytoplasm. PCR amplification of CMS-specific mitochondrial nucleotide sequences will allow quick and reliable identification of the cytoplasmic types of individual plants at the seedling stage, and assessment of the purity of F1 seed lots. The strategy used in this report for identifying CMS-specific markers could be adopted for many other crops where CMS is used for F1 seed production.  相似文献   

4.
5.
mtDNA was isolated from cytoplasmic male sterility (CMS) line P3A and its maintainer P3B of kenaf (Hibiscus cannabinus L.). The atp9 gene and its two flanking sequences were obtained using homology cloning and high-efficiency thermal asymmetric interlaced PCR methods. The coding sequences showed only two base pairs difference between the CMS and its maintainer, and shared a homology of over 87 % with atp9 genes from other species in GenBank. However, when comparing the flanking sequences, a 47-bp deletion was characterized at the 3′ flanking sequence of atp9 in the CMS line. Quantitative PCR analysis indicated that the expression level of atp9 in the CMS line was 0.937-fold that of its maintainer. Furthermore, the respiratory rate of anthers in the CMS line was markedly lower than that of its maintainer. The results indicated that the 47-bp deletion at the 3′ flanking sequence of atp9 and/or down-regulated expression of the atp9 gene in the CMS line might be closely related to CMS in kenaf. To confirm whether the 47-bp deletion was specific to cytoplasm of male sterile lines, another 21 varieties were used for further analysis. The results showed that the 47-bp deletion was specific to male sterile cytoplasm (MSC) of kenaf. Based on these, a specific molecular marker was developed to distinguish the MSC from male fertile cytoplasm of kenaf.  相似文献   

6.
Seedlessness, an important economic trait for fresh fruit, is among the prior goal for all citrus breeding programs. Symmetric somatic hybridization provides a new strategy for citrus seedless breeding by creating cybrids transferring mitochondrial DNA (mtDNA) controlled cytoplasmic male sterility (CMS) from the callus parent Satsuma mandarin (C. unshiu Marc.) to seedy cultivars. In this study, protoplast fusion was adopted to transfer CMS from C. unshiu Marc. cv. Guoqing No. 1 (G1) to three seedy sweet oranges (C. sinensis L. Osb.), i.e. ‘Early gold’, ‘Taoye’ and ‘Hongjiang’. Flow cytometry analysis showed that 12 of 13 regenerated plants from G1 + ‘Early gold’, 9 of 12 from G1 + ‘Taoye’ and both two plants from G1 + ‘Hongjiang’ were diploids, while the remaining regenerated plants were tetraploids. Molecular analysis using 23 simple sequence repeat (SSR) markers previously proven to map to the citrus genome showed that the nuclear DNA from all recovered diploid and tetraploid plants derived from their corresponding leaf parent, while cleaved amplified polymorphic sequence analysis showed that the mtDNA of all regenerated plants derived from the callus parent, indicating that the regenerated 2X and 4X plants from all these three combinations are authentic cybrids. Furthermore, the Chloroplast SSR analysis revealed that somatic cybrid plants from the three combinations possessed either of their parental chloroplast type in most cases. These results demonstrated that mtDNA of G1 Satsuma mandarin was successfully introduced into the three seedy sweet orange cultivars for potential seedlessness via symmetric fusion.  相似文献   

7.
Synaptosome cybrids were used to confirm the presence of heteroplasmic mtDNA sequence variants in the human brain. Synaptosomes contain one to several mitochondria, and when fused to mtDNA-deficient (ρ°) mouse or human cell lines result in viable cybrid cell lines. The brain origin of mouse synaptosome cybrid mtDNAs was confirmed using sequence polymorphisms in the mtDNA COIII, ND3 and tRNAArg genes. The brain origin of the human synaptosome cybrids was confirmed using a rare mtDNA MboI polymorphism. Fusion of synaptosomes from the brain of a 35-year-old woman resulted in 71 synaptosome cybrids. Sequencing the mtDNA control region of these cybrid clones revealed differences in the number of Cs in a poly C track between nucleotide pairs (nps) 301 and 309. Three percent of the cybrid clones had mtDNAs with 10 Cs, 76% had nine, 18% had eight and 3% had seven Cs. Comparable results were obtained by PCR amplification, cloning and sequencing of mtDNA control regions directly from the patient’s brain tissue, but not when the control region was amplified and cloned from a synaptosome cybrid homoplasmic for a mtDNA with nine Cs. Thus, we have clonally recovered mtDNA control region length variants from an adult human brain without recourse to PCR, and established the variant mtDNAs within living cultured cells. This confirms that some mtDNA heteroplasmy can exist in human neurons, and provides the opportunity to study its functional significance.  相似文献   

8.
In this study, the atp8 gene was cloned from the cytoplasmic male sterile (CMS) line UG93A and its maintainer line UG93B in kenaf. Its DNA sequence analysis showed that atp8 containing 480-bp, encoding 159 amino acid residues, and a 9-bp insertion was found at the 3′flanking sequence in UG93A compared with UG93B. The cDNA sequence of atp8 analyzed by RT-PCR indicated that there were five loci edited, but six loci edited in UG93B. The editing frequencies were higher in sterile cytoplasm than in fertile cytoplasm. The relative expression of atp8 analyzed by real-time PCR showed that the expressed level of atp8 in UG93A was lower than that of its maitainer UG93B and its F1 hybrid UG93A/992 (a restore line). Furthermore, based on the difference of the 9-bp differences at the 3′flanking sequence of atp8 between UG93A and UG93B, a molecular marker specific to male sterile cytoplasm was developed, which can be used for indentifying whether any germplasm of kenaf is male sterile cytoplasm or male fertile cytoplasm.  相似文献   

9.
Cytoplasmic hybrids (cybrids) between the two sexually incompatible species Nicotiana tabacum and Petunia hybrida were constructed. Three green plants were obtained after fusion of leaf protoplasts from a cytoplasmic chlorophyll deficient mutant of tobacco, with iodoacetamide inactivated protoplasts of P. hybrida. All regenerated plants were phenotypically similar to tobacco, but male and female sterile. Chromosome and isoenzyme analyses of the nuclear genome, and restriction and blot hybridization analyses of the organelle composition revealed that the regenerated cybrids possessed nuclear genome of N. tabacum, chloroplasts from P. hybrida and recombinant chondriomes. In vitro culture of ovules from one cybrid plant pollinated by N. tabacum resulted in the regeneration of cytoplasmic male sterile progeny plants. Cross-section of anthers from these CMS plants showed that male sterility was due to a failure of tapetum development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
11.
Wild abortive cytoplasmic male sterility has been extensively used in hybrid seed production in the tropics. Using protoplast fusion between cytoplasmic male sterile and fertile maintainer lines; we report here, transfer of wild abortive cytoplasmic male sterility to the nuclear background of RCPL1-2C, an advance breeding line which also served as maintainer of this cytoplasm. In total, 27 putative cybrids between V20A and RCPL1-2C and 23 lines between V20A and V20B were recovered and all of them were sterile. DNA blots prepared from the mitochondrial DNA of the cybrid lines from both the sets were probed with orf155 that is known to exhibit polymorphism between the mitochondrial DNA of the male-sterile and fertile maintainer lines. Hybridization of orf155 to 1.3 kb HindIII-digested mitochondrial DNA fragment of the cybrids showed transfer of mitochondrial DNA from wild abortive cytoplasmic male-sterile line to the maintainers, viz. RCPL 1-2C and V20B. Expression of male sterility was confirmed by the presence of sterile pollen grains and the lack of seed setting due to selfing in all the cybrid lines. These cybrids, on crossing with respective fertile maintainers set seeds that in turn, produced sterile BC1 plants. DNA blots from HindIII-digested mitochondrial DNA of these BC1 plants when probed with orf155 again exhibited localization of orf155 in wild abortive cytoplasm-specific 1.3 kb HindIII-digested mitochondrial DNA fragments. This demonstrated that the cytoplasmic male sterility transferred through protoplast fusion retained intact female fertility and was inherited and expressed in BC1 plants. Fusion-derived CMS lines, on pollination with pollen grains from restorer, showed restoration of fertility in all the lines. The results demonstrate that protoplasts fusion can be used for transferring maternally inherited traits like cytoplasmic male sterility to the desired nuclear background which can, in turn, be used in hybrid seed production programme of rice in the tropical world.  相似文献   

12.
Summary Techniques have been developed for the production of cybrids in Lolium perenne (perennial ryegrass). Gamma-irradiated protoplasts of a cytoplasmically male-sterile breeding line of perennial ryegrass (B200) were fused with iodoacetamide-treated protoplasts of a fertile breeding line (Jon 401). After fusion 25 putative cybrid calli were characterized to determine mitochondrion type and composition of the nuclear genome. Analysis of phosphoglucoisomerase isozyme profiles and determination of the ploidy level by flow cytometry indicated that all of the calli tested essentially contained the nuclear DNA of the fertile line. However, the presence of parts of the nuclear DNA from the sterile line could not be excluded. Southern blotting of total DNA isolated from the parental lines and putative cybrids combined with hybridizations using the mitochondrial probes cox1 and atp6 revealed that the mitochondria of the calli originated from the fertile line (5 calli), the sterile line (5 calli) or from both parental lines (15 calli). The hybridization patterns of the mtDNA from the cybrid calli showed extensive quantitative and qualitative variation, suggesting that fusion-induced inter- or intramolecular mitochondrial recombination had taken place.  相似文献   

13.
Summary Brassica cybrids were obtained after fusing protoplasts of fertile and cytoplasmic male sterile (CMS) B. napus lines carrying the original b. napus, and the Ogura Raphanus sativus cytoplasms, respectively. Iodoacetate treatment of the fertile line and X-irradiation of the CMS line prevented colony formation from the parental protoplasts. Colony formation, however, was obtained after protoplast fusion. Hybrid cytoplasm formation was studied in 0.5 g to 5.0 g calli grown from a fused protoplast after an estimated 19 to 22 cell divisions. Chloroplasts and mitochondria were identified in the calli by hybridizing appropriate DNA probes to total cellular DNA. Out of the 42 clones studied 37 were confirmed as cybrids. Chloroplast segregation was complete at the time of the study. Chloroplasts in all of the cybrid clones were found to derive from the fertile parent. Mitochondrial DNA (mtDNA) segregation was complete in some but not all of the clones. In the cybrids, mtDNA was different from the parental plants. Physical mapping revealed recombination in a region which is not normally involved in the formation of subgenomic mtDNA circles. The role of treatments used to facilitate the recovery of cybrids, and of organelle compatibility in hybrid cytoplasm formation is discussed.  相似文献   

14.
Summary X-irradiated protoplasts of Daucus carota L., 28A1, carrying cytoplasmic male sterile (CMS) cytoplasm and iodoacetamide-treated protoplasts of a fertile carrot cultivar, K5, were fused with polyethylene glycol (PEG), and 73 plants were regenerated. Twenty-six randomly chosen regenerated plants had non-parental mitochondrial DNA (mtDNA) as revealed by XbaI restriction fragment patterns, and all of the plants investigated had diploid chromosome numbers. Of the 11 cybrid plants that showed mtDNA fragment patterns clearly different from those of the parents, 10 plants showed male sterility with brown or red anthers, and one plant possessed partially sterile yellow anthers. The mtDNA fragment patterns of the ten cybrid plants with male sterile flowers resembled that of a CMS parent, 28A1; and four fragments were identified that were common between the sterile cybrid plants and 28A1, but absent from the partially sterile cybrid plants and a fertile cultivar, K5. The results indicated that the CMS trait of the donor was efficiently transferred into the cybrid plants by donor-recipient protoplast fusion.  相似文献   

15.
Cytoplasmic male sterility (CMS) is known to be controlled by mitochondrial genome in higher plants including Satsuma mandarin (Citrus unshiu Marc.). Citrus symmetric fusion experiments often produce diploid cybrids possessing nuclear DNA from the mesophyll parent and mitochondrial DNA (mtDNA) from the embryogenic callus parent. Therefore, it is possible to transfer CMS from Satsuma mandarin as callus parent to seedy citrus cultivars as leaf one by somatic cybridization. Herein, symmetric fusion technique was adopted to create cybrids for potential seedlessness by transferring CMS from Citrus unshiu Marc. cv. Guoqing No. 1 (G1) to two traditional Chinese seedy citrus cultivars, ‘Shatian’ pummelo (C. grandis (L) Osbeck) and ‘Bingtang’ orange (C. sinensis (L) Osbeck). Flow cytometry analysis showed that 19 plants recovered from G1 + ‘Bingtang’ orange and 17 of 35 plants regenerated from G1 + ‘Shatian’ pummelo were diploid. The remaining plants from G1 + ‘Shatian’ pummelo were tetraploid. The diploid plants from the two combinations were confirmed as true cybrids by simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) analysis, with nuclear DNA from their corresponding leaf parent and mtDNA from their common suspension parent, G1 Satsuma mandarin. The remaining plants from G1 + ‘Shatian’ pummelo were identified as somatic hybrids with mtDNA from G1. The chloroplast simple sequence repeat (cp-SSR) analysis revealed somatic hybrid/cybrid plants from the two combinations in most cases possessed either of their parental chloroplast type, and two plants from G1 +‘Shatian’ pummelo and all embryoids analyzed from G1 + ‘Bingtang’ orange possessed chloroplast DNA (cpDNA) from both parents. These results demonstrated that we succeeded in introducing mtDNA from G1 Satsuma mandarin into the two target seedy citrus cultivars for potential seedlessness through symmetric fusion.  相似文献   

16.
The donor-recipient fusion method was used to combine the cytoplasm of Brassica lournefortii with the nucleus of B. napus for the production of cytoplasmic male sterile (CMS) plants. X-ray-irradiated mesophyll protoplasts of B. tournefortii were fused with iodoacetamide (lOA)-inactivated hypocotye protoplasts of B. napus . Selective conditions of IOA concentrations and X-ray doses were determined, which resulted in recovery of fusion products and inhibition of further growth of unfused parental cells. In total, 54 plants were obtained from different fusion experiments, of which 25 were verified as cybrids or partial hybrids. Mitochondrial DNA (mtDNA) analyses using 5 mitochondrial gene probes revealed that 20 of the 25 fusion-derived plants had mtDNA either identical, or with varying degrees of similarity, to B. lournefortii . These plants were classified into four groups on the basis of pollen viability and number. Seven plants were categorised as male sterile since they did not produce pollen or had non-viable pollen. Of the male sterile plants, five had a mtDNA pattern identical to B. tournefortii and a nuclear DNA content corresponding to B. napus . The nuclear-mito-chondrial constitution of these plants thus indicates that the combination of B. tournefortii cytoplasm with the B. napus nucleus results in CMS. Furthermore, mtDNA analysis of the two additional male sterile plants which displayed a rearranged mtDNA, revealed that the only mtDNA similarity shared among all male sterile plants was specific for B. tournefortii atp6 pattern. This indicates that the atp6 region of B. tournefortii may be involved in the expression of CMS.  相似文献   

17.
Summary Fusions between protoplasts from haploid cytoplasmic atrazine resistant (CATR) and haploid cytoplasmic male sterile (CMS) Brassica napus plants were used to produce a diploid CMS/CATR cybrid. The hybrid nature of the cytoplasm was confirmed by comparing the EcoRI restriction fragment patterns of chloroplast and mitochondrial DNA from the cybrid with the parental patterns. The advantages of using haploid protoplasts for fusion experiments as well as the utilization of the CMS/CATR cybrid for hybrid seed production are discussed.  相似文献   

18.

Key message

Thirteen rice CMS lines derived from different cytoplasms were classified into eight groups by PCR amplification on mtDNA. The orf79 gene, which causes Boro II CMS, possibly results in Dian1-CMS.

Abstract

Thirteen rice cytoplasmic male sterile (CMS) lines derived from different cytoplasms are widely used for hybrid rice breeding. Based on 27 loci on mitochondrial DNA, including single nucleotide polymorphisms and segmental sequence variations between typical indica and japonica as well as high-polymorphism segmental sequence variations and single nucleotide polymorphisms among rice CMS lines, the 13 rice CMS lines were classified into eight groups: (I) wild-abortive CMS, Indonesian Shuitiangu CMS, K-CMS, Gang CMS, D-CMS and dwarf abortive CMS; (II) Maxie-CMS; (III) Honglian CMS; (IV) Boro II CMS; (V) Dian1-CMS; (VI) Liao-CMS; (VII) Lead CMS; and (VIII) Chinese wild rice CMS. According to their pollen abortion phenotypes, groups I and II (including 7 CMS lines) were classified as sporophytic CMS lines, the cytoplasmic genetic relationships among which were very close. They could have originated from similar, or even the same, cytoplasm donors. Groups III–VIII (including 6 CMS lines) were categorized as gametophytic CMS lines, the cytoplasms of which differed from one another, with some having relatively far genetic relationships. Dian1-CMS was found to harbor the orf79 gene, which causes Boro II CMS, whereas Liao-CMS had an orf79 structure that does not result in Lead CMS. Therefore, we speculated that orf79 is associated with Dian1-CMS but not with Liao-CMS. The atp6orf79 structure related to sterility was also found to experience multiple evolutionary turnovers. All sporophytic CMS lines were indica-like. Except the Honglian CMS line, which was indica-like, all gametophytic CMS lines were japonica-like.  相似文献   

19.
20.
Summary Restoration of male fertility was achieved by fusing protoplasts from male sterile (CMS) Nicotiana sylvestris plants with X-irradiated protoplasts derived from fertile N. tabacum plants. The CMS N. sylvestris plants were derived from a previous somatic hybridization experiment and contained alien (Line 92) cytoplasm. About one quarter of the regenerated plants were found to be cybrids. i.e. they consisted of N. sylvestris nuclei combined with all or some components of N. tabacum cytoplasm. In one half of these cybrids male fertility was restored to different levels. The chloroplasts of the two parental donors differ in respect to tentoxin sensitivity: chloroplasts of CMS N. sylvestris are sensitive while those of N. tabacum are insensitive. It could therefore be demonstrated that there was an independent segregation of chloroplast type and male fertility/sterility: several somatic cybrids were male fertile but tentoxin sensitive and others were tentoxin insensitive yet they were male sterile. Only in about one half of the somatic cybrids was male fertility restored together with restoration to tentoxin insensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号