首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We monitored expression of PD-1 (a mediator of T-cell exhaustion and viral persistence) on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells from blood and liver during acute and chronic infections and after the resolved infection stage. PD-1 expression on HCV-specific T cells was high early in acute infection irrespective of clinical outcome, and most cells continued to express PD-1 in resolved and chronic stages of infection; intrahepatic expression levels were especially high. Our results suggest that an analysis of PD-1 expression alone is not sufficient to predict infection outcome or to determine T-cell functionality in HCV infection.  相似文献   

2.
The mechanisms mediating protective immunity to hepatitis C virus (HCV) infection are incompletely understood because early infection in humans is rarely identified, particularly in those individuals who subsequently demonstrate spontaneous virus eradication. We have established a large national network of patients with acute HCV infection. Here, we comprehensively examined total HCV-specific CD4+ and CD8+ T-cell responses and identified functional T-cell thresholds that predict recovery. Interestingly, we found that the presence of HCV-specific cytotoxic T lymphocytes (CTLs) that can proliferate, exhibit cytotoxicity, and produce gamma interferon does not ensure recovery, but whether these CTLs were primed in the presence or absence of CD4+ T-cell help (HCV-specific interleukin-2 production) is a critical determinant. These results have important implications for early prediction of the virologic outcome following acute HCV and for the development of novel immunotherapeutic approaches.  相似文献   

3.
Early alpha interferon (IFN-α) therapy against hepatitis C virus (HCV) rescues polyfunctional, virus-specific memory CD8+ T cells, but whether immune restoration is possible during late therapy remains controversial. We compared immune restoration of HCV-specific memory T cells in patients who cleared HCV infection spontaneously and following early or late IFN therapy. Multifunctional CD4+ and CD8+ memory T cells were detected in spontaneous resolvers and in individuals treated early following an acute infection. In contrast, limited responses were detected in patients treated during chronic infection, and the phenotype of HCV-specific cells was influenced by autologous viral sequences. Our data suggest that irreversible damage to the HCV-specific memory T-cell response is associated with chronic HCV infection.The majority of acute hepatitis C virus (HCV) infections become chronic, with persistent viremia and serious liver complications (12). Alpha interferon (IFN-α)-based therapy is the only approved treatment for chronic HCV; its success rate ranges from 40 to 90% depending on the infecting genotype (9, 18). The success of therapy is characterized by a sustained virological response (SVR), defined as undetectable HCV RNA in plasma at 6 months after termination of therapy. SVR rates are greatly enhanced if therapy is started between 3 and 6 months following acute HCV infection, but the underlying mechanisms are not well understood (27, 28). We have demonstrated that early interferon therapy for HCV can rescue and select for long-lived polyfunctional CD8+ memory T cells (1). Treatment-induced memory T cells were similar in phenotype and function to natural memory T cells generated following spontaneously resolved infection. They expressed high levels of CD127 and Bcl-2 (CD127hi, Bcl-2hi) and low levels of PD1 (PD1lo) and were polyfunctional in nature (1). However, restoration of HCV-specific memory CD4+ T cells has not been examined. Furthermore, whether immune restoration is possible following the late initiation of therapy during the chronic phase remains controversial. Kamal et al. demonstrated that SVR is associated with a recovery in HCV-specific CD4+ T-cell responses (13). In contrast, Barnes et al. and Rahman et al. demonstrated that the induction of HCV-specific immunity during therapy does not correlate with outcomes (2, 21).  相似文献   

4.
Virus-specific CD8+ T cells play a central role in the control of viral infections, including human immunodeficiency virus type 1 (HIV-1) infection. However, despite the presence of strong and broad HIV-specific CD8+ T-cell responses in chronic HIV-1 infection, these cells progressively lose critical effector functions and fail to clear the infection. Mounting evidence suggests that the upregulation of several inhibitory regulatory receptors on the surface of CD8+ T cells during HIV-1 infection may contribute directly to the impairment of T-cell function. Here, we investigated the role of killer immunoglobulin receptors (KIR), which are expressed on NK cells and on CD8+ T cells, in regulating CD8+ T-cell function in HIV-1 infection. KIR expression was progressively upregulated on CD8+ T cells during HIV-1 infection and correlated with the level of viral replication. Expression of KIR was associated with a profound inhibition of cytokine secretion, degranulation, proliferation, and activation by CD8+ T cells following stimulation with T-cell receptor (TCR)-dependent stimuli. In contrast, KIR+ CD8+ T cells responded potently to TCR-independent stimulation, demonstrating that these cells are functionally competent. KIR-associated suppression of CD8+ T-cell function was independent of ligand engagement, suggesting that these regulatory receptors may constitutively repress TCR activation. This ligand-independent repression of TCR activation of KIR+ CD8+ T cells may represent a significant barrier to therapeutic interventions aimed at improving the quality of the HIV-specific CD8+ T-cell response in infected individuals.  相似文献   

5.
The early immune response fails to prevent the establishment of chronic human immunodeficiency virus (HIV) infection but may influence viremia during primary infection, thereby possibly affecting long-term disease progression. CD25+ FoxP3+ regulatory T cells may contribute to HIV/simian immunodeficiency virus (SIV) pathogenesis by suppressing efficient antiviral responses during primary infection, favoring high levels of viral replication and the establishment of chronic infection. In contrast, they may decrease immune activation during chronic infection. CD4+ regulatory T cells have been studied in the most detail, but CD8+ CD25+ FoxP3+ T cells also have regulatory properties. We monitored the dynamics of CD25+ FoxP3+ T cells during primary and chronic SIVmac251 infection in cynomolgus macaques. The number of peripheral CD4+ CD25+ FoxP3+ T cells paralleled that of memory CD4+ T cells, with a rapid decline during primary infection followed by a rebound to levels just below baseline and gradual depletion during the course of infection. No change in the proportion of CD25+ FoxP3+ T cells was observed in peripheral lymph nodes. A small number of CD4+ CD25+ FoxP3+ T cells at set point was associated with a high plasma viral load. In contrast, peripheral CD8+ CD25+ FoxP3+ T cells were induced a few days after peak plasma viral load during primary infection. The number of these cells was positively correlated with viral load and negatively correlated with CD4+ T-cell activation, SIV antigen-specific proliferative responses during primary infection, and plasma viral load at set point, with large numbers of CD8+ CD25+ FoxP3+ T cells being indicative of a poor prognosis.  相似文献   

6.
CD4+ T-cell help enables antiviral CD8+ T cells to differentiate into fully competent memory cells and sustains CD8+ T-cell-mediated immunity during persistent virus infection. We recently reported that mice of C57BL/6 and C3H strains differ in their dependence on CD28 and CD40L costimulation for long-term control of infection by polyoma virus, a persistent mouse pathogen. In this study, we asked whether mice of these inbred strains also vary in their requirement for CD4+ T-cell help for generating and maintaining polyoma virus-specific CD8+ T cells. CD4+ T-cell-depleted C57BL/6 mice mounted a robust antiviral CD8+ T-cell response during acute infection, whereas unhelped CD8+ T-cell effectors in C3H mice were functionally impaired during acute infection and failed to expand upon antigenic challenge during persistent infection. Using (C57BL/6 × C3H)F1 mice, we found that the dispensability for CD4+ T-cell help for the H-2b-restricted polyoma virus-specific CD8+ T-cell response during acute infection extends to the H-2k-restricted antiviral CD8+ T cells. Our findings demonstrate that dependence on CD4+ T-cell help for antiviral CD8+ T-cell effector differentiation can vary among allogeneic strains of inbred mice.  相似文献   

7.
Although treatment with interleukin-7 (IL-7) was shown to transiently expand the naïve and memory T-cell pools in patients with chronic HIV-1 infection receiving antiretroviral therapy (ART), it is uncertain whether a full immunologic reconstitution can be achieved. Moreover, the effects of IL-7 have never been evaluated during acute HIV-1 (or SIV) infection, a critical phase of the disease in which the most dramatic depletion of CD4+ T cells is believed to occur. In the present study, recombinant, fully glycosylated simian IL-7 (50 µg/kg, s.c., once weekly for 7 weeks) was administered to 6 rhesus macaques throughout the acute phase of infection with a pathogenic SIV strain (mac251); 6 animals were infected at the same time and served as untreated controls. Treatment with IL-7 did not cause clinically detectable side effects and, despite the absence of concomitant ART, did not induce significant increases in the levels of SIV replication except at the earliest time point tested (day 4 post-infection). Strikingly, animals treated with IL-7 were protected from the dramatic decline of circulating naïve and memory CD4+ T cells that occurred in untreated animals. Treatment with IL-7 induced only transient T-cell proliferation, but it was associated with sustained increase in the expression of the anti-apoptotic protein Bcl-2 on both CD4+ and CD8+ T cells, persistent expansion of all circulating CD8+ T-cell subsets, and development of earlier and stronger SIV Tat-specific T-cell responses. However, the beneficial effects of IL-7 were not sustained after treatment interruption. These data demonstrate that IL-7 administration is effective in protecting the CD4+ T-cell pool during the acute phase of SIV infection in macaques, providing a rationale for the clinical evaluation of this cytokine in patients with acute HIV-1 infection.  相似文献   

8.
Hepatitis C Virus (HCV) is a major public health concern, with no effective vaccines currently available and 3% of the world''s population being infected. Despite the existence of both B- and T-cell immunity in HCV-infected patients, chronic viral infection and HCV-related malignancies progress. Here we report the identification of a novel HCV TCR from an HLA-A2-restricted, HCV NS3:1073–1081-reactive CTL clone isolated from a patient with chronic HCV infection. We characterized this HCV TCR by expressing it in human T cells and analyzed the function of the resulting HCV TCR-transduced cells. Our results indicate that both the HCV TCR-transduced CD4+ and CD8+ T cells recognized the HCV NS3:1073–1081 peptide-loaded targets and HCV+ hepatocellular carcinoma cells (HCC) in a polyfunctional manner with cytokine (IFN-γ, IL-2, and TNF-α) production as well as cytotoxicity. Tumor cell recognition by HCV TCR transduced CD8 Jurkat cells and CD4+ PBL-derived T cells indicated this TCR was CD8-independent, a property consistent with other high affinity TCRs. HCV TCR-transduced T cells may be promising for the treatment of patients with chronic HCV infections.  相似文献   

9.
Approximately 200 million people throughout the world are infected with hepatitis C virus (HCV). One of the most striking features of HCV infection is its high propensity to establish persistence (∼70–80%) and progressive liver injury. Galectins are evolutionarily conserved glycan-binding proteins with diverse roles in innate and adaptive immune responses. Here, we demonstrate that galectin-9, the natural ligand for the T cell immunoglobulin domain and mucin domain protein 3 (Tim-3), circulates at very high levels in the serum and its hepatic expression (particularly on Kupffer cells) is significantly increased in patients with chronic HCV as compared to normal controls. Galectin-9 production from monocytes and macrophages is induced by IFN-γ, which has been shown to be elevated in chronic HCV infection. In turn, galectin-9 induces pro-inflammatory cytokines in liver-derived and peripheral mononuclear cells; galectin-9 also induces anti-inflammatory cytokines from peripheral but not hepatic mononuclear cells. Galectin-9 results in expansion of CD4+CD25+FoxP3+CD127low regulatory T cells, contraction of CD4+ effector T cells, and apoptosis of HCV-specific CTLs. In conclusion, galectin-9 production by Kupffer cells links the innate and adaptive immune response, providing a potential novel immunotherapeutic target in this common viral infection.  相似文献   

10.
BackgroundDecreased hepatitis C virus (HCV) clearance, faster cirrhosis progression and higher HCV RNA levels are associated with Human Immunodeficiency virus (HIV) coinfection. The CD4+ T helper cytokines interleukin (IL)-21 and IL-17A are associated with virus control and inflammation, respectively, both important in HCV and HIV disease progression. Here, we examined how antigen-specific production of these cytokines during HCV mono and HIV/HCV coinfection was associated with HCV virus control.MethodsWe measured HCV-specific IL-21 and IL-17A production by transwell cytokine secretion assay in PBMCs from monoinfected and coinfected individuals. Viral control was determined by plasma HCV RNA levels.ResultsIn acutely infected individuals, those able to establish transient/complete HCV viral control tended to have stronger HCV-specific IL-21-production than non-controllers. HCV-specific IL-21 production also correlated with HCV viral decline in acute infection. Significantly stronger HCV-specific IL-21 production was detected in HAART-treated coinfected individuals. HCV-specific IL-17A production was not associated with lower plasma HCV RNA levels in acute or chronic HCV infection and responses were stronger in HIV coinfection. HCV-specific IL-21/ IL-17A responses did not correlate with microbial translocation or fibrosis. Exogenous IL-21 treatment of HCV-specific CD8+ T cells from monoinfected individuals enhanced their function although CD8+ T cells from coinfected individuals were somewhat refractory to the effects of IL-21.ConclusionsThese data show that HCV-specific IL-21 and IL-17A-producing T cells are induced in HIV/HCV coinfection. In early HIV/HCV coinfection, IL-21 may contribute to viral control, and may represent a novel tool to enhance acute HCV clearance in HIV/HCV coinfected individuals.  相似文献   

11.
Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity.  相似文献   

12.
13.
Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen.  相似文献   

14.
A number of emerging molecules and pathways have been implicated in mediating the T-cell exhaustion characteristic of chronic viral infection. Not all dysfunctional T cells express PD-1, nor are they all rescued by blockade of the PD-1/PD-1 ligand pathway. In this study, we characterize the expression of T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) in chronic hepatitis C infection. For the first time, we found that Tim-3 expression is increased on CD4+ and CD8+ T cells in chronic hepatitis C virus (HCV) infection. The proportion of dually PD-1/Tim-3-expressing cells is greatest in liver-resident T cells, significantly more so in HCV-specific than in cytomegalovirus-specific cytotoxic T lymphocytes. Tim-3 expression correlates with a dysfunctional and senescent phenotype (CD127low CD57high), a central rather than effector memory profile (CD45RAnegative CCR7high), and reduced Th1/Tc1 cytokine production. We also demonstrate the ability to enhance T-cell proliferation and gamma interferon production in response to HCV-specific antigens by blocking the Tim-3-Tim-3 ligand interaction. These findings have implications for the development of novel immunotherapeutic approaches to this common viral infection.Hepatitis C virus (HCV) is a major causative agent of chronic hepatitis, affecting approximately 200 million people throughout the world; the majority of individuals exposed to HCV become persistently infected (19). A broad array of functional impairments of virus-specific T cells from early to chronic stages of infection, including exhaustion (decreased antiviral cytokine production, cytotoxicity, and proliferative capacity) (8, 24) and arrested stages of differentiation (1, 13), is supported by considerable evidence. Recently, upregulation of programmed death 1 (PD-1) and downmodulation of CD127 (interleukin-7 [IL-7] receptor) have been linked to functional exhaustion of T cells in chronic HCV infection (5-7, 15, 21, 22). However, not all exhausted T cells express these phenotypic changes, and blockade of the PD-1/PD-L1 signaling pathway does not always reconstitute Th1/Tc1 cytokine production (4, 5), indicating that other molecules may contribute to the exhaustion typically associated with chronic viral infections (9). One such molecule is Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule 3), a membrane protein initially identified on terminally differentiated Th1 but not Th2 cells in mice (9). A recent analysis of human immunodeficiency virus (HIV) infection demonstrates that Tim-3 is upregulated on both CD4+ and CD8+ T cells from patients with chronic infection relative to uninfected individuals and that virus-specific cells expressing high levels of Tim-3 secrete less IFN-γ than do Tim-3-negative cells (10). In light of these findings, for the first time, this study assessed the expression of Tim-3 in chronic HCV infection. We found a higher frequency of Tim3-expressing CD4+ and CD8+ T cells in chronic HCV infection, with the highest on HCV-specific cytotoxic T lymphocytes (CTLs). Tim-3 expression correlates with a dysfunctional phenotype and reduced Th1/Tc1 cytokine production but not viral load. We also demonstrated the ability to enhance T-cell proliferation in response to HCV-specific antigens by blocking the Tim-3-Tim-3 ligand interaction. These findings have implications for the development of novel immunotherapeutic approaches to this common disease.  相似文献   

15.
Activation of CD4+ T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4+ T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2d. This is quite disparate to the H-2b setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2d or whether additional CD4+ T-cell epitopes could be identified in the setting of the H-2b background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4+ T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4+ epitopes, four of them also stimulate CD8+ T cells in a statistically significant manner. Furthermore, we assessed these CD4+ T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4+ and CD8+ T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.  相似文献   

16.
Inoculation with the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice results in an acute encephalitis associated with an immune-mediated demyelinating disease. During acute disease, infiltrating CD8+ T cells secrete gamma interferon (IFN-γ) that controls replication in oligodendrocytes, while infected astrocytes and microglia are susceptible to perforin-mediated lysis. The present study was undertaken to reveal the functional contributions of the activating NKG2D receptor in host defense and disease following JHMV infection. NKG2D ligands RAE-1, MULT1, and H60 were expressed within the CNS following JHMV infection. The immunophenotyping of infiltrating cells revealed that NKG2D was expressed on ~90% of infiltrating CD8+ T cells during acute and chronic disease. Blocking NKG2D following JHMV infection resulted in increased mortality that correlated with increased viral titers within the CNS. Anti-NKG2D treatment did not alter T-cell infiltration into the CNS or the generation of virus-specific CD8+ T cells, and the expression of IFN-γ was not affected. However, cytotoxic T-lymphocyte (CTL) activity was dependent on NKG2D expression, because anti-NKG2D treatment resulted in a dramatic reduction in lytic activity by virus-specific CD8+ T cells. Blocking NKG2D during chronic disease did not affect either T-cell or macrophage infiltration or the severity of demyelination, indicating that NKG2D does not contribute to virus-induced demyelination. These findings demonstrate a functional role for NKG2D in host defense during acute viral encephalitis by selectively enhancing CTL activity by infiltrating virus-specific CD8+ T cells.  相似文献   

17.
18.
Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed ‘classic’ features of apoptosis following exposure to pneumococci. Conversely, purified CD3+ T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3+ T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3+ T-cells in PBMC cultures required ‘classical’ CD14+ monocytes, which enhanced T-cell activation. CD3+ T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3+ T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease.  相似文献   

19.
We used mandrills (Mandrillus sphinx) naturally infected with simian T-cell leukemia virus type 1 (STLV-1) as a model for evaluating the influence of natural STLV-1 infection on the dynamics and evolution of the immune system during chronic infection. Furthermore, in order to evaluate the role of the immune system in controlling the infection during latency, we induced immunosuppression in the infected monkeys. We first showed that the STLV-1 proviral load was higher in males than in females and increased significantly with the duration of infection: mandrills infected for 10–6 years had a significantly higher proviral load than those infected for 2–4 years. Curiously, this observation was associated with a clear reduction in CD4+ T-cell number with age. We also found that the percentage of CD4+ T cells co-expressing the activation marker HLA-DR and the mean percentage of CD25+ in CD4+ and CD8+ T cells were significantly higher in infected than in uninfected animals. Furthermore, the STLV-1 proviral load correlated positively with T-cell activation but not with the frequency of T cells secreting interferon γ in response to Tax peptides. Lastly, we showed that, during immunosuppression in infected monkeys, the percentages of CD8+ T cells expressing HLA-DR+ and of CD4+ T cells expressing the proliferation marker Ki67 decreased significantly, although the percentage of CD8+ T cells expressing HLA-DR+ and Ki67 increased significantly by the end of treatment. Interestingly, the proviral load increased significantly after immunosuppression in the monkey with the highest load. Our study demonstrates that mandrills naturally infected with STLV-1 could be a suitable model for studying the relations between host and virus. Further studies are needed to determine whether the different compartments of the immune response during infection induce the long latency by controlling viral replication over time. Such studies would provide important information for the development of immune-based therapeutic strategies.  相似文献   

20.
Supportive evidence that apoptosis contributes to loss of CD4+ lymphocytes in human immunodeficiency virus type 1 (HIV-1)-infected humans comes from an apparent lack of abnormal apoptosis in apathogenic lentivirus infections of nonhuman primates, including HIV-1 infection of chimpanzees. Two female chimpanzees were inoculated, one cervically and the other intravenously, with HIV-1 derived from the LAI/LAV-1b strain, which was isolated from a chimpanzee infected with the virus for 8 years. Within 6 weeks of infection, both recipient chimpanzees developed a progressive loss of CD4+ T cells which correlated with persistently high viral burdens and increased levels of CD4+ T-cell apoptosis both in vitro and in vivo. Lymph nodes from both animals also revealed evidence of immune hyperactivation. Intermediate levels of T-cell apoptosis in both peripheral blood and lymph nodes were seen in a third chimpanzee that had been infected with the LAI/LAV-1b strain for 9 years; this animal has maintained depressed CD4/CD8 T-cell ratios for the last 3 years. Similar analyses of cells from 4 uninfected animals and 10 other HIV-1-infected chimpanzees without loss of CD4+ cells revealed no difference in levels of apoptosis in these two control groups. These results demonstrate a correlation between immune hyperactivation, T-cell apoptosis, and chronic loss of CD4+ T cells in HIV-1-infected chimpanzees, providing additional evidence that apoptosis is an important factor in T-cell loss in AIDS. Furthermore, the results show that some HIV-1 strains are pathogenic for chimpanzees and that this species is not inherently resistant to HIV-1-induced disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号