共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kaushik S Arias E Kwon H Lopez NM Athonvarangkul D Sahu S Schwartz GJ Pessin JE Singh R 《EMBO reports》2012,13(3):258-265
Autophagy degrades cytoplasmic contents to achieve cellular homeostasis. We show that selective loss of autophagy in hypothalamic proopiomelanocortin (POMC) neurons decreases α-melanocyte-stimulating hormone (MSH) levels, promoting adiposity, impairing lipolysis and altering glucose homeostasis. Ageing reduces hypothalamic autophagy and α-MSH levels, and aged-mice phenocopy, the adiposity and lipolytic defect observed in POMC neuron autophagy-null mice. Intraperitoneal isoproterenol restores lipolysis in both models, demonstrating normal adipocyte catecholamine responsiveness. We propose that an unconventional, autophagosome-mediated form of secretion in POMC neurons controls energy balance by regulating α-MSH production. Modulating hypothalamic autophagy might have implications for preventing obesity and metabolic syndrome of ageing. 相似文献
3.
Nobuo N Noda Yuko Fujioka Takao Hanada Yoshinori Ohsumi Fuyuhiko Inagaki 《EMBO reports》2013,14(2):206-211
Atg12 is conjugated to Atg5 through enzymatic reactions similar to ubiquitination. The Atg12–Atg5 conjugate functions as an E3‐like enzyme to promote lipidation of Atg8, whereas lipidated Atg8 has essential roles in both autophagosome formation and selective cargo recognition during autophagy. However, the molecular role of Atg12 modification in these processes has remained elusive. Here, we report the crystal structure of the Atg12–Atg5 conjugate. In addition to the isopeptide linkage, Atg12 forms hydrophobic and hydrophilic interactions with Atg5, thereby fixing its position on Atg5. Structural comparison with unmodified Atg5 and mutational analyses showed that Atg12 modification neither induces a conformational change in Atg5 nor creates a functionally important architecture. Rather, Atg12 functions as a binding module for Atg3, the E2 enzyme for Atg8, thus endowing Atg5 with the ability to interact with Atg3 to facilitate Atg8 lipidation. 相似文献
4.
Mitochondrial health is maintained by the quality control mechanisms of mitochondrial dynamics (fission and fusion) and mitophagy. Decline of these processes is thought to contribute to aging and neurodegenerative diseases. To investigate the role of mitochondrial quality control in aging on the cellular level, human umbilical vein endothelial cells (HUVEC) were subjected to mitochondria-targeted damage by combining staining of mitochondria and irradiation. This treatment induced a short boost of reactive oxygen species, which resulted in transient fragmentation of mitochondria followed by mitophagy, while mitochondrial dynamics were impaired. Furthermore, targeted mitochondrial damage upregulated autophagy factors LC3B, ATG5 and ATG12. Consequently these proteins were overexpressed in HUVEC as an in vitro aging model, which significantly enhanced the replicative life span up to 150% and the number of population doublings up to 200%, whereas overexpression of LAMP-1 did not alter the life span. Overexpression of LC3B, ATG5 and ATG12 resulted in an improved mitochondrial membrane potential, enhanced ATP production and generated anti-apoptotic effects, while ROS levels remained unchanged and the amount of oxidized proteins increased. Taken together, these data relate LC3B, ATG5 and ATG12 to mitochondrial quality control after oxidative damage, and to cellular longevity. 相似文献
5.
Atg5-null mice are neonatal lethal. We have revealed in our recent paper that these mice die due to neuronal dysfunction resulting in suckling failure. Our new mouse model, atg5–/–;Eno2/Nse-Atg5 mice, where Atg5 is deficient in the whole body except for neurons, enables us to analyze the consequences of macroautophagy/autophagy-deficiency in the whole body of adult mice. 相似文献
6.
Ling-Yan Su Rongcan Luo Qianjin Liu Jing-Ran Su Lu-Xiu Yang Yu-Qiang Ding 《Autophagy》2017,13(9):1496-1511
The molecular basis of chronic morphine exposure remains unknown. In this study, we hypothesized that macroautophagy/autophagy of dopaminergic neurons would mediate the alterations of neuronal dendritic morphology and behavioral responses induced by morphine. Chronic morphine exposure caused Atg5 (autophagy-related 5)- and Atg7 (autophagy-related 7)-dependent and dopaminergic neuron-specific autophagy resulting in decreased neuron dendritic spines and the onset of addictive behaviors. In cultured primary midbrain neurons, morphine treatment significantly reduced total dendritic length and complexity, and this effect could be reversed by knockdown of Atg5 or Atg7. Mice deficient for Atg5 or Atg7 specifically in the dopaminergic neurons were less sensitive to developing a morphine reward response, behavioral sensitization, analgesic tolerance and physical dependence compared to wild-type mice. Taken together, our findings suggested that the Atg5- and Atg7-dependent autophagy of dopaminergic neurons contributed to cellular and behavioral responses to morphine and may have implications for the future treatment of drug addiction. 相似文献
7.
《Autophagy》2013,9(1):75-87
Autophagy is a bulky catabolic process that responds to nutrient homeostasis and extracellular stress signals and is a conserved mechanism in all eukaryotes. When autophagy is induced, cellular components are sequestered within an autophagosome and finally degraded by subsequent fusion with a lysosome. During this process, the ATG12–ATG5 conjugate requires 2 different binding partners, ATG16L1 for autophagosome elongation and TECPR1 for lysosomal fusion. In our current study, we describe the crystal structures of human ATG5 in complex with an N-terminal domain of ATG16L1 as well as an internal AIR domain of TECPR1. Both binding partners exhibit a similar α-helical structure containing a conserved binding motif termed AFIM. Furthermore, we characterize the critical role of the C-terminal unstructured region of the AIR domain of TECPR1. These findings are further confirmed by biochemical and cell biological analyses. These results provide new insights into the molecular details of the autophagosome maturation process, from its elongation to its fusion with a lysosome. 相似文献
8.
Jun Hoe Kim Seung Beom Hong Jae Keun Lee Sisu Han Kyung-Hye Roh Kyung-Eun Lee Yoon Ki Kim Eui-Ju Choi Hyun Kyu Song 《Autophagy》2015,11(1):75-87
Autophagy is a bulky catabolic process that responds to nutrient homeostasis and extracellular stress signals and is a conserved mechanism in all eukaryotes. When autophagy is induced, cellular components are sequestered within an autophagosome and finally degraded by subsequent fusion with a lysosome. During this process, the ATG12–ATG5 conjugate requires 2 different binding partners, ATG16L1 for autophagosome elongation and TECPR1 for lysosomal fusion. In our current study, we describe the crystal structures of human ATG5 in complex with an N-terminal domain of ATG16L1 as well as an internal AIR domain of TECPR1. Both binding partners exhibit a similar α-helical structure containing a conserved binding motif termed AFIM. Furthermore, we characterize the critical role of the C-terminal unstructured region of the AIR domain of TECPR1. These findings are further confirmed by biochemical and cell biological analyses. These results provide new insights into the molecular details of the autophagosome maturation process, from its elongation to its fusion with a lysosome. 相似文献
9.
Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest. 相似文献
10.
11.
12.
The binding of leptin to hypothalamic neurons elicits inhibition of orexigenic NPY/AgRP neurons and stimulation of anorexigenic POMC/CART neurons. Projections of serotonergic neurons onto POMC neurons suggest that leptin and serotonin converge onto POMC neurons to regulate body weight. We probed the interaction of these pathways by generating transgenic mice overexpressing leptin (LepTg) without 5HT2c receptors. On a chow diet, the lean phenotype of LepTg mice was unaffected by the absence of 5HT2c receptors, whereas on a high fat diet, LepTg/5HT2c receptors knockout mice showed an exacerbation of diet-induced obesity. POMC mRNA levels were low in LepTg, 5HT2c receptors knockout and LepTg/5HT2c receptors knockout mice, demonstrating that perturbations of the 5HT2c receptor and leptin pathways, either alone or in combination, negatively impact on POMC expression. Thus, on a chow diet, leptin action is independent of 5HT2c receptors whereas on a high fat diet 5HT2c receptors are required for the attenuation of obesity. 相似文献
13.
MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy. 相似文献
14.
Lan H Cheng CC Kowalski TJ Pang L Shan L Chuang CC Jackson J Rojas-Triana A Bober L Liu L Voigt J Orth P Yang X Shipps GW Hedrick JA 《Journal of lipid research》2011,52(4):646-656
Fatty acid binding protein-4 (FABP4) and FABP5 are two closely related FA binding proteins expressed primarily in adipose tissue and/or macrophages. The small-molecule FABP4 inhibitor BMS309403 was previously reported to improve insulin sensitivity in leptin-deficient Lep(ob)/Lep(ob) (ob/ob) mice. However, this compound was not extensively characterized in the more physiologically relevant animal model of mice with diet-induced obesity (DIO). Here, we report the discovery and characterization of a novel series of FABP4/5 dual inhibitors represented by Compounds 1-3. Compared with BMS309403, the compounds had significant in vitro potency toward both FABP4 and FABP5. In cell-based assays, Compounds 2 and 3 were more potent than BMS309403 to inhibit lipolysis in 3T3-L1 adipocytes and in primary human adipocytes. They also inhibited MCP-1 release from THP-1 macrophages as well as from primary human macrophages. When chronically administered to DIO mice, BMS309403 and Compound 3 reduced plasma triglyceride and free FA levels. Compound 3 reduced plasma free FAs at a lower dose level than BMS309403. However, no significant change was observed in insulin, glucose, or glucose tolerance. Our results indicate that the FABP4/5 inhibitors ameliorate dyslipidemia but not insulin resistance in DIO mice. 相似文献
15.
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12–Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12–Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy. 相似文献
16.
Tanida I Nishitani T Nemoto T Ueno T Kominami E 《Biochemical and biophysical research communications》2002,296(5):1164-1170
A dynamic membrane rearrangement occurs in cells during autophagy to form autophagosomes. In this dynamic process, two ubiquitin-like modifications, Apg12p-conjugation and LC3-modification, are essential for the formation of autophagosomes. Apg7p and Apg10p catalyze the conjugation of Apg12p to Apg5p. The same Apg7p and Apg3p catalyze the processing of LC3 to a membrane-bound form, LC3-II. In this paper, we investigated whether Apg12p has an influence on the second LC3-modification system. A cross-linking experiment revealed that Apg3p interacts with the endogenous Apg12p.Apg5p conjugate. However, Apg3p itself interacts with free Apg12p more preferentially than the Apg12p.Apg5p conjugate, when free Apg12p exists. When Apg12p was overexpressed, LC3 processing was significantly enhanced in the presence of Apg7p. In contrast, when the Apg12p.Apg5p conjugate itself was accumulated by the overexpression of Apg12p and Apg5p, LC3 processing was dominantly inhibited, even in the presence of Apg7p. These results indicate that both Apg12p and the Apg12p.Apg5p conjugate are regulatory factors for LC3 processing. 相似文献
17.
Nadine Kraemer Ethiraj Ravindran Sami Zaqout Gerda Neubert Detlev Schindler Olaf Ninnemann Ralph Gr?f Andrea EM Seiler Angela M Kaindl 《Cell cycle (Georgetown, Tex.)》2015,14(13):2044-2057
Biallelic mutations in the gene encoding centrosomal CDK5RAP2 lead to autosomal recessive primary microcephaly (MCPH), a disorder characterized by pronounced reduction in volume of otherwise architectonical normal brains and intellectual deficit. The current model for the microcephaly phenotype in MCPH invokes a premature shift from symmetric to asymmetric neural progenitor-cell divisions with a subsequent depletion of the progenitor pool. The isolated neural phenotype, despite the ubiquitous expression of CDK5RAP2, and reports of progressive microcephaly in individual MCPH cases prompted us to investigate neural and non-neural differentiation of Cdk5rap2-depleted and control murine embryonic stem cells (mESC). We demonstrate an accumulating proliferation defect of neurally differentiating Cdk5rap2-depleted mESC and cell death of proliferative and early postmitotic cells. A similar effect does not occur in non-neural differentiation into beating cardiomyocytes, which is in line with the lack of non-central nervous system features in MCPH patients. Our data suggest that MCPH is not only caused by premature differentiation of progenitors, but also by reduced propagation and survival of neural progenitors. 相似文献
18.
19.
- Download : Download high-res image (186KB)
- Download : Download full-size image