首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Argyrodes gibbosus is a kleptoparasitic spider in the web of spiders. It generally steals freshly captured prey from the web of its host. In Sicily, Argyrodes gibbosus parasitizes webs of the spider Cyrtophora citricola, a facultative colonial species. When a C. citricola female was present in its web, Argyrodes caught small prey in the web or tried to rob prey captured by the host; in that case, we never observed successful attacks on host egg-sacs. When the host disappeared from its web, the kleptoparasite modified its foraging strategies and attacked the host egg-sacs and ate the eggs. The exploitation of this new resource could ensure rapid development for the kleptoparasite which was characterized by the presence of larger females and a higher mating rate.  相似文献   

2.
Spiders from the theridiid genus Argyrodes exhibit considerable variation in foraging tactics. However, little is known about the conditions under which Argyrodes spiders switch foraging tactics. Argyrodes flavescens (Pickard-Cambridge) is commonly found in the webs of another spider Nephila pilipes (Fabricius) in Singapore. In this study, a series of prey-choice tests were conducted for A. flavescens , both in the presence and absence of N. pilipes , to investigate the state-dependent prey type preference of A. flavescens . It was found that, in the absence of N. pilipes , well-fed A. flavescens took houseflies more than fruit flies, but starved A. flavescens took more fruit flies than houseflies. Whether N. pilipes spiders were present or absent, both well-fed and starved A. flavescens preferred living prey and rarely took wrapped prey of any kind. When well fed, A. flavescens rarely took mealworms. However, when starved, A. flavescens tended to take freshly captured prey, and also tended to feed together with N. pilipes on a housefly or mealworm captured by N. pilipes . Whether A. flavescens were absent or present, both well-fed and starved N. pilipes took mealworm larvae more often than they took houseflies, and they never attacked fruit flies. This is the first study to show that Argyrodes spiders alter their foraging tactics depending on hunger level, prey type, or the presence of the host. In doing so, Argyrodes spiders may maximize their energy gain and minimize predation risk in different circumstances.  相似文献   

3.
The feeding performances of two heterochronic morphs of the Alpine newt Triturus alpestris were investigated in laboratory experiments. Although both morphs are able to feed in the aquatic habitat, the hydrodynamics of prey capture differ between morphs. In paedomorphs water sucked with prey is expelled behind the mouth through gill bars. In metamorphs, water is expelled by the mouth as gill slits are closed. Feeding performance was better in paedomorphs than in metamorphs when foraging on aquatic crustaceans, but paedomorphs were less successful when foraging on terrestrial invertebrates caught at the water surface. These differences in prey capture success related to prey type allow the two morphs to use specific resources in their aquatic habitat. These results are consistent with previous studies that showed diet differentiation between morphs in natural populations. Such resource partitioning is a factor favouring the maintenance of facultative paedomorphosis in natural populations.  相似文献   

4.
Prey selection and growth efficiency of juvenile sockeye salmon Oncorhynchus nerka switched between live prey and pelleted diets were investigated. First feeding sockeye salmon fry were placed into one of three dietary treatments for 7 months prior to assessing potential differences with a growth and a behavioural assay. Dietary treatments were (1) adult Artemia franciscana for 1 month, followed by pelleted feed for an additional 6 months ( Art − BD), (2) pelleted feed from first feeding for 7 months (BD) and (3) adult A. franciscana for 1 month, and a combination of pelleted feed and live adult A. franciscana for 6 months ( Art + BD). Equal numbers from each treatment group were then tagged, pooled into replicate 'common garden' tanks and fed novel live prey items ( Daphnia sp. and mosquito Culex pipiens larvae) for an additional 3 weeks. No significant differences in the growth efficiency of sockeye salmon were found during the 3 week feeding trial on the novel prey items. Additional sockeye salmon from each dietary treatment were used in a behavioural assay to determine if the treatments had an impact on foraging efficiency (prey selection or time to capture prey). No significant differences in prey selection were found among treatment groups in time to capture pellets, A. franciscana or mosquito larvae. Also, no significant differences were found within treatment groups in time to capture different food sources. No substantive benefits in foraging efficiency of sockeye salmon associated with prior exposure to live prey were demonstrated. This suggests that altering existing hatchery practices for juvenile sockeye salmon by offering live food prior to release is unlikely to influence post-hatchery feeding behaviour or increase post-release survival.  相似文献   

5.
1.  Food webs, the set of predator–prey interactions in an ecosystem, are a prototypical complex system. Much research to date has concentrated on the use of models to identify and explain the key structural features which characterize food webs.
2.  These models often fall into two general categories: (i) phenomenological models which are built upon a set of heuristic rules in order to explain some empirical observation and (ii) population-level models in which interactions between individuals result in emergent properties for the food web. Both types of models have helped to uncover how food-web structure is a product of factors such as foraging behaviour, prey selection and species' body sizes.
3.  Historically, the two types of models have followed rather different approaches to the problem. Despite the apparent differences, the overlap between the two styles of models is substantial. Examples are highlighted here.
4.  By paying greater attention to both the similarities and differences between the two, we will be better able to demonstrate the ecological insights offered by phenomenological models. This will help us, for example, design experiments which could validate or refute underlying assumptions of the models. By linking models to data, scaling from individuals to networks, we will be closer to understanding the true origins of food-web structure.  相似文献   

6.
Abstract .1. Field studies were made of the benefits and costs of two feeding strategies in the genus Maculinea, whose final-instar larvae parasitise Myrmica ant colonies. Maculinea arion is an obligate predator of ant brood, whereas M. rebeli and M. alcon mimic ant larvae and are fed (like cuckoos) directly by the workers.
2. Samples of > 1500 Myrmica nests confirmed laboratory-based predictions that, by feeding at a lower trophic level, many (4.7-fold) more individuals of M. rebeli and M. alcon are supported per ant colony than M. arion.
3. Because of their efficient feeding, cuckoo species often occupied sites where their phytophagous early larval populations coincided to only a small extent (> 10%) with host Myrmica colonies, whereas all sites supporting M. arion had 50–100% of the phytophagous stages within foraging range of the host Myrmica species.
4. Greater host-specificity was identified as another consequence of cuckoo-feeding. The ecological cost of this is discussed .
5. The feeding of other Maculinea species had not been fully described: the data suggest that M. nausithous is a predator of ant brood and confirm that M. teleius is predacious .  相似文献   

7.
Digger B. Jackson 《Ibis》2003,145(1):30-44
Surveys at 23 Black-throated Diver breeding lakes in Scotland showed large between-lake differences in the species and size range of potential prey. The study lakes were classified into four types according to the main size-taxa prey classes present. Type 1 lakes lacked small fish, Type 4 lacked salmonids < 300 mm and Types 2 and 3 both had all four of the main prey classes. Diver diet for 30 families at the study lakes was quantified from 7943 prey items seen fed to chicks, and 153 items seen eaten by adults, during 662 h of observations. At all lake types adults mostly ate salmonids of 120–240 mm in length, especially Brown Trout Salmo trutta , and European Eels Anguilla anguilla up to c.  350 mm. The prey eaten by chicks ranged widely, from c.  0.03 g to 300 g, with important implications for feeding behaviour. Young chicks (days 1–8) rejected items greater than 70 mm long. The diet of young chicks consisted mostly of small fish, either Three-spined Sticklebacks Gasterosteus aculeatus (Type 2 lakes) or Minnow Phoxinus phoxinus (Type 3 and Type 4 lakes). At other lakes (Type 1) it consisted mostly of mayfly larvae (Ephemeroptera); invertebrates were the only abundant potential small prey in these lakes. At all lakes the chick diet became more similar to that of adults as chicks grew. Adults provisioning chicks used two foraging strategies. In 'excursion foraging', adults hunted away from the chicks and carried prey back for them; in 'attendance foraging', the chicks accompanied the foraging adult(s). Excursion foraging was used mostly before day 4 and was strongly and positively correlated with the abundance of fish < 80 mm in length. This behaviour is probably adaptive, but is probably tenable only where small fish are relatively abundant. Young chicks fed mainly on small fish had higher survival rates than those fed on invertebrates.  相似文献   

8.
Satiation and the functional response: a test of a new model   总被引:1,自引:0,他引:1  
Abstract. 1. A model of the functional response to prey density is derived to include the reduction in time available for search, Ts , resulting from predator satiation.
2. For larger prey items predator satiation occurs at each prey capture and Ts is reduced by the attack time and digestive pause of a series of attack cycles. For small prey items predator foraging is continuous at low densities with Ts reduced solely by attack time. At higher densities predator satiation occurs after the capture of several small prey items and Ts is reduced by the attack time and digestive pause of a series of foraging cycles.
3. A comparison of the predicted asymptotic level of prey capture using experimentally estimated parameter values, with the maximum consumption of aphids by larval and adult coccinellids provides a test of the satiation model.
4. The limitation of prey capture by predator satiation is discussed with reference to handling time and the success of coccinellids in biological control.  相似文献   

9.
The strength of predation impact on recipient environments may vary among introduced populations due to their local adaptations to different prey. We examined whether functional diversification associated with morphological differences may be observed among the introduced populations of invasive bluegill sunfish Lepomis macrochirus (Perciformes, Centrarchidae) in Japan. The two examined populations are morphologically different, although they were recently derived from a common American source and colonized in different lakes. We performed a laboratory experiment wherein these populations were fed the benthic (chironomid larva) and the pelagic prey (daphnid zooplankton). The results revealed that a population colonizing in a shallower lake and foraging on benthic invertebrates in the wild had a greater impact on the benthic prey, whereas the other population colonizing in a deeper lake and foraging on crustacean zooplankton have consumed the pelagic prey more efficiently. A series of regression analyses showed that morphological differences among individuals were responsible for these population differences. The evidence obtained suggests that morphological adaptations by introduced bluegill populations enhance the strength of predation impact on a prey resource consumed in a relevant environment, but reduce the impact on the other prey. Thus, although the introduced Japanese populations were recently derived from a common ancestor, the predation impacts on the native prey community vary due to morphological adaptations to different prey.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 601–610.  相似文献   

10.
1. Most animals are active by day or by night, but not both; juvenile salmonids are unusual in that they switch from being predominantly diurnal for most of the year to being nocturnal in winter. They are visual foragers, and adaptations for high visual acuity at daytime light intensities are generally incompatible with sensitive night vision. Here we test whether juvenile Atlantic Salmon Salmo salar are able to maintain their efficiency of prey capture when switching between diurnal and nocturnal foraging.
2. By testing the ability of the fish to acquire drifting food items under a range of manipulated light intensities, we show that the foraging efficiency of juvenile salmon is high at light intensities down to those equivalent to dawn or dusk, but drops markedly at lower levels of illumination: even under the best night condition (full moon and clear sky), the feeding efficiency is only 35% of their diurnal efficiency, and fish will usually be feeding at less than 10% (whenever the moon is not full, skies are overcast or when in the shade of bankside trees). Fish were unable to feed on drifting prey when in complete darkness.
3. The ability of juvenile salmon to detect prey under different light intensities is similar to that of other planktivorous or drift-feeding species of fish; they thus appear to have no special adaptations for nocturnal foraging.
4. While winter drift abundance is slightly higher by night than by day, the difference is not enough to compensate for the loss in foraging efficiency. We suggest that juvenile salmon can nonetheless switch to nocturnal foraging in winter because their food requirements are low, many individuals adopting a strategy in which intake is suppressed to the minimum that ensures survival.  相似文献   

11.
Most kleptoparasitic Argyrodes spiders rely exclusively on host spider webs for obtaining their food. Because their densities occasionally reach high levels within a restricted area, competitive interactions may be important for determining the density of these unique spiders. Here I used two Argyrodes species commonly found on webs of the large orb-web spider Nephila clavata to clarify whether inter- and intraspecific competition influences abundance and within-web distribution by using observational data and field experiment. Removing Argyrodes flavescens from the host webs induced a remarkably high immigration of that species while density on control webs remained almost at the same level, which is evidence for strong intraspecific competition. Larger individuals of A. flavescens were located more frequently at the capture area of the host webs where it is easy to access prey ignored by the host spider, and spiders immigrating into webs from which that species had been removed were smaller in body size, suggesting interference competition for space among conspecific kleptoparasites. Argyrodes bonadea increased in number on webs from which A. flavescens had been removed, and the increase was correlated with the number of A. flavescens removed. This finding is evidence for interspecific competition that is rarely reported in spiders. A multiple regression model including numbers of a conspecific parasite as well as web and body sizes of the host spider could not detect competitive interactions between species, suggesting the importance of experimental approaches. Received: May 22, 2000 / Accepted: December 1, 2000  相似文献   

12.
Optimal foraging shapes host preference of a polyphagous leafminer   总被引:6,自引:0,他引:6  
Abstract.  1. Most research on host selection by arthropods is based on optimal oviposition theory. This theory, also called the oviposition preference–offspring performance hypothesis, predicts that a female will choose those hosts for oviposition on which larvae perform best. Recent studies suggested, however, that optimal foraging by adults, or the quality of the host for adult performance, might also influence host choice.
2. This study investigated whether host preference of the polyphagous leafminer Liriomyza trifolii is determined by optimal foraging and/or optimal oviposition.
3. Female realised fecundity correlated nearly perfectly with feeding and oviposition preference of L. trifolii . The relationships between host preference and the offspring performance measures were always weaker. Hosts optimal for adult nutrition were also optimal for offspring performance but not vice versa . Hence, it was concluded that optimal foraging shapes feeding and oviposition preference of L. trifolii as this is the best strategy in order to maximise female fitness.  相似文献   

13.
1.  Selective pressures acting on foraging activities constrain the strength of interaction, hence the stability and energetic availability in food webs.
2.  Because such selective pressures are usually measured at the individual level and because most experimental and theoretical works focus on simple settings, linking adaptive foraging with community scale patterns is still a far stretch.
3.  Some recent models incorporate foraging adaptation in diverse communities. The models vary in the way they incorporate adaptation, via evolutionary or behavioural changes, and define individual fitness in various ways.
4.  In spite of these differences, some general results linking adaptation to community structure and functioning emerge. In the present article, I introduce these different models and highlight their common results.
5.  Adaptive foraging provides stability to large food web models and predicts successfully interaction patterns within food webs as well as other topological features such as food chain length.
6.  The relationships between adaptive foraging and other structuring factors particularly depend on how well connected the local community is with surrounding communities (metacommunity aspect).  相似文献   

14.
Recent studies have provided evidence that spiders’ color and pattern may attract prey items to their webs, thus increasing their foraging success. However, these studies were conducted on tropical spiders, and no studies have examined this phenomenon in temperate spiders. We examined the role of color and pattern in a North American spiny orb-weaver, Micrathena gracilis. We found that prey capture rates were similar between webs that contain spiders and webs in which spiders were removed. Additionally, we found a trend that painted spiders captured more prey than unpainted spiders. Although our results were not statistically significant, they contradict previous studies examining the role of color in prey attraction.  相似文献   

15.
Among group‐living spiders, subsocial representatives in the family of crab spiders (Thomisidae) are a special case, as they build protective communal leaf nests instead of extensive communal capture webs. It could thus be inferred that antipredator benefits (e.g., enhanced protection in larger nests) rather than foraging‐related advantages (e.g., capture of more and larger prey) promote sociality in this family. Nonetheless, subsocial crab spiders do share prey, and if this behaviour does not reflect mere food scramble but has a cooperative character, crab spiders may offer insights into the evolution of social foraging applicable to many other cooperative predators that hunt without traps. Here, we performed a comparative laboratory feeding experiment on three of the four subsocial crab spider species—Australomisidia ergandros, Australomisidia socialis and Xysticus bimaculatus—to determine if crab spiders derive advantages from foraging in groups. In particular, we tested artificially composed groups of five sibling spiderlings vs. single siblings in terms of prey capture success and prey size preference. Across species, groups had higher prey capture success (measured in terms of capture rates and capture latency) and were more likely to attack large, sharable prey—dynamics leading to reduced food competition among group members in favour of living and foraging in groups. Within groups, we further compared prey extraction efficiency among the three applied social foraging tactics: producing, scrounging and feeding alone. In A. ergandros, individuals were exceptionally efficient when using the non‐cooperative scrounger tactic, which entails feeding on the prey provided by others. Thus, our multispecies comparison confirms foraging advantages in maintaining a cooperative lifestyle for crab spiders, but also demonstrates the relevance of research into exploitation of cooperative foraging in this family.  相似文献   

16.
Conspicuous colouration attracts prey to a stationary predator   总被引:1,自引:0,他引:1  
Abstract 1. Conspicuous body colouration is counter‐intuitive in stationary predators because sit‐and‐wait tactics frequently rely on concealed traps to capture prey. Consequently, bright colours and contrasting patterns should be rare in predators using traps as they may alert potential prey. Yet, some orb‐weaving spiders are brightly coloured and contrastingly patterned. How can conspicuousness of trap‐building sit‐and‐wait predators be favoured by natural selection? 2. Observations of spiny spiders Gasteracantha fornicata in north‐eastern Australia showed that the size of spiders relative to their orb webs correlated positively with relative prey numbers already captured in their webs. A possible explanation is that the relatively larger appearance of the yellow–black striped dorsal surface of this spider attracts more visually oriented prey items. Prey attracted to webs may get trapped, thereby increasing the spiders' foraging success. 3. To test this hypothesis for the function of conspicuous body colouration, a field experiment was conducted that documented the prey capture rates of spiny spiders after manipulating or sham‐manipulating their appearance. 4. As predicted, spiders that were dyed black on their striped dorsal surface caught relatively fewer prey items than did control spiders. Thus, conspicuous dorsal body colouration may be adaptive in spiny spiders because it increases foraging success and, presumably, survival rates and reproductive outputs. Overall, these data support the colour‐as‐prey‐attractant hypothesis in a stationary, trap‐building predator.  相似文献   

17.
Group foraging is rare in spiders, occurring only where preyavailability is high. If colonial web-building increases individualprey capture rates as shown, why does group foraging not occurmore often where prey are scarce? Risk sensitivity may explainthis paradox, as variance in prey capture is reduced in groups;risk-averse spiders should join groups only when prey exceeda threshold level. Field studies show that group foraging variesas predicted between species, between populations of a singlespecies, and between sites within a population. However, recentmodels suggest the necessity of examining variance within individualsover time rather than between individuals within populations.Additionally, mechanisms responsible for variance reductionin colonial webs may be less effective than previously assumed.New field data suggest that while prey variance over time maybe somewhat less for individual spiders in groups than for solitaries,the relationship between colonial web-building and variancein prey capture is far more complex than originally thought.The influence of risk sensitivity on reproductive success andthe evolution of colonial web-building is discussed.  相似文献   

18.
1. The effects of resource availability during ontogeny on subsequent feeding performance were investigated in larvae of the small-mouthed salamander ( Ambystoma texanum ).
2. Salamander larvae were reared individually in either high or low prey density treatments for 7 weeks prior to intermediate prey density foraging trials. Larvae from the low prey density treatment were on average 35% smaller in body size than individuals from the high prey density treatment.
3. Resource availability during development influenced larval feeding rates and altered the relationship between body size and three feeding performance measures (attack rates, capture success and feeding rates). Feeding rates in predation trials were also positively correlated with growth rate early in the larval period (until the end of week 5).
4. These results suggest that the environment to which developing organisms are exposed can have significant effects on subsequent behaviour, and that small-mouthed salamander larvae may show state-dependent changes in feeding behaviour in response to differences in long-term feeding history. Additionally, differences in feeding performance may influence the probability of survival to the adult stage for organisms that utilize ephemeral habitats.  相似文献   

19.
1. The effects of resource availability during ontogeny on subsequent feeding performance were investigated in larvae of the small-mouthed salamander ( Ambystoma texanum ).
2. Salamander larvae were reared individually in either high or low prey density treatments for 7 weeks prior to intermediate prey density foraging trials. Larvae from the low prey density treatment were on average 35% smaller in body size than individuals from the high prey density treatment.
3. Resource availability during development influenced larval feeding rates and altered the relationship between body size and three feeding performance measures (attack rates, capture success and feeding rates). Feeding rates in predation trials were also positively correlated with growth rate early in the larval period (until the end of week 5).
4. These results suggest that the environment to which developing organisms are exposed can have significant effects on subsequent behaviour, and that small-mouthed salamander larvae may show state-dependent changes in feeding behaviour in response to differences in long-term feeding history. Additionally, differences in feeding performance may influence the probability of survival to the adult stage for organisms that utilize ephemeral habitats.  相似文献   

20.
Self-feeding precocial development is associated with high energy requirements and potentially vulnerable to short-term reductions in food availability, yet few studies have investigated development of foraging in precocial chicks and its sensitivity to environmental conditions. We studied time budgets and foraging behaviour during the 25-d prefledging period in the insectivorous chicks of a grassland shorebird, the black-tailed godwit Limosa limosa . Until 8–10  d old, parental brooding was the main determinant of chicks' daily foraging time. Brooding decreased with age and temperature and increased during rainfall. Foraging time increased to 70–90% of the daylight period in chicks older than a week, during which distances of 3–12  km  d−1 were covered. Chicks took 98% of their arthropod prey from the grassland vegetation. Prey ingestion rates increased in the first week and slowly declined thereafter, modified by wind speed, temperature and time of day. Chicks in poor body condition were brooded more than chicks growing normally and hence had less feeding time, potentially leading to a negative condition spiral under adverse conditions. However, we found no effect of condition on prey ingestion rate that would preclude recovery when conditions improve. Combining behavioural observations with data on energy expenditure revealed that mean prey size was small (1–4.5  mg), necessitating a high feeding rate, but increased notably after 7–10  d of age. This coincided with a decrease in walking speed, suggesting that chicks fed more selectively. Prey of older chicks approached the upper limit of sizes available in exploitable densities in the grassland vegetation, and this enhances the chicks' sensitivity to variation in prey availability due to weather and agricultural practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号