首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Although cell-mediated cytolysis is a fundamental immune effector response, its mechanism remains poorly understood at the cellular level. In this report, we image for the first time transient ruptures, as inferred by cytoplasmic marker release, in tumor cell membranes during Ab-dependent cellular cytolysis. The cytosol of IgG-opsonized YAC tumor cells was labeled with tetra-methylrhodamine diacetate followed by the formation of tumor cell-neutrophil conjugates. We hypothesized that tumor cell cytolysis proceeds via a series of discrete membrane rupture/resealing events that contribute to marker release. To test this hypothesis, we occluded the fluorescence image of the labeled tumor cells by passing an opaque disk into a field-conjugated plane between the light source and the sample. Multiple small bursts of fluorescent label release from tumor cells could be detected using a photomultiplier tube. Similarly, multiple fluorescent plumes were observed at various sites around the perimeter of a target. These findings support a multihit model of target cytolysis and suggest that cytolytic release is not focused at specific sites. Cytolytic bursts were generally observed at 20-s intervals, which match the previously described reduced nicotinamide-adenine dinucleotide phosphate and superoxide release oscillation periods for neutrophils; we speculate that metabolic oscillations of the effector cell drive the membrane damage of the target.  相似文献   

2.
Cell lysis and eosin staining were observed in L5178Y cells within the first 3 h of post-hyperthermia incubation at 37 degrees C, after which both leveled to a plateau. Lysis and eosin staining were proportional to the severity of heat in asynchronous cells, whereas it was maximum in the most heat-sensitive M phase, intermediate in S, and least in heat-resistant G1 for the same heat treatment. Further, leakage of labeled [3H]thymidine and a decrease in radioactivity retained within heated cells coincided with an increase in eosin staining, indicating that the dye uptake was due to membrane damage. It was presumed that the eosin-stained fraction represented dead cells. The percentage eosin-stained cells reached a plateau, and this level was used to determine survival; when the results were compared with those obtained by the colony formation method, they were identical. By comparing the two survival assay methods we concluded that cell death after hyperthermia in L5178Y cells is mainly by interphase death in all phases of the cell cycle. The reasons for this conclusion are that a reduction in survival could be detected within one generation of L5178Y cells by the eosin staining method, and the survival values obtained by this method were identical to those obtained by the colony formation method.  相似文献   

3.
In this study we test the hypothesis that reactive oxygen metabolites are delivered from neutrophils to simultaneously both the cell surface and cytosol of opsonized YAC erythroleukemic target cells. Using 5′ (or 6′) carboxyl-2′,7′-dichlorodihy-drofluorescein (H2-CDCF) diacetate as starting material, we synthesized its succinimidyl ester derivative. H2-CDCF-conjugated IgG prepared from the succinimidyl ester derivative was used to opsonize targets. In vitro studies have shown that H2-CDCF becomes fluorescent upon exposure to reactive oxygen metabolites, including hydrogen peroxide. Using video intensified epifluorescence microscopy, we observed that reactive oxygen metabolites are deposited on tumor cell membranes during neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC). This deposition process is catalase sensitive. The role of reactive oxygen metabolites produced by neutrophils in triggering the oxidation of H2-CDCF is further supported by the observation that neutrophils from chronic granulomatous disease (CGD) patients did not affect target fluorescence. YAC tumor cells were also labeled with dihydrorhodamine 123 or dihydrotetramethylrosamine. The oxidized forms of these reagents were found within the cytoplasm of YAC cells. During ADCC normal neutrophils, but not neutrophils obtained from CGD patients, triggered the oxidation of dihydrorhodamine 123 and dihydrotetramethyl-rosamine within tumor cells. Using two-color automated epifluorescence micros-copy, we could not detect temporal intermediates with fluorescence in only one compartment, i.e., either solely on the plasma membrane or in the cytoplasm. These observations suggest that reactive oxygen metabolites cross target membranes (<12) sec. These studies show that reactive oxygen metabolites are deposited both onto and into tumor cells during ADCC, wherein both compartments could become vulnerable to oxidant-mediated damage. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Calcium (Ca2+) is indispensable for normal development of the various stages of the asexual erythrocytic cycle of malaria parasites. However, the mechanisms involved in Ca2+ uptake, compartmentalization and cellular regulation are poorly understood. To clarify some of these issues, we have measured total, exchangeable, and free Ca2+ in normal red cells (RBCs) and Plasmodium falciparum (FCR-3)-infected cells (IRBCs) as a function of parasite development. All three forms of Ca2+ were found to be substantially higher in IRBCs than in RBCs, and to increase with parasite maturation up to the trophozoite stage and decline thereafter. Exchangeable and free [Ca2+] in host cell and parasite compartments were determined by selectively lysing IRBCs with Sendai virus, and estimating these parameters in the lysate (host cytosol) and the pellet (parasite cytosol). Levels of both exchangeable and free [Ca2+] were found to be higher in host cytosol than in parasite cytosol. The Ca2+ gradient across the parasite membrane can be maintained by the pH gradient across this membrane by means of a Ca2+/H+ antiporter. Host cytosol free [Ca2+] reached levels known to produce structural, physiological and biochemical changes in RBCs, and could account for similar features normally seen in malaria-infected red cells. Uptake of Ca2+ into IRBCs was nonsaturable and substantially faster than the saturable Ca2+ uptake into RBCs. The rate of Ca2+ uptake across the parasite membrane was even faster suggesting that the rate-limiting step in uptake into intact IRBCs is the translocation of Ca2+ across the host cell membrane.  相似文献   

5.
With the aim of comparative estimation of efficacy of well-known inhibitors of energy-dependent Ca(2+)-transporting systems their effects were investigated on the activity of purified Ca2+, Mg(2+)-ATPase of the myometrium cell plasma membranes. From the approved inhibitors (eosin Y, o-vanadate, thapsigargin, cyclopiazonic acid, ruthenium red, sodium azide) only eosin Y and o-vanadate are potent inhibitors of myometrium sarcolemma Ca(2+)-pump: the values of Ki equal 0.8 and 4.7 microM, respectively. Thapsigargin and cyclopiazonic acid as well as ruthenium red in concentrations inhibiting, respectively, endo(sarco)plasmic reticulum Ca(2+)-pump and energy-dependent Ca(2+)-transport in mitochondria had no effect on the Ca2+, Mg(2+)-ATPase of the uterus smooth muscle cell plasma membrane. Sodium azide (10 mM) blocking completely Ca(2+)-transport in mitochondria inhibited activity of the plasma membrane Ca(2+)-transporting ATPase by 14%.  相似文献   

6.
Diacylglycerols (OAG, diC8) and PMA were found to stimulate fluid pinocytosis (net uptake of FITC-dextran) to a far greater extent than other neutrophil activators, such as the chemotactic agents fNLPNTL and LTB4, the microtubule disassembling agents colchicine and nocodazole, the kinase inhibitor H-7, or D2O. OAG and diC8 produce a dose-dependent increase in the uptake of FITC-dextran, which is up to about 25- to 30-fold the control value of unstimulated neutrophils. The protein kinase inhibitor H-7 alone had a small stimulating effect on the net uptake, and it failed to inhibit stimulation of fluid pinocytosis by PMA, OAG, and diC8. Also, the protein kinase inhibitor staurosporine failed to inhibit fluid pinocytosis stimulated by OAG, diC8, and PMA. Stimulated fluid pinocytosis and vacuolization in response to PMA or diacylglycerols is associated with surface ruffling of neutrophils. Pinocytosis as well as surface ruffling stimulated by PMA, OAG, diC8, or diC10 are suppressed in the presence of cytochalasin D. The results suggest that diacylglycerols may be instrumental in transducing the signal for stimulated pinocytosis and that the surface movements induced by diacylglycerols, and PMA may be instrumental in fluid pinocytosis.  相似文献   

7.
The superoxide-forming NADPH oxidase of human neutrophils was studied in subcellular fractions of unstimulated cells. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions: alpha, azurophil granules; beta, mostly specific granules; gamma, plasma membrane, and cytosol. NADPH-dependent O2-. formation by these fractions was quantitated as the rate of superoxide dismutase-inhibitable reduction of ferricytochrome c. In the presence of cytosol, NADPH, and either arachidonic acid (optimum 90 microM) or sodium dodecyl sulfate (optimum 160 microM), 70-75% of the oxidase was in the beta fraction and about 25% was in the gamma fraction. A similar distribution was found for cytochrome b559 and FAD, two putative components of the oxidase. The reaction rates observed with arachidonic acid activation were sufficient to account for 25-75% of the O2-. generated by intact neutrophils. The properties of the beta and gamma enzymes were similar and closely resembled those of the oxidase in intact neutrophils or disrupted prestimulated cells. These included resistance to azide and cyanide, a pH optimum of 7.4, and a preference for NADPH (Km approximately 40-45 microM) rather than NADH (Km approximately 2.5 mM) as the electron donor. The combination of beta and gamma fractions displayed additive activity. The activatable oxidase required Mg2+ but not Ca2+. ATP was required for maximum reaction rates. When beta and gamma membranes were preincubated with cytosol and arachidonic acid in the presence of millimolar Mg2+ and then ultracentrifuged membrane-bound O2-. -forming activity was recovered in the pellet and the enzyme required only NADPH (i.e. no cytosol, arachidonic acid, or Mg2+) for expression of activity. These data suggest that cytosol contains a Mg2+-dependent oxidase-activating factor. Molecular sieve chromatography of cytosol indicated a single peak of activity (i.e. ability to activate O2-. generation by beta and/or gamma fraction) eluting with molecules of about 10,000 daltons.  相似文献   

8.
The superoxide-generating respiratory burst oxidase (NADPH oxidase) from human neutrophils can be activated in a cell-free system consisting of plasma membranes, cytosol, and an anionic amphiphile such as sodium dodecyl sulfate (SDS) or arachidonate, and guanosine 5'-(3-O-thio)triphosphate (GTP(gamma)S) augments activation. We report herein that short-chain diacylglycerols (e.g. dioctanoylglycerol (diC8)) synergize with SDS in the activation of superoxide generation in a dose- and time-dependent manner, resulting in rates up to 1400 nmol/min/mg plasma membrane protein, or 250-700% higher than the rate seen with SDS alone. diC8 did not affect significantly the dose response for either cytosol or SDS, indicating that the activation was not due to increased sensitivity of the oxidase toward either of these components. At optimal concentrations of SDS and diC8, additional activation was observed in the presence of GTP(gamma)S, indicating that diC8 and GTP activate by separate mechanisms. In contrast to diC8, other known activators of protein kinase C (phorbol myristate acetate and mezerein) augmented SDS activation only minimally (typically 20-30%), and neither diacylglycerols nor tumor promoters activated in the absence of SDS. Activation by diC8 was calcium and phosphatidylserine independent, and the specificity for neutral lipids was atypical for protein kinase C. Inhibitors of protein kinase C (staurosporine and a peptide substrate analog) also failed to inhibit the response. Nevertheless, phosphorylation of several neutrophil proteins including p47phox was seen with both SDS and diC8, and synergistic phosphorylation of p47phox was seen when both activating factors were present. Thus, diacylglycerol synergizes with SDS in activating both superoxide generation and p47phox phosphorylation in the cell-free activation system, but the activation is atypical of a protein kinase C mechanism.  相似文献   

9.
It is well known that catalase is transformed to nitric oxide-Fe2+-catalase by hydrogen peroxide (H2O2) plus azide. In this report, we show that myeloperoxidase is also inactivated by H2O2 plus azide. Utilizing this system, we studied the presence and source of intracellular H2O2 generated by activated neutrophils. Stimulation of neutrophils with phorbol myristate acetate (PMA, 100 ng/ml) plus azide (5 mM) for 30 min completely inactivated intragranular myeloperoxidase and reduced cytosolic catalase to 35% of resting cells. This intracellular inactivation of heme enzymes did not occur in normal neutrophils incubated with either PMA or azide alone or in neutrophils from patients with chronic granulomatous disease (CDG) which cannot produce H2O2 in response to PMA. Incubation of neutrophils with azide and a H2O2 generating system (glucose-glucose oxidase) inactivated 41% of neutrophil myeloperoxidase. Glutathione-glutathione peroxidase (GSH-GSH peroxidase), an extracellular H2O2 scavenger, totally protected neutrophil myeloperoxidase from inactivation by azide plus glucose-glucose oxidase. In addition, when a mixture of normal and CGD cells was stimulated with PMA in the presence of azide, 90% of the myeloperoxidase in CGD neutrophils was inactivated. Therefore, H2O2 released extracellularly from activated neutrophils can diffuse into cells. In contrast, myeloperoxidase in normal polymorphonuclear leukocytes stimulated with PMA in the presence of azide and GSH-GSH peroxidase was 75% inactivated. Thus, the results indicate that a GSH-GSH peroxidase-insensitive pool of H2O2 is also generated, presumably at the plasma membrane, and this pool of H2O2 can undergo direct internal diffusion to inactivate myeloperoxidase.  相似文献   

10.
We describe a technique to visualize substrate-attached materials (SAM) of polymorphonuclear leukocytes (PMN) using the fluorescent lipid analog 1,1'-dioctadecyl-3,3,3',3',-tetramethylindocarbocyanine-perchlorate (DiC18Icc). DiC18Icc was incorporated into the membranes of living cells or SAMs. Since cell preparation does not require fixation, SAMs can be rapidly visualized by fluorescence microscopy. SAMs are generated by subjecting attached cells to a shearing force by rinsing with phosphate-buffered saline (PBS). The SAM-labeling protocol identified a membrane compartment as shown by detergent extraction. The SAMs of PMN leukocytes observed with this technique display complex patterns of interconnecting filaments, foci with radiating filaments, and smooth membranous areas with interconnecting filaments. The sensitivity and nondestructive nature of the DiC18Icc-labeling procedure have allowed us to observe filopodia of motile cells. The results are consistent with the hypothesis that locomotion involves a series of attachment and detachment steps. After 60 minutes of locomotion, these trailing filopodia have been measured at lengths up to 100 micron. The amount of membrane associated with these filopodia accounts for roughly 10% of the total membrane area of resting cells. These data set limits for models of membrane flow during chemotaxis.  相似文献   

11.
The effect of eosin Y (2',4',5',7'-tetrabromofluorescin) on basic kinetic parameters of the reaction of Mg2+ -dependent hydrolysis of ATP catalysed "basal" Mg2+ -ATPase myometrial cells plasma membrane has been studied. The eosin Y (10-100 microM) inhibited initial maximal velocity of the "basal" Mg2+ -ATPase of plasma membrane assayed for Mg2+ and ATP. At the same time the given inhibitor reduces the affinity of Mg2+ -ATPase for ATP. However, the difficult effect of the inhibitor action is observed for Mg ions: eosin Y in concentration of 10-50 microM increases the enzyme affinity for the ion-activator, while in concentration of 100 microM the affinity of Mg2+ -ATPase for Mg2+ is reduced. An analysis of eosin Y effect on catalytic efficiency of "basal" Mg2+ -ATPase of plasma membrane has shown, that at saturating concentrations of ATP (1 mM) the enzyme activity is less sensitive to the action of inhibitor. On this basis the conclusion is made that ATP in high concentrations can compete with eosin Y for active centre of Mg2+ -ATPase of smooth muscle cells plasma membrane.  相似文献   

12.
Phosphatidylethanolamine (PE) is one of the essential phospholipids in the yeast Saccharomyces cerevisiae. We have previously shown that a yeast strain, the endogenous PE synthesis of which was controllable, grew in the presence of PE containing decanoyl residues (diC10PE) when PE synthesis was repressed. In this study, we investigated the fate of diC10PE, its uptake and remodeling in yeast. Deletion of the genes encoding Lem3p/Ros3p or P-type ATPases, Dnf1p and Dnf2p, impaired the growth of the mutants in the medium containing diC10PE, suggesting the involvement of these proteins in the uptake of diC10PE. Analysis of the metabolism of deuterium-labeled diC10PE by electrospray ionization tandem mass spectrometry revealed that it was rapidly converted to deuterium-labeled PEs containing C16 or C18 acyl residues. The probable intermediate PEs that contained decanoic acid and C16 or C18 fatty acids as acyl residues were also detected. In addition, a substantial amount of decanoic acid was released into the culture medium during growth in the presence of diC10PE. These results imply that diC10PE was remodeled to PEs with longer acyl residues and used as membrane components. Defects in the remodeling of diC10PE in the deletion mutants of ALE1 and SLC1, products of which were capable of acyl-transfer to the sn− 2 position of lyso-phospholipids, suggested their involvement in the introduction of acyl residues to the sn− 2 position of lyso-phosphatidylethanolamine in the remodeling reaction of diC10PE. Our results also suggest the presence of a mechanism to maintain the physiological length of PE acyl residues in yeast.  相似文献   

13.
We have previously shown that exposure of Clone 9 cells to hypoxia, cyanide, or azide results in an acute stimulation of glucose transport that is largely mediated by "activation" of glucose transporter (Glut1) sites preexisting in the plasma membrane. However, it is not known whether inhibition of oxidative phosphorylation only at its terminal step, or at any of its steps, leads to the glucose transport response. Hence, the effect of azide (5 mM), rotenone (1 microM), rotenone (1 microM) plus thenoyltrifluoroacetone (TTFA) (5 microM), antimycin A (0.3 microM), dinitrophenol (0.25 mM), carbonyl cyanide m-chlorophenylhydrazone (CCCP) (2.5 microM), and oligomycin B (0.15 microM) on glucose transport was determined. All of the above agents elicited a similar approximately 4-fold stimulation of cytochalasin B (CB)-inhibitable 3-O-methyl glucose (3-OMG) uptake in Clone 9 cells. The stimulatory effect of azide on 3-OMG uptake was not inhibited by antioxidants 2-mercaptopropionyl glycine (1.2 mM) and 1,10-phenanthroline (40 microM), while, in contrast, the antioxidants attenuated the stimulation of glucose transport in response to 250 microM H(2)O(2) by approximately 50%. To differentiate between an increase in the number of functional Glut1 sites in the plasma membrane (in the absence of "translocation") versus an increase in the "intrinsic activity" of Glut1, the effect of azide on the energy of activation (E(a)) of glucose transport was measured. The E(a) was determined by measuring the rate of CB-inhibitable 3-OMG uptake at 24.0, 28.0, 35. 0, and 40 degrees C. The E(a) of control Clone 9 cells and of cells exposed to 10 mM azide for 2 h was 32,530 +/- 1830 and 31,220 +/- 600 J/mol, respectively (P > 0.1), while the rate of CB-inhibitable 3-OMG uptake was 9.3 +/- 0.7-fold higher in azide-treated cells. It is concluded that (i) inhibition of oxidative phosphorylation, at any of its steps, leads to a stimulation of glucose transport, and (ii) the mechanism of stimulation of glucose transport in response to azide appears to be predominately mediated by an apparent increase in the number of functional Glut1 sites in the plasma membrane (instead of an increase in their "intrinsic activity"), suggesting an "unmasking" mechanism.  相似文献   

14.
Glucocorticoid uptake by AtT-20/D-1 mouse pituitary adenocarcinoma cells grown in tissue culture was examined. The binding of triamcinolone acetonide, a potent synthetic glucocorticoid, by intact cells and by cell cytosol was studied at both 4 and 25 degrees. Specific binding of [3H]triamcinolone acetonide by intact cells was markedly different from cell-free cytosol binding at 4 degrees. Intact cells bound a relatively small amount of labeled steroid within 2 min, after which no further binding was observed. In contrast, the receptor in a cell-free cytosol preparation was capable of binding steroid progressively at 4 degrees, indicating that the limited binding by intact cells was not a consequence of receptor characteristics. At 25 degrees, uptake by intact cells and cytosol was nearly identical and appeared to be limited only by the binding kinetics of the cytosol receptor. Estradiol-17 beta, a nonglucocorticoid steroid, was not bound by the AtT-20/D-1 cell at 4 degrees. Triamcinolone was not bound significantly at 4 or 25 degrees by an adrenal carcinoma cell that does not appear to be a glucocorticoid target cell. An Arrhenius plot of cell steroid uptake vs. the reciprocal of absolute temperature revealed an abrupt change in slope at 16 degrees, which is compatible with the temperature-dependent mechanism involved in glucocortidoid uptake being associated with lipid constituents of the cell membrane. These data suggest that glucocorticoid uptake by this target cell involves a mechanism of specific, temperature-dependent transport through the cell membrane.  相似文献   

15.
We have assessed the tumoricidal potential of enzyme-antibody conjugates on murine myeloma cells. Conjugates of glucose oxidase (EC 1.1.3.4) and lactoperoxidase (EC 1.11.1.7) were specifically targeted on the NSO tumor cells. Optimal conditions for tumor cell killing, as assayed by [51Cr] release required the binding of both antibody conjugates to the cell membrane. This is followed by washing and incubation in medium containing glucose and 0.1 mM iodide. Under these conditions 90% of the incorporated [51Cr] labeled is released from the cells, and NSO clonogenicity is reduced by a factor greater than 5 logs by 2 h of incubation.  相似文献   

16.
The monoclonal antibody (mAb) MOv18 binds the membrane alpha isoform of the folate receptor (FR) which is overexpressed in human ovarian carcinoma cells. Exploiting the targeting capacity of this mAb, we developed and preclinically validated a protocol for the stable labeling of the mAb with 90Y, an isotope which has shown promise in cancer radioimmunotherapy. MOv18 was derivatized with the stable macrocyclic ligand p-isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10- tetraacetic acid (Bz-DOTA). MOv18-Bz-DOTA conjugates were labeled with 90Y or 111In under metal-free and good laboratory practice conditions. At the optimal Bz-DOTA/mAb derivatization ratio of 4–5, conjugates maintained binding activity up to 6 months, were efficiently labeled with 90Y or 111In (mean labeling yield 85 and 64%, associated to a final mean specific activity of 74 and 37 MBq/mg) and displayed a mean immunoreactivity of 60 and 58%, respectively. The radiolabeled preparations were stable in human serum, with >97% radioactivity associated to mAb at 48 h after labeling. The ability of 90Y- and 111In-MOv18 to localize FR on tumors in vivo was analyzed in nude mice bearing tumors induced by isogenic cell lines differing only in the presence or absence of the relevant antigen [A431FR (FR-positive) and A431tMock (FR-negative)]. In vivo biodistribution in organs other than tumor was comparable in non-tumor-, A431tMock- and A431FR-bearing mice, whereas the median tumor uptake of the radiolabeled reagents, expressed as area under the curve (AUC) and maximum uptake (Umax), was significantly higher (sixfold to sevenfold) in A431FR than in A431tMock tumors (P=0.0465 and P=0.0332, respectively). Mean maximum uptake (% ID/g) for 90Y-MOv18 was 53.7 and 7.4 in A431FR and A431tMock respectively; corresponding values for 111In-Mov18 were 45.0 and 11.3. These data demonstrate the feasibility of 90Y-labeling of MOv18 without compromising antibody binding ability and the immunoreagent-specific localization in vivo on FR-expressing tumors, suggesting the suitability of 90Y-MOv18 for clinical studies.Angela Coliva and Alberto Zacchetti contributed equally to this work.  相似文献   

17.
We have used the fluorescence photobleaching recovery technique to study the dependence on oxygen tension of the lateral mobility of fluorescently labeled band 3, the phospholipid analogue fluorescein phosphatidylethanolamine, and glycophorins in normal red blood cell membranes. Band 3 protein and sialic acid moieties on glycophorins were labeled specifically with eosin maleimide and fluorescein thiosemicarbazide, respectively. The band 3 diffusion rate increased from 1.7 x 10(-11) cm2 s-1 to 6.0 x 10(-11) cm2 s-1 as oxygen tension was decreased from 156 to 2 torr, and a further increase to 17 x 10(-11) cm2 s-1 occurred as oxygen tension was decreased from 2 to 0 torr. The fractional mobility of band 3 decreased from 58 to 32% as oxygen tension was decreased from 156 to 0 torr. The phospholipid diffusion coefficient remained constant as oxygen tension was decreased from 156 to 20 torr, but increased from 2.3 x 10(-9) cm2 s-1 to 7.1 x 10(-9) cm2 s-1 as oxygen tension was decreased from 20 to 0 torr. Neither the diffusion coefficient nor the fractional mobility of glycophorins changed significantly at low oxygen tension. Under non-bleaching excitation conditions, intensities of fluorescence emission were identical for oxygenated and deoxygenated eosin-labeled RBCs. Deoxygenated eosin-labeled RBCs required 160-fold greater laser intensities than did oxygenated RBCs to achieve comparable extents of photobleaching, however. Oxygen seems to act as a facilitator of fluorophore photobleaching and may thereby protect the fluorescently labeled red cell membrane from photodamage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A cytosolic factor of 47 kDa required for activation of the NADPH oxidase, and referred to as p47, has been purified in its functional form from the cytosol of resting bovine neutrophils. The purification was monitored by the determination of the activating potency of p47 in a cell-free system of oxidase activation. The recovery was around 10% and the purification factor greater than 1000. P47 was phosphorylated in vitro by protein kinase A and protein kinase C. [32P] labeled p47 was resolved by isoelectric focusing into two major labeled bands of pI 7.0 and 8.5. Polyclonal antibodies were used to demonstrate that p47 is localized specifically in the cytosol of resting neutrophils, and that, upon activation of neutrophils, p47 is translocated from the cytosol to the membrane.  相似文献   

19.
Improvement of cellular uptake and cellular localization is still one of the main obstacles to the development of antisense-antigene therapeutics, including peptide nucleic acid (PNA). Cell-penetrating peptides (CPPs) such as Tat peptide and polyarginine have been widely used to improve the cellular uptake of PNA and other antisense agents. Cellular uptake of most CPP conjugates occurs mainly through endocytotic pathways, and most CPP conjugate is retained in the endosomal compartments of the cell. Several methods to induce endosome disruption have been shown to improve the bioavailability of CPP conjugates to the cytosol and/or nucleus by facilitating escape from the endosomal compartments. Here we describe protocols for the delivery of CPP-PNA conjugates to adherent cultured cells using photodynamic treatment (photochemical internalization), Ca2+ treatment or chloroquine treatment to potentiate the antisense effects of CPP-PNA conjugates through increased release of CPP conjugates into the cytoplasm. This protocol, consisting of CPP-mediated delivery assisted by an endosome-disruption agent, allows the delivery of the CPP-PNA conjugates to the nucleus and/or cytosol of cultured cells. The endosome-disruption treatment improves the nuclear antisense effects of CPP-PNA conjugates by up to two orders of magnitude using 24-hour delivery.  相似文献   

20.
We reported previously that diacylglycerol (diC8) and GTP gamma S synergize with an anionic amphiphile such as sodium dodecyl sulfate (SDS) to produce high rates of superoxide generation in a cell-free system consisting of neutrophil plasma membrane plus cytosol [Burnham, D. N., Uhlinger, D. J., & Lambeth, J. D. (1990) J. Biol. Chem. 265, 17550-17559]. Here we investigate the effects of these activating factors on the plasma membrane association in an in vitro translated radiolabeled recombinant p47-phox protein. Apparent translocation, assayed by cosedimentation with plasma membranes, required the presence of excess cytosol and an anionic amphiphile, was enhanced by both GTP gamma S and diC8, and was inhibited by high salt, correlating qualitatively with activation; up to 70% cosedimentation was observed with the combination of activators (compared with less than 20% in their absence). Similar results were obtained using heat-inactivated cytosol, wherein another oxidase component, p67-phox, has been inactivated. Unexpectedly, from 50 to 80% of the apparent translocation occurred in the absence of membranes, indicating that protein aggregation accounted for a significant part of the observed translocation. Nevertheless, the percent translocation was increased in all cases by the presence of membranes, indicating some degree of protein-membrane interaction. While a control in vitro translated protein failed to translocate, cosedimentation of p47-phox occurred equally well when red blood cell or neutrophil plasma membranes lacking cytochrome b558 were used. Also, the peptide RGVHFIF, which is contained within the C-terminus of the large subunit of cytochrome b558, failed to inhibit translocation/aggregation of p47-phox, despite its ability to inhibit cell-free activation of the oxidase. The data are consistent with the following: (a) SDS, diC8, and GTP gamma S all act on cytosolic components to alter protein-protein and/or protein-membrane associations, and these changes are necessary (but not sufficient) for activation; (b) these altered associations are likely to function by increasing the local concentration of p47-phox and other components at the plasma membrane; (c) a high background of nonspecific associations in the cell-free activation system is likely to obscure any specific, functionally relevant associations (e.g., with cytochrome b558); and (d) the mechanism of translocation in the cell-free system differs from that seen in intact neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号