首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
The deposition patterns of large-particle microbiological aerosols within the respiratory tract are not well characterized. A novel system (the flow-focusing aerosol generator [FFAG]) which enables the generation of large (>10-μm) aerosol particles containing microorganisms under laboratory conditions was characterized to permit determination of deposition profiles within the murine respiratory tract. Unlike other systems for generating large aerosol particles, the FFAG is compatible with microbiological containment and the inhalational challenge of animals. By use of entrapped Escherichia coli cells, Bacillus atrophaeus spores, or FluoSphere beads, the properties of aerosols generated by the FFAG were compared with the properties of aerosols generated using the commonly available Collison nebulizer, which preferentially generates small (1- to 3-μm) aerosol particles. More entrapped particulates (15.9- to 19.2-fold) were incorporated into 9- to 17-μm particles generated by the FFAG than by the Collison nebulizer. The 1- to 3-μm particles generated by the Collison nebulizer were more likely to contain a particulate than those generated by the FFAG. E. coli cells aerosolized using the FFAG survived better than those aerosolized using the Collison nebulizer. Aerosols generated by the Collison nebulizer and the FFAG preferentially deposited in the lungs and nasal passages of the murine respiratory tract, respectively. However, significant deposition of material also occurred in the gastrointestinal tract after inhalation of both the small (89.7%)- and large (61.5%)-particle aerosols. The aerosols generated by the Collison nebulizer and the FFAG differ with respect to mass distribution, distribution of the entrapped particulates, bacterial survival, and deposition within the murine respiratory tract.  相似文献   

2.
揭示涡结构演化对病毒气溶胶扩散的影响作用,对于有效防治呼吸道疾病具有非常重要的意义.本文运用大涡模拟的方法,对人体在循环呼吸模式下口喉模型内的涡结构演化及气溶胶扩散进行了数值仿真研究,分析了口喉模型内涡结构演化过程以及气溶胶扩散状态.结果表明:受呼吸流涡结构演化的影响,颗粒轨迹主要分布在上气道内涡量集中的区域;受横向涡结构和纵向涡结构的共同影响,部分病毒气溶胶颗粒具备了混合有环状轨迹和波状轨迹的螺旋状轨迹.本研究从微观角度揭示了涡结构演化与气溶胶扩散行为的关系,为深入认识病毒气溶胶上呼吸道传播特点提供了新的途径.  相似文献   

3.
Aerosols composed of viable particles of a uniform size were produced with a commercial spinning-disc generator from aqueous suspensions of Bacillus subtilis var. niger spores containing various amounts of an inert material, dextran, to regulate aerosol particle size. Aerosols composed of single naked spores having an equivalent spherical diameter of 0.87 mum were produced from spore suspensions without dextran, whereas aerosols produced from suspensions containing 0.001, 0.01, 0.1, and 1% dextran had median diameters of 0.90, 1.04, 1.80, and 3.62 mum, respectively. Such aerosols, both homogeneous and viable, would be useful for calibrating air sampling devices, evaluating air filter systems, or for employment wherever aerosol behavior may be size-dependent.  相似文献   

4.
Deposition of well-defined test aerosols of polystyrene particles was studied in rabbits. The deposition was estimated in a standardized part of the tracheobronchial tree following free dissection of the bronchial parts. Ten rabbits were exposed to a mixture of two test aerosols of about the same size(6-7 mum) tagged with 51-Cr and 46-Sc, respectively. There were interindividual differences in tracheobronchial deposition but a correlation (r equals 0.98) between 51-Cr and 46-Sc tagged particles. Eleven rabbits were first exposed to the 46-Sc tagged aerosol and 2 hours later to the 51-Cr tagged aerosol. In this experiment there was also a correlation (r equals 0.74) between the tracheobronchial deposition of 51-Cr tagged particles and the 2-hour retention of 46-Sc tagged particles. This result together with results from an earlier study indicate that the large interindividual differences in deposition are real and are not caused by differences in exposure technique, or in the aerosols.  相似文献   

5.
The primary mode of depositon of particles in the respiratory tract in the size range 0.5-10 mum diam (unit density) is sedimentation. The rate of sedimentation is directly proportional to the velocity of settling of the particle. Therefore, the total deposition of particles in the respiratory tract as well as the region of deposition is affected by changes in gravity. Human subjects were exposed to aerosols of 2.02-mum-diam polyvinyltoluene particles at 0, 0.5, 1.0, and 2.0 G. Total deposition was measured at each G level. Results indicate an almost linear increase in total deposition with increasing G levels over the range studied. The deposition measured at 1 G was less than reported in earlier experiments and the deposition at levels less than 1 G was less than had been calculated by Muir and Beeckmans. These data show that although sedimentation plays the major role in depostion of 2.02 mum particles, it is less than previously described.  相似文献   

6.
A pressure plethysmograph for measuring respiratory volume in mice during exposure to virus aerosols is described. The respiratory frequency and tidal volume were measured, and from these data the minute ventilation was calculated. The mean respiratory frequency of adult, male mice was 255 per min; the mean tidal volume of 0.18 ml was inversely related to respiratory frequency. The standardized mean minute ventilation rate was 1.46 ml per g of body weight. The respiratory frequency and tidal volume of CD-1 and HA/ICR strains of mice of the same age were similar. The respiratory retention rate for a 2.7-mum aerosol of vesicular stomatitis virus was 41%, and 58% of the virus retained was found in the trachea and lung.  相似文献   

7.
Studies of aerosol particle deposition in the respiratory tract requires experimental inhalation of artificial model aerosols. The paper formulates some of the most important requirements for the properties of such aerosols. Several suitable fractions were prepared as part of a research project dealing with the use of microporous polymers for diagnostic purposes. 5 fractions of the polymer designated G-gel 60 with the particle size as stated by the manufacturer, ranging from 3 to 7 micron were evaluated using a 16-channel particle dispersity analyzer HIAC/ROYCO MT 3210 with the sensor 1200 and operated by a microprocessor, the equipment being coupled to an APPLE IIe computer. G-gel 60 particles introduced into the aerosol were characterized by the parameters CMAD, MMAD and sg both numerically and graphically. The measurement procedure was found to be very sensitive with respect to all fractions in evaluating the subtile differences between different lot numbers of the aerosol. G-gel 60 fractions characterized both numerically and graphically were compared with the known aerosols from paraffin oil and atmospheric air. The equipment MT 3210 enables prompt determination of the percentages of aerosol particles distribution by size class. The authors conclude that the procedure, both in its numerical and graphical versions, is particularly suitable for the diagnosis of aerosol particles deposition in the respiratory tract, offering a new application for HIAC/ROYCO in the field of medicine. In evaluating atmospheric aerosol in exhaled air, the number of particles was found to be below that in inhaled air, the difference being dependent on the choice of investigation methods. Percentual distribution of deposited particles following one minute ventilation proved to be at its maximum, as regards atmospheric aerosol, in the 0.30-0.50 micron range. The deposition curve was similar to already published curves, being characterized by an S-shaped pattern with maximum deposition in the greater size classes. An analysis of inhaled, exhaled and deposited aerosol suggested that deposited aerosol is more polydisperse and has particles of greater sizes than inhaled aerosol. Investigation of the effect of apnoe on deposition indicated that deposition increased as a function of apnoeic pause.  相似文献   

8.
Mycobacterium tuberculosis is the main cause of tuberculosis and is still a public health concern worldwide. This mycobacterium is transmitted through aerosols from human beings suffering from pulmonary tuberculosis to susceptible persons. To study this natural route of infection, we designed a new nose-only aerosol apparatus--system of aerosolisation of microorganisms (SAM)--in a carefully designed biohazard facility. For safety reasons, Mycobacterium smegmatis was first used to calibrate several parameters, such as inoculum density, atmospheric conditions (i.e. hygrometry) and particle size distribution. We present evidence that our apparatus is totally adapted to airborne delivery; the particle size of generated aerosol ranges from 1 to 7 microm, which is ideal for an infection by inhalation. We found that 99% of generated particles (<7 microm) could be retained by the respiratory tract, and among these particles, 62-79% (<3.3 microm) were able to reach pulmonary compartments. The next step was to simultaneously challenge 48 mice with M. tuberculosis in a highly reproducible way. We showed that a moderate dose (4 log10 colony-forming units (CFU) per mice) of M. tuberculosis was capable of causing progressive lung pathology and death in mice 30 days post-aerosolisation. Therefore, our apparatus, once calibrated, is easy to handle, safe, and can be used with any pathogen, which is spread by aerosol.  相似文献   

9.
Influenza viruses pose a major public health burden to communities around the world by causing respiratory infections that can be highly contagious and spread rapidly through the population. Despite extensive research on influenza viruses, the modes of transmission occurring most often among humans are not entirely clear. Contributing to this knowledge gap is the lack of an understanding of the levels of infectious virus present in respirable aerosols exhaled from infected hosts. Here, we used the ferret model to evaluate aerosol shedding patterns and measure the amount of infectious virus present in exhaled respirable aerosols. By comparing these parameters among a panel of human and avian influenza viruses exhibiting diverse respiratory droplet transmission efficiencies, we are able to report that ferrets infected by highly transmissible influenza viruses exhale a greater number of aerosol particles and more infectious virus within respirable aerosols than ferrets infected by influenza viruses that do not readily transmit. Our findings improve our understanding of the ferret transmission model and provide support for the potential for influenza virus aerosol transmission.  相似文献   

10.
Theoretical models of particle deposition in the respiratory tract predict high fractional deposition for particles of less than 0.1 micron, but there are few confirming experimental data for those predictions. We have measured the deposition fraction of a nonhygroscopic aerosol in the human respiratory tract. The aerosol had a count mean diameter of 0.044 micron SD of 1.93, as measured with an electrical aerosol analyzer, and was produced from a 0.01% solution of bis(2-ethylhexyl) sebacate using a condensation generator. Subjects inhaled the aerosol using a controlled respiratory pattern of 1 liter tidal volume, 12/min. Deposition was calculated as the difference in concentration between inhaled and exhaled aerosol of five size fractions corrected for system deposition and dead-space constants. Three deposition studies were done on each of five normal male volunteers. Means (+/- SE) for the five size fractions were 0.024 micron, 0.71 +/- 0.06; 0.043 micron, 0.62 +/- 0.06; 0.075 micron, 0.53 +/- 0.05; 0.13 micron, 0.44 +/- 0.04; and 0.24 micron, 0.37 +/- 0.06. These data demonstrate that deposition of inhaled particles in the 0.024- to 0.24-micron size range is high and increases with decreasing size. These observations agree with and validate predictions of mathematical models.  相似文献   

11.
A number of industrial processes require the addition of materials to the fermentation broth that are hazardous to health and environment. Agitation of broths inoculated with microorganisms can potentially release aerosols large enough to carry the microorganisms. The influence of agitation, air flow, and bacterial growth on aerosol size distribution, air flow, and bacterial growth on aerosol size distribution was investigated in an industrial pilot scale fermentor. A decrease in particle concentration was observed with increase in bacterial growth; this change was more pronounced in the size range above 2 mum. The aerosol size distribution was found to be practically independent of air flow rate and agitation rate for sizes less than 2 mum. However, for particles largar than 2 mum, the concentration was found to increase with an increase in air flow rate and agitation rate.  相似文献   

12.
Aims:  Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies.
Method:  A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples.
Conclusions:  The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not.
Significance and Impact of the Study:  The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.  相似文献   

13.
The study of gentamicin aerosol showed its relative innocuousness: it did not inhibit the growth and development of young animals, did not induce pathological changes in the upper respiratory tract, kidneys, liver, heart and spleen on its prolonged use. Pathohistological examination revealed slight irritating effect of the gentamicin aerosol in the lungs after its use in a dose of 8 or 25 mg/kg for 6 weeks. A procedure for investigating the effect of the aerosol on the activity of the trachea ciliated epithelium of warm blooded animals was developed. The gentamicin aerosols prepared from solutions of different concentrations (1 to 50 mg/ml) induced ingibition of the ciliated epithelium function at average from 15 to 35 per cent which was associated with the solution acidity (pH 4.54 to 4.82). Such a decrease in the function of the ciliated epithelium due to the antibiotic aerosol use was a factor prolonging the antibiotic retention time in the respiratory organs. It was found that aqueous solutions of drugs used for inhalation, such as ephedrin, euphelin, dimedrol, N-acetyl-L-cystein and others had no effect on the activity of gentamicin and may be used with it in a form of aerosols.  相似文献   

14.
An experimental technique is presented for studying aerosols generated from lyophilized bacteria by using Escherichia coli B, Bacillus subtilis var. niger, Enterobacter aerogenes, and Pasteurella tularensis. An aerosol generator capable of creating fine particle aerosols of small quantities (10 mg) of lyophilized powder under controlled conditions of exposure to the atmosphere is described. The physical properties of the aerosols are investigated as to the distribution of number of aerosol particles with particle size as well as to the distribution of number of bacteria with particle size. Biologically unstable vegetative cells were quantitated physically by using 14C and Europium chelate stain as tracers, whereas the stable heat-shocked B. subtilis spores were assayed biologically. The physical persistence of the lyophilized B. subtilis aerosol is investigated as a function of size of spore-containing particles. The experimental result that physical persistence of the aerosol in a closed aerosol chamber increases as particle size is decreased is satisfactorily explained on the bases of electrostatic, gravitational, inertial, and diffusion forces operating to remove particles from the particular aerosol system. The net effect of these various forces is to provide, after a short time interval in the system (about 2 min), an aerosol of fine particles with enhanced physical stability. The dependence of physical stability of the aerosol on the species of organism and the nature of the suspending medium for lyophilization is indicated. Also, limitations and general applicability of both the technique and results are discussed.  相似文献   

15.
16.
The CDC recommends that healthcare settings provide influenza patients with facemasks as a means of reducing transmission to staff and other patients, and a recent report suggested that surgical masks can capture influenza virus in large droplet spray. However, there is minimal data on influenza virus aerosol shedding, the infectiousness of exhaled aerosols, and none on the impact of facemasks on viral aerosol shedding from patients with seasonal influenza.We collected samples of exhaled particles (one with and one without a facemask) in two size fractions (“coarse”>5 µm, “fine”≤5 µm) from 37 volunteers within 5 days of seasonal influenza onset, measured viral copy number using quantitative RT-PCR, and tested the fine-particle fraction for culturable virus.Fine particles contained 8.8 (95% CI 4.1 to 19) fold more viral copies than did coarse particles. Surgical masks reduced viral copy numbers in the fine fraction by 2.8 fold (95% CI 1.5 to 5.2) and in the coarse fraction by 25 fold (95% CI 3.5 to 180). Overall, masks produced a 3.4 fold (95% CI 1.8 to 6.3) reduction in viral aerosol shedding. Correlations between nasopharyngeal swab and the aerosol fraction copy numbers were weak (r = 0.17, coarse; r = 0.29, fine fraction). Copy numbers in exhaled breath declined rapidly with day after onset of illness. Two subjects with the highest copy numbers gave culture positive fine particle samples.Surgical masks worn by patients reduce aerosols shedding of virus. The abundance of viral copies in fine particle aerosols and evidence for their infectiousness suggests an important role in seasonal influenza transmission. Monitoring exhaled virus aerosols will be important for validation of experimental transmission studies in humans.  相似文献   

17.
The proton-induced X-ray emission technique is one of the most suitable methods in the study of the multielement content of atmospheric aerosols. Atmospheric aerosol samples were collected in winter using an eight-stage cascade impactor at a site of the urban center and a rural site of Beijing. The aerosol samples collected were analyzed to determine maximum, minimum, and average concentrations of up to 20 elements and the ratios of the average element concentrations for the coarse to fine particles (C/F) by the PIXE technique. It has been found that the average elemental concentrations in the urban center are higher than those in the rural area, except S and Br. The concentrations for S and Pb in the atmospheric aerosols are found to be less than the results of previous measurement, but their concentrations in the fine particles increased in winter in the samples from the urban center. The deposition probability of the International Commission on Radiological Protection (ICRP) mode and the mass particle-size distributions of the elements determined in the urban center have been utilized to evaluate inhalable particulate matter fractions retained in the three regions of one’s respiratory tract and their harm to human health is discussed.  相似文献   

18.
以钝齿棒状杆菌噬菌体B271血清型为病毒等小颗粒生物粒子的模拟剂,建立了一种适合这类小颗粒生物粒子气溶胶存活研究的方法。本文从该噬菌体耐气溶胶化特性、气溶胶粒谱、用气溶胶示踪剂求算物理衰亡的方法和气溶胶采样回收技术等方面探讨了病毒气溶胶存活研究中的几个关键技术问题,为病毒气溶胶存活研究提供了参考。  相似文献   

19.

Background

Bacterial colonization and recurrent infections of the respiratory tract contribute to the progression of chronic obstructive pulmonary disease (COPD). There is evidence that exacerbations of COPD are provoked by new bacterial strains acquired from the environment. Using a murine model of colonization, we examined whether chronic exposure to cigarette smoke (CS) promotes nasopharyngeal colonization with typical lung pathogens and whether colonization is linked to inflammation in the respiratory tract.

Methods

C57BL/6 N mice were chronically exposed to CS. The upper airways of mice were colonized with nontypeable Haemophilus influenzae (NTHi) or Streptococcus pneumoniae. Bacterial colonization was determined in the upper respiratory tract and lung tissue. Inflammatory cells and cytokines were determined in lavage fluids. RT-PCR was performed for inflammatory mediators.

Results

Chronic CS exposure resulted in significantly increased numbers of viable NTHi in the upper airways, whereas NTHi only marginally colonized air-exposed mice. Colonization with S. pneumoniae was enhanced in the upper respiratory tract of CS-exposed mice and was accompanied by increased translocation of S. pneumoniae into the lung. Bacterial colonization levels were associated with increased concentrations of inflammatory mediators and the number of immune cells in lavage fluids of the upper respiratory tract and the lung. Phagocytosis activity was reduced in whole blood granulocytes and monocytes of CS-exposed mice.

Conclusions

These findings demonstrate that exposure to CS impacts the ability of the host to control bacterial colonization of the upper airways, resulting in enhanced inflammation and susceptibility of the host to pathogens migrating into the lung.  相似文献   

20.
The objective of the study was to develop a scintigraphic method for measurement of airway mucociliary clearance in small laboratory rodents such as the mouse. Previous investigations have characterized the secretory cell types present in the mouse airway, but analysis of the mucus transport system has been limited to in vitro examination of tissue explants or invasive in vivo measures of a single airway, the trachea. Three methods were used to deposit insoluble, radioisotopic colloidal particles: oropharyngeal aspiration, intratracheal instillation, and nose-only aerosol inhalation. The initial distribution of particles within the lower respiratory tract was visualized by gamma-camera, and clearance of particles was followed intermittently over 6 h and at the conclusion, 24 h postdelivery. Subsets of mice underwent lavage for evidence of tissue inflammation, and others were restudied for reproducibility of the methods. The aspiration and instillation methods of delivery led to greater distributions of deposited activity within the lungs, i.e., approximately 60--80% of the total respiratory tract radioactivity, whereas the nose-only aerosol technique attained a distribution of 32% to the lungs. However, the aerosol technique maximized the fraction of particles that cleared the airway over a 24-h period, i.e, deposited onto airway epithelial surfaces and cleared by mucociliary function such that lung retention at 24 h averaged 57% for delivery by aerosol inhalation and > or =80% for the aspiration or intratracheal instillation techniques. Particle delivery methods did not cause lung inflammation/injury with use of inflammatory cells and chemoattractant cytokines as criteria. Scintigraphy can discern particle deposition and clearance from the lower respiratory tract in the mouse, is noninvasive and reproducible, and includes the capability for restudy and lung lavage when time course or chronic treatments are being considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号