首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Gongora, J., Cuddahee, R. E., do Nascimento, F. F., Palgrave, C. J., Lowden, S., Ho, S. Y. W., Simond, D., Damayanti, C. S., White, D. J., Tay, W. T., Randi, E., Klingel, H., Rodrigues‐Zarate, C. J., Allen, K., Moran, C. & Larson, G. (2011). Rethinking the evolution of extant sub‐Saharan African suids (Suidae, Artiodactyla). —Zoologica Scripta, 40, 327–335. Although African suids have been of scientific interest for over two centuries, their origin, evolution, phylogeography and phylogenetic relationships remain contentious. There has been a long‐running debate concerning the evolution of pigs and hogs (Suidae), particularly regarding the phylogenetic relationships among extant Eurasian and African species of the subfamily Suinae. To investigate these issues, we analysed the mitochondrial and nuclear DNA sequences of extant genera of Suidae from Eurasia and Africa. Molecular phylogenetic analyses revealed that all extant sub‐Saharan African genera form a monophyletic clade separate from Eurasian suid genera, contradicting previous attempts to resolve the Suidae phylogeny. Two major sub‐Saharan African clades were identified, with Hylochoerus and Phacochoerus grouping together as a sister clade to Potamochoerus. In addition, we find that the ancestors of extant African suids may have evolved separately from the ancestors of modern day Sus and Porcula in Eurasia before they colonised Africa. Our results provide a revision of the intergeneric relationships within the family Suidae.  相似文献   

2.
Goitered gazelles, Gazella subgutturosa, exist in arid and semiarid regions of Asia from the Middle to the Far East. Although large populations were present over a vast area until recently, a decline of the population as a result of hunting, poaching, and habitat loss led to the IUCN classification of G. subgutturosa as “vulnerable." We examined genetic diversity, structure, and phylogeny of G. subgutturosa using mitochondrial cytochrome b sequences from 18 geographically distant populations in Iran. The median‐joining network of cyt b haplotypes indicated that three clades of goitered gazelles can be distinguished: a Middle Eastern clade west of the Zagros Mountains (and connected to populations in Turkey and Iraq), a Central Iranian clade (with connection to Azerbaijan), and an Asiatic clade in northeastern Iran (with connection to Turkmenistan, Uzbekistan, and other Asian countries as far as northeastern China and Mongolia). Based on our results, we argue that Iran is the center of diversification of goitered gazelles, due to the presence of large mountain ranges and deserts that lead to the separation of populations. In accordance with previous morphological studies, we identified the Asiatic clade as the subspecies G. s. yarkandensis, and the other two clades as the nominate form G. s. subgutturosa. The new genetic information for goitered gazelles in Iran provides the basis for future national conservation programs of this species.  相似文献   

3.
The European pond turtle (Emys orbicularis) is threatened and in decline in several regions of its natural range, due to habitat loss combined with population fragmentation. In this work, we have focused our efforts on studying the genetic diversity and structure of Iberian populations with a fine-scale sampling (254 turtles in 10 populations) and a representation from North Africa and Balearic island populations. Using both nuclear and mitochondrial markers (seven microsatellites, ∼1048 bp nDNA and ∼1500 bp mtDNA) we have carried out phylogenetic and demographic analyses. Our results show low values of genetic diversity at the mitochondrial level although our microsatellite dataset revealed relatively high levels of genetic variability with a latitudinal genetic trend decreasing from southern to northern populations. A moderate degree of genetic differentiation was estimated for Iberian populations (genetic distances, F ST values and clusters in the Bayesian analysis). The results in this study combining mtDNA and nDNA, provide the most comprehensive population genetic data for E. orbicularis in the Iberian Peninsula. Our results suggest that Iberian populations within the Iberian–Moroccan lineage should be considered as a single subspecies with five management units, and emphasize the importance of habitat management rather than population reinforcement (i.e. captive breeding and reintroduction) in this long-lived species.  相似文献   

4.
Ward  David  Saltz  David  Olsvig-Whittaker  Linda 《Plant Ecology》2000,150(1-2):27-36
We consider three case studies of long-term plant population dynamics in Makhtesh Ramon erosion cirque in the central Negev desert of Israel. We show that rainfall is the major driving variable in this system, and that it creates large temporal and spatial variation in plant species diversity and vegetation community composition. This variability makes it extremely difficult to distinguish `signal' (= pattern in vegetation) from `noise' (random spatial and temporal variance). Our long-term vegetation studies in permanent plots arranged along the length of the cirque, initiated in 1990 and continuing, show that there is high spatial and temporal variance in plant species' incidences and abundances. This is particularly true of annual plant species. However, using pairs of fenced and unfenced plots arranged along the major abiotic gradient, altitude (which mirrors changes in rainfall), we were able to tease apart the effects of variance in rainfall and herbivory. We found significant negative effects of herbivory by the re-introduced Asiatic wild ass (Equus hemionus) on plant cover and on vegetation community composition. In a study of the effects of herbivory by dorcas gazelles (Gazella dorcas) on the lily Pancratium sickenbergeri, we found that there was little inter-annual fluctuation in lily population size in two sand dunes in Makhtesh Ramon in spite of the high percentage of lilies that is removed by the gazelles and the almost complete herbivory of flowers by these herbivores. This result indicates that the dune lily populations may be maintained by dispersal of seed from other lily populations elsewhere in Makhtesh Ramon where gazelles are rare or absent.  相似文献   

5.
Aim Free‐ranging benthopelagic fishes often have large population sizes and high rates of dispersal. These traits can act to homogenize population structure across the distributional range of a species and to reduce the likelihood of allopatric speciation. The apparent absence of any barriers to gene flow among populations, together with prior molecular evidence for panmixia across the ranges of three species, has resulted in Diplotaxodon, a genus of benthopelagic cichlid fishes of Lake Malawi, being proposed as a candidate case of sympatric speciation. Our aim was to further investigate this possibility by testing for intraspecific genetic subdivision among breeding populations, and intraspecific differences in breeding habitat. Location Lake Malawi, central‐east Africa. Methods We analysed eight microsatellite DNA loci to test for spatial genetic differences among populations on breeding grounds of eight Diplotaxodon species. We also tested for temporal population genetic differences within breeding grounds of three species. Records of ripe Diplotaxodon encountered during sampling were analysed to test if spatial variation in assemblage structure was linked to nearshore water depth and geographic proximity of sampling sites. Results Consistent with previous molecular evidence, within four of the eight species tested we found no evidence of spatial genetic structuring among breeding populations. However, within the other four species we found slight yet significant spatial genetic differences, indicating restricted gene flow among breeding grounds. There was no evidence of temporal genetic differences within sites. Analyses of the distributions of ripe Diplotaxodon revealed differences in assemblage structure linked to nearshore water depth. Main conclusions Together, these results demonstrate both the evolution of fidelity to deep‐water breeding locations in some Diplotaxodon species, and differences in breeding habitat among species. These findings are consistent with a role for divergence of breeding habitat in speciation of these cichlids, possibly promoted by dispersal limitation among geographically segregated spawning aggregations.  相似文献   

6.
Recently, molecular analyses revealed that African and Eurasian golden jackals are distinct species. This finding suggests re‐investigation of the phylogenetic relationships and taxonomy of other African members of the Canidae. Here, we provide a study on the phylogenetic relationship between populations of African jackals Lupulella mesomelas and L. adusta inferred from 962 bp of the mitochondrial cytochrome b (cytb) gene. As expected from its disjunct distribution, with one population in eastern Africa and the other one in southern Africa, we found two mitochondrial lineages within L. mesomelas, which diverged about 2.5 million years ago (Ma). In contrast, in L. adusta with its more continuous distribution in sub‐Saharan Africa, we found only a shallower genetic diversification, with the exception of the West African population, which diverged around 1.4 Ma from the Central and East African populations. Both divergence ages are older than, for example the 1.1–0.9 million years between the grey wolf Canis lupus and the African golden wolf C. lupaster. One taxonomic implication of our findings might be that the two L. mesomelas populations warrant species status. However, genome‐wide data with adequate geographical sampling are needed to substantiate our results.  相似文献   

7.
Surprisingly, little is known about the extent of genetic structure within widely distributed and polytypic African species that are not restricted to a particular habitat type. The few studies that have been conducted suggested that speciation among African vertebrates may be intrinsically tied to habitat and the dynamic nature of biome boundaries. In the present study, we assessed the geographic structure of genetic variation across two sister‐species of drongos, the Square‐tailed Drongo (Dicrurus ludwigii) and the Shining Drongo (D. atripennis), that are distributed across multiple sub‐Saharan biogeographic regions and habitat types. Our results indicate that D. ludwigii consists of two strongly divergent lineages, corresponding to an eastern–southern lineage and a central‐western lineage. Furthermore, the central‐western lineage may be more closely related to D. atripennis, a species restricted to the Guineo‐Congolian forest block, and it should therefore be ranked as a separate species from the eastern–southern lineage. Genetic structure is also recovered within the three primary lineages of the D. atripennisD. ludwigii complex, suggesting that the true species diversity still remains underestimated. Additional sampling and data are required to resolve the taxonomic status of several further populations. Overall, our results suggest the occurrence of complex diversification patterns across habitat types and biogeographic regions in sub‐Saharan Africa birds.  相似文献   

8.
Studies of genetic diversity at isozyme loci were used to examine the phylogenetic distribution of several frequently reported population-genetic parameters in a putatively monophyletic group of plant species, the Scutellaria angustifolia complex. The influence of taxon-specific differences in habitat preference, breeding system, degree of endemism, and phylogenetic relatedness was examined. Many characters of reproductive morphology traditionally used in phylogenetic inference vary with breeding system. To the extent that reproductive systems are conservative markers of phylogenetic relationships, one would expect the distribution of genetic variation to be similar in closely related taxa. Results showed that closely related taxa may exhibit very different genetic-diversity statistics and that distantly related taxa may exhibit very similar genetic-diversity statistics. This suggests that complex patterns of evolution of breeding systems and morphological characters have occurred in the ten taxa included in the Scutellaria angustifolia complex. Similarity in habitat is not associated with similarity in genetic diversity in this group of species.  相似文献   

9.
During the last century, North African ungulate species have suffered from habitat loss and over‐hunting. Gazella dorcas (Antilopidae subfamily) and Ammotragus lervia (Caprinae subfamily) are among the ungulates that have suffered most. To help to protect these species, conservation programs and population genetics studies are being implemented. Here, we tested 30 published microsatellite primer‐pairs from Bovids (cattle, sheep and goat) on eight individuals from each species. From the 30 loci tested, 20 amplified well and showed moderate allelic richness (3.75 and 4.65 mean number of alleles per species, respectively, for G. dorcas and A. lervia), and moderatly high heterozygosity (0.53 and 0.63 per species, respectively). These 20 polymorphic markers will facilitate conservation and genetic studies in these two species, and promise to be widely useful across divergent ungulate taxa.  相似文献   

10.
The mountain gazelle (Gazella gazelle), Dorcas gazelle (Gazella Dorcas) and acacia gazelle (Gazella arabica acacia) were historically abundant in the southern Levant, and more specifically in Israel. Anthropogenic and natural changes have caused a rapid decline in gazelle populations, raising concerns about their conservation status and future survival. The genetic profile of 111 wild gazelles from Israel was determined based on three regions of mitochondrial DNA (control region, Cytochrome b and 12S ribosomal RNA) and nine nuclear microsatellite markers. Genetic analysis of the mountain gazelle population, the largest known population of this rare species, revealed adequate diversity levels and gene flow between subpopulations. Nevertheless, ongoing habitat degradation and other human effects, such as poaching, suggest the need for drastic measures to prevent species extinction. Dorcas gazelles in Israel displayed inbreeding within subpopulations while still maintaining considerable genetic diversity overall. This stable population, represented by a distinctive genetic profile, is fragmented and isolated from its relatives in neighboring localities. Based on the genetic profile of a newly sampled subpopulation in Israel, we provide an alternative hypothesis for the historic dispersal of Dorcas gazelle, from the Southern Levant to northern Africa. The small acacia gazelle population was closest to gazelles from the Farasan Islands of Saudi Arabia, based on mitochondrial markers. The two populations did not share haplotypes, suggesting that these two populations may be the last remnant wild gazelles of this species worldwide. Only a dozen acacia gazelles survive in Israel, and urgent steps are needed to ensure the survival of this genetically distinctive lineage. The genetic assessments of our study recognize new conservation priorities for each gazelle species in the Southern Levant.  相似文献   

11.
African Grass Rats of the genus Arvicanthis Lesson, 1842, are one of the most important groups of rodents in sub‐Saharan Africa. They are abundant in a variety of open habitats, they are major agricultural pests, and they became a popular model in physiological research because of their diurnal activity. Despite this importance, information about their taxonomy and distribution is unsatisfactory, especially in eastern Africa. In this study, we collected the most comprehensive multilocus DNA dataset to date across the geographic and taxonomic range of the genus (229 genotyped specimens from 130 localities in 16 countries belonging to all currently recognized species). We reconstructed phylogenetic relationships, mapped the distribution of major genetic clades, and used the combination of cytogenetic, nuclear, and mitochondrial markers for species delimitations and taxonomic suggestions. The genus is composed of two major evolutionary groups, called here the ANSORGEI and NILOTICUS groups. The former contains four presumed species, while the latter is more diverse and we recognized nine species. Most relationships among species are not resolved, which suggests a rapid radiation (dated to early–middle Pleistocene). Further, there is an indication of reticulate evolution in Ethiopia, that is, the region of the highest Arvicanthis diversity. The distribution of genetic diversity suggests diversification in eastern Africa, followed by repeated dispersals to the west (Sudano‐Guinean savannas) and to the south (Masai steppe). We propose nomenclatural changes for Ethiopian taxa and provide suggestions for future steps toward solving remaining taxonomic questions in the genus.  相似文献   

12.
Species complexes of widespread African vertebrates that include taxa distributed across different habitats are poorly understood in terms of their phylogenetic relationships, levels of genetic differentiation and diversification dynamics. The Fork‐tailed Drongo (Dicrurus adsimilis) species complex includes seven Afrotropical taxa with parapatric distributions, each inhabiting a particular bioregion. Various taxonomic hypotheses concerning the species limits of the Fork‐tailed Drongo have been suggested, based largely on mantle and upperpart coloration, but our understanding of diversity and diversification patterns remains incomplete. Especially given our lack of knowledge about how well these characters reflect taxonomy in a morphologically conservative group. Using a thorough sampling across Afrotropical bioregions, we suggest that the number of recognized species within the D. adsimilis superspecies complex has likely been underestimated and that mantle and upperpart coloration reflects local adaptation to different habitat structure, rather than phylogenetic relationships. Our results are consistent with recent phylogeographic studies of sub‐Saharan African vertebrates, indicating that widespread and often morphologically uniform species comprise several paraphyletic lineages, often with one or more of the lineages being closely related to phenotypically distinct forms inhabiting a different, yet geographically close, biome.  相似文献   

13.
The lesser Egyptian jerboa Jaculus jaculus is a desert dwelling rodent that inhabits a broad Arabian–Saharan arid zone. Recently, two distant sympatric lineages were described in North‐West Africa, based on morphometric and molecular data, which may correspond to two cryptic species. In the current study, phylogenetic relationships and phylogeographical structure among those lineages and geographical populations from North Africa and the Middle East were investigated. The phylogeographical patterns and genetic diversity of the cytochrome b gene (1110 bp) were addressed on 111 jerboas from 41 localities. We found that the variation in Africa is partitioned into two divergent mitochondrial clades (10.5% divergence relating to 1.65–4.92 Mya) that corresponds to the two cryptic species: J. jaculus and J. deserti. Diversifications within those cryptic species/clades were dated to 0.23–1.13 Mya, suggesting that the Middle Pleistocene climatic change and its environmental consequences affected the evolutionary history of African jerboas. The third distant clade detected, found in the Middle East region, most likely represents a distinct evolutionary unit, independent of the two African lineages. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

14.
Anopheles melas is a brackish water–breeding member of the Anopheles gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analysed 15 microsatellite markers and 1161 bp of mtDNA in 11 A. melas populations collected throughout its range. Compared with its sibling species A. gambiae, A. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat that is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three A. melas clusters is on par with levels of divergence between other species of the A. gambiae complex, and no support for monophyly was observed in a maximum‐likelihood phylogenetic analysis. Finally, an approximate Bayesian analysis of microsatellite data indicates that Bioko Island A. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10 000–11 000 bp ). This study has exposed species‐level genetic divergence within A. melas and also has implications for control of this malaria vector.  相似文献   

15.
殷斯  郝转  陆飞东  高永 《广西植物》2023,43(11):2042-2054
研究野生作物资源的遗传变异及分化机制对种质资源的收集与改良具有重要意义。魔芋是我国西南地区的特色经济作物,但由于受到人为活动干扰,野生种群不断衰退。为评估西南地区魔芋属(Amorphophallus)野生群体的遗传多样性,探究代表性物种的系统发育地位,该研究利用3个叶绿体DNA(cpDNA)片段,分析了魔芋6个物种的遗传多样性,重建了种间系统发育关系。结果表明:(1)西南地区野生魔芋群体的遗传多样性普遍较低,虽然单倍型多样性(Hd)均值为0.428,但近一半群体只有1个单倍型,6个物种整体水平上的单倍型多样性在0.704到0.983之间。(2)在6个物种间检测到高水平的遗传分化,遗传分化系数(FST)值在0.481到0.967之间。(3)系统发育分析表明,选取的27个魔芋种主要聚成3个分支:非洲分支、东南亚分支和东亚大陆分支。疣柄魔芋(A. paeoniifolius)隶属于东南亚分支,而东亚大陆分支A包含花魔芋(A. konjac)和西盟魔芋(A. krausei),东亚大陆分支B由东亚魔芋(A. kiusianus)、滇魔芋(A. yunnanensis)和东京魔芋(A. tonkinensis)构成。生境隔离与人为干扰造成了西南地区野生魔芋群体较低的遗传多样性,魔芋属东亚大陆分支的分化可能与早期的快速扩张和生态适应有关。该研究为西南地区魔芋资源的合理保护、可持续利用和杂交育种提供了参考资料。  相似文献   

16.
Many studies have addressed evolution and phylogeography of plant taxa in oceanic islands, but have primarily focused on endemics because of the assumption that in widespread taxa the absence of morphological differentiation between island and mainland populations is due to recent colonization. In this paper, we studied the phylogeography of Scrophularia arguta, a widespread annual species, in an attempt to determine the number and spatiotemporal origins of dispersal events to Canary Islands. Four different regions, ITS and ETS from nDNA and psbA‐trnH and psbJ‐petA from cpDNA, were used to date divergence events within S. arguta lineages and determine the phylogenetic relationships among populations. A haplotype network was obtained to elucidate the phylogenetic relationships among haplotypes. Our results support an ancient origin of S. arguta (Miocene) with expansion and genetic differentiation in the Pliocene coinciding with the aridification of northern Africa and the formation of the Mediterranean climate. Indeed, results indicate for Canary Islands three different events of colonization, including two ancient events that probably happened in the Pliocene and have originated the genetically most divergent populations into this species and, interestingly, a recent third event of colonization of Gran Canaria from mainland instead from the closest islands (Tenerife or Fuerteventura). In spite of the great genetic divergence among populations, it has not implied any morphological variation. Our work highlights the importance of nonendemic species to the genetic richness and conservation of island flora and the significance of the island populations of widespread taxa in the global biodiversity.  相似文献   

17.
The Chestnut‐banded Plover Charadrius pallidus is a Near‐Threatened shorebird species endemic to mainland Africa. We examined levels of genetic differentiation between its two morphologically and geographically distinct subspecies, C. p. pallidus in southern Africa (population size 11 000–16 000) and C. p. venustus in eastern Africa (population size 6500). In contrast to other plover species that maintain genetic connectivity over thousands of kilometres across continental Africa, we found profound genetic differences between remote sampling sites. Phylogenetic network analysis based on four nuclear and two mitochondrial gene regions, and population genetic structure analyses based on 11 microsatellite loci, indicated strong genetic divergence, with 2.36% mitochondrial sequence divergence between individuals sampled in Namibia (southern Africa) and those of Kenya and Tanzania (eastern Africa). This distinction between southern and eastern African populations was also supported by highly distinct genetic clusters based on microsatellite markers (global FST = 0.309,  = 0.510, D = 0.182). Behavioural factors that may promote genetic differentiation in this species include habitat specialization, monogamous mating behaviour and sedentariness. Reliance on an extremely small number of saline lakes for breeding and limited dispersal between populations are likely to promote reproductive and genetic isolation between eastern and southern Africa. We suggest that the two Chestnut‐banded Plover subspecies may warrant elevation to full species status. To assess this distinction fully, additional sample collection will be needed, with analysis of genetic and phenotypic traits from across the species’ entire breeding range.  相似文献   

18.
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co‐occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub‐Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans‐Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.  相似文献   

19.
Genetic diversity of allozymes, genetic identity based on allozyme variability, and phylogenetic relationships were studied with respect to breeding system diversity, population size, and island age in 20 of the 29 species of Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae), a monophyletic lineage endemic to the Hawaiian Islands. Average levels of genetic variability in Schiedea and Alsinidendron were comparable to or higher than those found in other Hawaiian lineages for which equivalent data are available [Bidens, Tetramolopium, and the silversword alliance (Asteraceae: Madiinae)] and similar to average values for species of dicots. Allozyme variability was strongly dependent on breeding system, which varies widely in the Hawaiian Alsinoideae. Species with autogamous breeding systems showed very low variability, measured as the number of alleles per locus, percent polymorphic loci, and mean heterozygosity per locus. Outcrossing hermaphroditic and dimorphic species (those with gynodioecious, subdioecious, and dioecious breeding systems) showed significantly higher genetic variability. Small population size was associated with lower values for all measures of genetic variability. Nearly half of the species occurring in small populations are also autogamous; thus, both factors may have influenced levels of genetic variability in these species. Founder effect was apparent in one species (Schiedea adamantis), which occurs in a single large population, has a gynodioecious breeding system but a very low genetic variability. Island age appeared to have little effect on genetic variability. Slightly lower values of genetic variability for species occurring on Kaua'i and O'ahu result primarily from the occurrence of autogamous Alsinidendron species on those islands. Values for Nei's genetic identity for different species pairs were 0.201–0.942, a far greater range than in Bidens, the silversword alliance, and Tetramolopium. Using UPGMA clustering, there was only moderate support for relationships detected through cladistic analysis. Nei's unbiased genetic identity (I) was greatest among species with outcrossing breeding systems, which for the most part clustered together. Nei's genetic identities for self-fertilizing species were low, indicating that these species are less similar to one another and to outcrossing species, regardless of their affinities based on cladistic analysis. Parsimony analysis of allele frequency data supported two clades also found in phylogenetic analyses using morphological and molecular data. Clades recognized in parsimony analysis of allele frequencies were those lineages containing selfing species, indicating that conditions favoring fixation of alleles occurred in ancestral species. In contrast, maintenance of high genetic diversity in outcrossing species interferes with recognition of phylogenetic relationships using allozyme variability.  相似文献   

20.
Migratory connectivity describes to which degree different breeding populations have distinct (non‐overlapping) non‐breeding sites. Uncovering the level of migratory connectivity is crucial for effective conservation actions and for understanding of the evolution of local adaptations and migratory routes. Here we investigate migration patterns in a passerine bird, the great reed warbler Acrocephalus arundinaceus, over its wide Western Palearctic breeding range using geolocators from Spain, Sweden, Czech Republic, Bulgaria and Turkey. We found moderate migratory connectivity: a highly significant spatial structure in the connections between breeding and sub‐Saharan non‐breeding grounds, but at the same time a partial overlap between individual populations, particularly along the Gulf of Guinea where the majority of birds from the Spanish, Swedish and Czech populations spent their non‐breeding period. The post‐breeding migration routes were similar in direction and rather parallel for the five populations. Birds from Turkey showed the most distinctive migratory routes and sub‐Saharan non‐breeding range, with a post‐breeding migration to east Africa and, together with birds from Bulgaria, a previously unknown pre‐breeding migration over the Arabian Peninsula indicating counter‐clockwise loop migration. The distances between breeding and sub‐Saharan non‐breeding sites, as well as between first and final sub‐Saharan non‐breeding sites, differed among populations. However, the total speed of migration did not differ significantly between populations; neither during post‐breeding migration in autumn, nor pre‐breeding migration in spring. There was also no significant relationship between the total speed of migration and distance between breeding and non‐breeding sites (neither post‐ nor pre‐breeding) and, surprisingly, the total speed of migration generally did not differ significantly between post‐breeding and pre‐breeding migration. Future challenges include understanding whether non‐breeding environmental conditions may have influenced the differences in migratory patterns that we observed between populations, and to which extent non‐breeding habitat fluctuations and loss may affect population sizes of migrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号