首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
1. Cyclic adenosine 3',5'-monophosphate and N-6-2'-O-dibutyryl cyclic adenosine 3',5'-monophosphate decrease the initial entry rate and the steady-state uptake of p-aminohippurate and uric acid by rabbit kidney cortex slices. 2. N-6-2'-O-Dibutyryl adenosine 3'-5'-monophosphate inhibits the tubular transport of p-aminohippurate competitively. 3. Isoproterenol, known to increase cyclic nucleotide concentration of the cortical tubules by activation of adenyl cyclase, decreases p-aminohippurate transport. Antidiuretic hormone which is known to stimulate only medullary adenyl cyclase has no effect on p-amino-hippurate uptake by cortical slices. 4. Theophylline, which inhibits cyclic nucleotide phosphodiesterase and, therefore, enhances the cellular accumulation of endogenous cyclic nucleotide, depresses p-aminohippurate transport.  相似文献   

2.
The adenyl cyclase and phosphodiesterase metabolizing adenosine 3',5'-cyclic monophosphate (cyclic AMP) were detected in mycelia of strains of Coprinus macrorhizus which form fruiting bodies, but not in those of strains which do not form fruiting bodies. The adenyl cyclase synthesized cyclic AMP from adenosine triphosphate. The phosphodiesterase degr[UNK]ded cyclic AMP to adenosine-5'-monophosphate and was inhibited by adenosine-3'-monophosphate, theophylline, and caffeine. The strains which form fruiting bodies incorporated and metabolized cyclic AMP, but strains which do not form fruiting bodies did not. The possible participation of cyclic AMP in the induction of fruiting bodies is discussed.  相似文献   

3.
Expression of the L-arabinose regulon in Escherichia coli B/r requires, among other things, cyclic adenosine-3', 5'-monophosphate (cAMP) and the cAMP receptor protein (CRP). Mutants deficient in adenyl cyclase (cya-), the enzyme which synthesizes cAMP, or CRP (crp-) are unable to utilize a variety of carbohydrates, including L-arabinose. Ara+ revertants of a cya-crp- strain were isolated on 0.2% minimal L-arabinose plates, conditions which require the entire ara regulon to be activated in the absence of cAMP and CRP. Evidence from genetic and physiological studies is consistent with placing these mutations in the araC regulatory gene. Deletion mapping with one mutant localized the site within either araO or araC, and complementation tests indicated the mutants acted trans to confer the ability to utilize L-arabinose in a cya-crp- genetic background. Since genetic analysis supports the conclusion, that the mutant sites are in the araC regulatory gene, the mutants were designated araCi, indicating a mutation in the regulatory gene affecting the cAMP-CRP requirement. Physiological analysis of one mutant, araCi1, illustrates the trans-acting nature of the mutation. In a cya-crp- genetic background, araCi1 promoted synthesis of both isomerase, a product of the araBAD operon, and permease, a product of the araE operon. Isomerase and permease levels in araCi1 cya+ crp+ were hyperinducible, and the sensitivity of each to cAMP was altered. Two models are presented that show the possible mutational lesion in the araCi strains.  相似文献   

4.
The Escherichia coli heat-stable enterotoxin (ST) coded for by plasmid pYK007 (Apr ST+) showed a dependence for cyclic adenosine 3',5'-monophosphate (cAMP) to express ST activity in an adenyl cyclase (cya) deletion mutant; no ST activity was detected in the presence of cAMP in a cAMP receptor protein (crp) deletion mutant or in a double deletion mutant (delta cya delta crp). The cya-crp effect on ST activity could not be accounted for by a modification of the copy number of plasmid deoxyribonucleic acid per chromosome equivalent or by an alteration in the secretion of an active intracellular enterotoxin.  相似文献   

5.
A spontaneous lac+ revertant of an adenylate cyclase deletion strain of Escherichia coli K-12 was isolated and characterized. This revertant, designated strain KC20, exhibited a pleiotropic suppression of the adenylate cyclase defect, with the crp locus being the site of the suppressor mutation. Cyclic adenosine 3',5'-monophosphate at an exogenous concentration of 1 mM severely inhibited the growth of strain KC20 in minimal media. Lower concentrations of the cyclic nucleotide elicited less pronounced effects. Studies on araBAD and lacZYA expression showed that cyclic adenosine 3',5'-monophosphate elicited an initial dose-dependent hyperinduction of these systems. Hyperinduction of araBAD, in L-arabinose grown cultures of strain KC20, resulted in accumulation of inhibitory concentrations of methylglyoxal. Hyperinduction of lacZYA in lactose-grown cultures of strain KC20 did not result in any such methylglyoxal production.  相似文献   

6.
The growth response to external cyclic adenosine 3',5'-monophosphate of a strain of Escherichia coli deleted for adenyl cyclase was utilized to screen for mutants of Dictyostelium discoideum unable to accumulate this chemical extracellularly. The threshold amount of cyclic adenosine 3',5'-monophosphate able to induce growth of this bacterium was 3 to 4 mug/ml at 37 C and approximately 25 mug/ml at 27 C. Conditions are described that permit the detection of as low as 2 mug of this chemical at either temperature.  相似文献   

7.
Studies of levels of galactokinase in Escherichia coli with mutations affecting synthesis of, or response to, cyclic adenosine 3',5'-monophosphate show that this nucleotide does not play a major role in expression of the galactose operon, causing at most a twofold stimulation. The discrepancy between our in vivo results and the marked stimulation by cyclic adenosine 3',5'-monophosphate in in vitro systems indicates that current cell-free systems lack a factor which allows efficient expression of the galactose operon even in the absence of cyclic adenosine 3',5'-monophosphate or of the binding protein for this nucleotide.  相似文献   

8.
We studied the following two aspects of the glucose effect on galactose operon expression in Escherichia coli K-12: catabolite repression and inducer exclusion. Using both inducible and constitutive strains and measuring the rate of promoter-proximal enzyme synthesis, we found that the galactose operon did not seem to exhibit catabolite repression. The only glucose effect on galactose operon expression which we observed was inducer exclusion, as shown by the existence of diauxic growth in the presence of glucose and galactose. This diauxie was not relieved by cyclic adenosine 3',5'-monophosphate. Cyclic adenosine 3',5'-monophosphate did not seem to be an antagonist of any glucose effect on galactose operon expression; its only effect was to stimulate promoter-distal gene expression.  相似文献   

9.
10.
The formation of adenosine cyclic 3',5'-phosphate by Brevibacterium liquefaciens ATCC 14929 was studied with the use of nonproliferating cells and cell-free extract. With nonproliferating cells provided by deprivation of sulfate, the formation of this nucleotide was accelerated by adding some amino acids and sugars. Among amino acids tested, alanine and asparagine were most effective. Pentoses were more favorable than hexoses and other sugars. Formation of adenosine cyclic 3',5'-phosphate was observed also with chloramphenicol-treated cells. Experiments on cell-free extract showed that addition of alanine or pyruvate stimulated the formation of adenosine cyclic 3',5'-phosphate from adenosine-5'-triphosphate. When alanine was added to the cell-free system, shaking of the reaction mixture further increased the amount of the nucleotide, but pyruvate was far more effective than alanine. No synergistic effect of alanine and pyruvate was observed. Some enzyme activity was observed which decomposed adenosine cyclic 3',5'-phosphate, but it was weak as compared with adenyl cyclase activity in the presence of pyruvate. From the results obtained, it appears that pyruvate may act as an activating factor of adenyl cyclase in Brevibacterium liquefaciens.  相似文献   

11.
GH pituitary cells have been widely utilized for studies of hormone response mechanisms. Studies reported here were motivated by the desirability of isolating characterized GH clones defective in cyclic AMP synthesis or action. Spontaneously occurring GH1 cell variants resistant to the growth-inhibitory effects of cyclic AMP analogs were isolated. Characterization of four variants showed that these were deficient in adenosine kinase and had acquired resistance to the cytotoxic effects of purine nucleoside derivatives formed in the culture medium. A second-stage selection was undertaken with mutagenized adenosine kinase-deficient cells. One 8 Br cAMP-resistant variant was found to have normal cyclic AMP-dependent protein kinase activity but exhibited altered adenylate cyclase activity. Activation of cyclase activity by fluoride, guanyl nucleotides, cholera toxin, and hormone (VIP) was subnormal in the variant. Mn-dependent cyclase activity was also subnormal, suggesting that the 8 Br cAMP-resistant variant may have a deficiency in the catalytic moiety of adenylate cyclase. Surprisingly, adenosine 3':5'-monophosphate and 5'-monophosphate derivatives were found to be equally potent in growth-inhibiting adenosine kinase-deficient cells. Cross-resistance to 8 Br AMP was observed in the 8 Br cAMP-resistant variant. We conclude that cyclic AMP derivatives inhibit growth of GH cells by an unanticipated mechanism that is, nonetheless, related to endogenous cyclic AMP synthesis.  相似文献   

12.
The regulation of three Salmonella typhimurium phosphatases in reponse to different nutritional limitations has been studied. Two enzymes, an acid hexose phosphatase (EC 3.1.3.2) and a cyclic phosphodiesterase (EC 3.1.4.d), appear to be regulated by the cyclic adenosine 3' ,5'-monophosphate (AMP) catabolite repression system. Levels of these enzymes increased in cells grown on poor carbon sources but not in cells grown on poor nitrogen or phosphorus sources. Mutants lacking adenyl cyclase did not produce elevated levels of these enzymes in response to carbon limitation unless cyclic AMP was supplied. Mutants lacking the cyclic AMP receptor protein did not produce elevated levels of these enzymes in response to carbon limitation regardless of the presence of cyclic AMP. Since no specific induction of either enzyme could be demonstrated, these enzymes appear to be controlled solely by the cyclic AMP system. Nonspecific acid phsphatase activity (EC 3.1.3.2) increased in response to carbon, nitrogen, phosphorus, or sulfur limitation. The extent of the increase depended on growth rate, with slower growth rates favoring greater increases, and on the type of limitation. Limitation for either carbon or phosphorus resulted in maximum increases, whereas severe limitation of Mg2+ caused only a slight increase. The increase in nonspecific acid phosphatase during carbon limitation was apparently not mediated by the catabolite repression system since mutants lacking adenyl cyclase or the cyclic AMP receptor protein still produced elevated levels of this enzyme during carbon starvation. Nor did the increase during phosphorus limitation appear to be mediated by the alkaline phosphatase regulatory system. A strain of Salmonella bearing a chromosomal mutation, which caused constitutive production of alkaline phosphatase (introduced by an episome from Escherichia coli), did not have constitutive levels of nonspecific acid phosphatase.  相似文献   

13.
Transient inhibition of catabolic enzyme synthesis in Escherichia coli occurred when a low concentration of 2,4-dinitrophenol (DNP) was simultaneously added with inducer. Using mutant strains defective for gamma-gene product or constitutive for lac enzymes, it was found that the inhibition is not due to the exclusion of inducer by uncoupling. The addition of cyclic adenosine 3',5'-monophosphate overcame repression. The components of the lac operon coordinately responded to DNP inhibition. From deoxyribonucleic acid-ribonucleic acid hybridization experiments, it was found that the inhibition of beta-galactosidase induction occurred at the level of messenger ribonucleic acid synthesis specific for the lac operon. It seems probable that DNP represses induction in a similar manner to that of transient repression observed upon the addition of glucose. Furthermore, it was found that transient repression disappeared if cells were preincubated with DNP before induction. This indicates that new contact of cells with DNP is obligatory for transient repression. From these results, it is suggested that the cell membrane may be responsible for regulation of catabolite-sensitive enzyme synthesis.  相似文献   

14.
Inducibility of histidase (histidine ammonia-lyase, EC 4.3.1.3) in Pseudomonas putida and Pseudomonas aeruginosa was observed to be strongly affected by succinate-provoked catabolite repression, but this did not occur as a consequence of reduced intracellular cyclic adenosine 3',5'-monophosphate levels, and repression could not be alleviated by exogenously added cyclic adenosine 3,'5'-monophosphate. Milder repression of histidase by lactate was also not reversed by the addition of cyclic adenosine 3',5'-monophosphate. These results, along with data showing intracellular cyclic adenosine 3',5'-monophosphate levels remained essentially constant during growth on such diverse carbon sources as histidine, acetamide, glucose, and succinate, indicated that catabolite repression of histidase synthesis by efficient carbon sources was not mediated through variations in internal cyclic adenosine 3,'5'-monophosphate.  相似文献   

15.
Experiments using a phosphodiesterase-minus mutant of Dictyostelium discoideum indicate that ligand-induced loss of cell surface cyclic adenosine 3':5'-monophosphate binding sites (down regulation) can be evoked with concentrations of cyclic adenosine 3':5'-monophosphate as low as 10(-8) M. The loss of receptor sites is observed after 5 min of cell preincubation with cyclic adenosine 3':5'-monophosphate and can be as extensive as 75 to 80%. This decrease in binding sites is correlated with the appearance of a slowly dissociating cyclic adenosine 3':5'-monophosphate binding component. Radioactive cyclic adenosine 3':5'-monophosphate bound to this form of receptor cannot be competed for by nonradioactive cyclic adenosine 3':5'-monophosphate or adenosine 5'-monophosphate and is not accessible to hydrolysis by cyclic adenosine 3':5'-monophosphate phosphodiesterase. The extent of appearance of this binding component is dependent upon the concentration of cyclic adenosine 3':5'-monophosphate used to elicit the down regulation response and the temperature of the incubation medium.  相似文献   

16.
Analysis of cells of Lactobacillus plantarum, starved or undergoing induction, showed no 3', 5'-cyclic adenosine monophosphate (cAMP). Neither adenyl cyclase nor 3', 5'-cAMP phosphodiesterase was detected in extracts. Extracts of L. plantarum did not inhibit these two enzymes of Escherichia coli K-12, strain W1435. Incubation of adenosine triphosphate (ATP)-U-(14)C with cells or various cell-free fractions of L. plantarum did not produce labeled 3', 5'-cAMP. Of various 3', 5'-cyclic and acyclic nucleotides tested, only 3', 5'-cAMP, ATP, and yeast adenylic acid stimulated l-arabinose isomerase. Yeast adenylic acid was two to four times as effective as 3', 5'-cAMP or ATP. 2', 3'-cAMP was not effective.  相似文献   

17.
Cyclic adenosine 3':5'-monophosphate added to the starvation media of Dictyostelium discoideum amoebae induces both intracellular and extracellular phosphodiesterase activities of these cells. The induced enzyme activity appears several hours earlier than that in starved cells which have not been induced with cyclic nucleotide. In both cases, the appearance of enzyme is inhibited by cycloheximide, and actinomycin D, and daunomycin. The KmS for the extracellular enzyme(s) of nucleotide-induced and uninduced control cells are identical. The induction of enzyme activity seems specific for cyclic adenosine 3':5'-monophosphate since cyclic guanosine 3':5'-monophosphate, as well as other nucleotides, have no effect. No differences in the activity or excretion of either N-acetylglucosaminidase or the inhibitory of the extracellular phosphodiesterase are observed between cyclic adenosine 3':5'-monophosphate-induced and control cells. A direct activation of phosphodiesterase by cyclic adenosine 3':5'-monophosphate can be excluded, since the addition of this nucleotide to cell lysates has no effect on the enzyme activity.  相似文献   

18.
A mixture containing glucagon and thyroid hormone was previously devised that enhances markedly nuclear DNA replication and mitosis in the parenchymal liver cells of the unoperated rat. It is now shown that the glucagon of the stimulatory solution can be completely replaced by a mixture of a butyryl derivative of cyclic adenosine 3':5'-monophosphate and theophylline. Cyclic guanosine 3':5'-monophosphate and its butyryl derivatives and insulin and high levels of glucose are inactive. The inactivity of N2-monobutyryl cyclic guanosine 3':5'-monophosphate cannot be ascribed to rapid breakdown in the animal or to the impenetrability of the liver cell since the coumpound elevates the rate of hepatic amino acid transport and the activity of ornithine decarboxylase. The observation of others (MacManus, J.P., Franks, D.J., Youdale, T. & Braceland, B.M. (1972) Biochem. Biophys. Res. Commun. 49, 1201-1207) that the level of cylcic adenosine 3':5'-monophosphate is raised during most of the prereplicative period after 70% hepatectomy is confirmed. The evidence supports a positive role for adenosine 3':5-monophosphate in regulating DNA synthesis in the liver.  相似文献   

19.
The levels of serum potassium, blood glucose, and plasma adenosine cyclic 3':5'-monophosphate (cAMP) and guanosine cyclic 3':5'-monophosphate (cGMP) were studied after the portal vein injection of cyclic nucleotides and their derivatives, (cAMP, cGMP, N6, O2'-dibutyryl adenosine 3':5'-monophosphate (DBcAMP), N6-monobutyryl adenosine cyclic 3':5'-monophosphate (NMBcAMP), and O2'-monobutyryl adenosine cyclic 3':5'-monophosphate (OMBcAMP), into dogs. Dose-related hyperglycemic responses were observed after the injection of DBcAMP (1-8 mg/kg). Transient and prominent hyperkalemia and hyperglycemia were caused by the injection of DBcAMP, NMBcAMP, and OMBcAMP (4 mg/kg). The hyperkalemic response was highest with NMBcAMP (1.22 mequiv./L), followed by OMBcAMP (0.64), DBcAMP (0.54), cGMP (0.47), and cAMP (0.41), whereas the hyperglycemic response was highest with NMBcAMP (146 mg/100 mL), followed by DBcAMP (93.6), OMBcAMP (77.1), and cAMP (56.0), and there was only a slight change with cGMP (28.4) compared with the control. The plasma level of cAMP was maximal with DBcAMP (1.92 nmol/mL), followed by NMBcAMP (1.28) and OMBcAMP (0.76), whereas the plasma levels of cGMP showed no evident change, except that caused by DBcAMP (0.27). Of the cyclic nucleotides tested, NMBcAMP was found to be most potent in causing both hyperkalemia and hyperglycemia. Based on these results, possible correlations between hyperkalemia, hyperglycemia, and plasma levels of cAMP and cGMP are discussed.  相似文献   

20.
The ability of imidazole acetic acid (IA) to substitute for cAMP was demonstrated by use of a series of strains carrying a lesion in the cya structural gene. The substitution of IA for cAMP was specific for the L-arabinose operon in that this compound was ineffective in substituting for cAMP in the lactose or maltose catabolic systems. The cAMP receptor protein (CRP) and the araC gene product were necessary for the IA mediated induction of the L-arabinose system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号