首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photocycle kinetics of Platymonas subcordiformis channelrhodopsin-2 (PsChR2), among the most highly efficient light-gated cation channels and the most blue-shifted channelrhodopsin, was studied by time-resolved absorption spectroscopy in the 340–650-nm range and in the 100-ns to 3-s time window. Global exponential fitting of the time dependence of spectral changes revealed six lifetimes: 0.60 μs, 5.3 μs, 170 μs, 1.4 ms, 6.7 ms, and 1.4 s. The sequential intermediates derived for a single unidirectional cycle scheme based on these lifetimes were found to contain mixtures of K, L, M, O, and P molecular states, named in analogy to photointermediates in the bacteriorhodopsin photocycle. The photochemistry is described by the superposition of two independent parallel photocycles. The analysis revealed that 30% of the photoexcited receptor molecules followed Cycle 1 through the K, M, O, and P states, whereas 70% followed Cycle 2 through the K, L, M, and O states. The recovered state, R, is spectrally close, but not identical, to the dark state on the seconds time scale. The two-cycle model of this high efficiency channelrhodopsin-2 (ChR) opens new perspectives in understanding the mechanism of channelrhodopsin function.  相似文献   

2.
Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.  相似文献   

3.
Two rhodopsins with intrinsic ion conductance have been identified recently in Chlamydomonas reinhardtii. They were named "channelrhodopsins" ChR1 and ChR2. Both were expressed in Xenopus laevis oocytes, and their properties were studied qualitatively by two electrode voltage clamp techniques. ChR1 is specific for H+, whereas ChR2 conducts Na+, K+, Ca2+, and guanidinium. ChR2 responds to the onset of light with a peak conductance, followed by a smaller steady-state conductance. Upon a second stimulation, the peak is smaller and recovers to full size faster at high external pH. ChR1 was reported to respond with a steady-state conductance only but is demonstrated here to have a peak conductance at high light intensities too. We analyzed quantitatively the light-induced conductance of ChR1 and developed a reaction scheme that describes the photocurrent kinetics at various light conditions. ChR1 exists in two dark states, D1 and D2, that photoisomerize to the conducting states M1 and M2, respectively. Dark-adapted ChR1 is completely arrested in D1. M1 converts into D1 within milliseconds but, in addition, equilibrates with the second conducting state M2 that decays to the second dark state D2. Thus, light-adapted ChR1 represents a mixture of D1 and D2. D2 thermally reconverts to D1 in minutes, i.e., much slower than any reaction of the two photocycles.  相似文献   

4.
Channelrhodopsins (ChRs) of green algae such as Chlamydomonas are used as neuroscience tools to specifically depolarize cells with light. A crude model of the ChR2 photocycle has been recently established, but details of the photoreactions are widely unknown. Here, we present the photoreactions of a slow-cycling ChR2 mutant (step function rhodopsin), with C128 replaced by threonine and 200-fold extended lifetime of the conducting-state P520. At a late state of the photocycle, a fraction of the proteins branches off into an inactive species, P380, which accumulates during prolonged illumination. At neutral pH, P380 is converted into P353, a species with a characteristic fine-structured spectrum that is interpreted as retroretinyl chromophore. The described branching reactions should be considered, when ChR is used as a neuroscience tool, especially in the case of fluorescence imaging at high light intensities.  相似文献   

5.
Over the past few years, the light-gated cation channel Channelrhodopsin-2 (ChR2) has seen a remarkable diversity of applications in neuroscience. However, commonly used wide-field illumination provides poor spatial selectivity for cell stimulation. We explored the potential of focal laser illumination to map photocurrents of individual neurons in sparsely transfected hippocampal slice cultures. Interestingly, the best spatial resolution of photocurrent induction was obtained at the lowest laser power. By adjusting the light intensity to a neuron's spike threshold, we were able to trigger action potentials with a spatial selectivity of less than 30 microm. Experiments with dissociated hippocampal cells suggested that the main factor limiting the spatial resolution was ChR2 current density rather than scattering of the excitation light. We conclude that subcellular resolution can be achieved only in cells with a high ChR2 expression level and that future improved variants of ChR2 are likely to extend the spatial resolution of photocurrent induction to the level of single dendrites.  相似文献   

6.

Background

Optogenetic manipulation of a neuronal network enables one to reveal how high-order functions emerge in the central nervous system. One of the Chlamydomonas rhodopsins, channelrhodopsin-1 (ChR1), has several advantages over channelrhodopsin-2 (ChR2) in terms of the photocurrent kinetics. Improved temporal resolution would be expected by the optogenetics using the ChR1 variants with enhanced photocurrents.

Methodology/Principal Findings

The photocurrent retardation of ChR1 was overcome by exchanging the sixth helix domain with its counterpart in ChR2 producing Channelrhodopsin-green receiver (ChRGR) with further reform of the molecule. When the ChRGR photocurrent was measured from the expressing HEK293 cells under whole-cell patch clamp, it was preferentially activated by green light and has fast kinetics with minimal desensitization. With its kinetic advantages the use of ChRGR would enable one to inject a current into a neuron by the time course as predicted by the intensity of the shedding light (opto-current clamp). The ChRGR was also expressed in the motor cortical neurons of a mouse using Sindbis pseudovirion vectors. When an oscillatory LED light signal was applied sweeping through frequencies, it robustly evoked action potentials synchronized to the oscillatory light at 5–10 Hz in layer 5 pyramidal cells in the cortical slice. The ChRGR-expressing neurons were also driven in vivo with monitoring local field potentials (LFPs) and the time-frequency energy distribution of the light-evoked response was investigated using wavelet analysis. The oscillatory light enhanced both the in-phase and out-phase responses of LFP at the preferential frequencies of 5–10 Hz. The spread of activity was evidenced by the fact that there were many c-Fos-immunoreactive neurons that were negative for ChRGR in a region of the motor cortex.

Conclusions/Significance

The opto-current-clamp study suggests that the depolarization of a small number of neurons wakes up the motor cortical network over some critical point to the activated state.  相似文献   

7.
Channelrhodopsin 2 (ChR2) is a microbial-type rhodopsin with a putative heptahelical structure that binds all-trans-retinal. Blue light illumination of ChR2 activates an intrinsic leak channel conductive for cations. Sequence comparison of ChR2 with the related ChR1 protein revealed a cluster of charged amino acids within the predicted transmembrane domain 2 (TM2), which includes glutamates E90, E97 and E101. Charge inversion substitutions of these residues significantly altered ChR2 function as revealed by two-electrode voltage-clamp recordings of light-induced currents from Xenopus laevis oocytes expressing the respective mutant proteins. Specifically, replacement of E90 by lysine or alanine resulted in differential effects on H+- and Na+-mediated currents. Our results are consistent with this glutamate side chain within the proposed TM2 contributing to ion flux through and the cation selectivity of ChR2.  相似文献   

8.
Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.  相似文献   

9.
Channelrhodopsins-2 (ChR2) are a class of light sensitive proteins that offer the ability to use light stimulation to regulate neural activity with millisecond precision. In order to address the limitations in the efficacy of the wild-type ChR2 (ChRwt) to achieve this objective, new variants of ChR2 that exhibit fast mon-exponential photocurrent decay characteristics have been recently developed and validated. In this paper, we investigate whether the framework of transition rate model with 4 states, primarily developed to mimic the biexponential photocurrent decay kinetics of ChRwt, as opposed to the low complexity 3 state model, is warranted to mimic the mono-exponential photocurrent decay kinetics of the newly developed fast ChR2 variants: ChETA (Gunaydin et al., Nature Neurosci. 13:387–392, 2010) and ChRET/TC (Berndt et al., Proc. Natl. Acad. Sci. 108:7595–7600, 2011). We begin by estimating the parameters of the 3-state and 4-state models from experimental data on the photocurrent kinetics of ChRwt, ChETA, and ChRET/TC. We then incorporate these models into a fast-spiking interneuron model (Wang and Buzsaki, J. Neurosci. 16:6402–6413, 1996) and a hippocampal pyramidal cell model (Golomb et al., J. Neurophysiol. 96:1912–1926, 2006) and investigate the extent to which the experimentally observed neural response to various optostimulation protocols can be captured by these models. We demonstrate that for all ChR2 variants investigated, the 4 state model implementation is better able to capture neural response consistent with experiments across wide range of optostimulation protocol. We conclude by analytically investigating the conditions under which the characteristic specific to the 3-state model, namely the monoexponential photocurrent decay of the newly developed variants of ChR2, can occur in the framework of the 4-state model.  相似文献   

10.
In 2003, channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii was discovered to be a light-gated cation channel, and since that time the channel became an excellent tool to control by light neuronal cells in culture as well as in living animals with high temporal and spatial resolution in a noninvasive manner. However, little is known about the spectral properties and their relation to the channel function. We have expressed ChR2 in the yeast Pichia pastoris and purified the protein. Flash-photolysis data were combined with patch-clamp studies to elucidate the photocycle. The protein absorbs maximally at ∼ 480 nm before light excitation and shows flash-induced absorbance changes with at least two different photointermediates. Four relaxation processes can be extracted from the time course that we have analysed in a linear model for the photocycle leading to the kinetic intermediates P1 to P4. A short-lived photointermediate at 400 nm, suggesting a deprotonation of the retinal Schiff base, is followed by a red-shifted (520 nm) species with a millisecond lifetime. The first three kinetic intermediates in the photocycle, P1 to P3, are described mainly by the red-shifted 520-nm species. The 400-nm species contributes to a smaller extent to P1 and P2. The fourth one, P4, is spectroscopically almost identical with the ground state and lasts into the seconds time region. We compared the spectroscopic data to current measurements under whole-cell patch-clamp conditions on HEK 293 cells. The lifetimes of the spectroscopically and electrophysiologically determined intermediates are in excellent agreement. The intermediates P2 and P3 (absorbing at 520 nm) are identified as the cation permeating states of the channel. Under stationary light, a modulation of the photocurrent by green light (540 nm) was observed. We conclude that the red-shifted spectral species represents the open channel state, and the thermal relaxation of this intermediate, the transition from P3 to P4, is coupled to channel closing.  相似文献   

11.
Activation and desensitization kinetics of the rat P2X1 receptor at nanomolar ATP concentrations were studied in Xenopus oocytes using two-electrode voltage-clamp recording. The solution exchange system used allowed complete and reproducible solution exchange in <0.5 s. Sustained exposure to 1-100 nM ATP led to a profound desensitization of P2X1 receptors. At steady-state, desensitization could be described by the Hill equation with a K1/2 value of 3.2 +/- 0.1 nM. Also, the ATP dependence of peak currents could be described by a Hill equation with an EC50 value of 0.7 microM. Accordingly, ATP dose-effect relationships of activation and desensitization practically do not overlap. Recovery from desensitization could be described by a monoexponential function with the time-constant tau = 11.6 +/-1.0 min. Current transients at 10-100 nM ATP, which elicited 0.1-8.5% of the maximum response, were compatible with a linear three-state model, C-O-D (closed-open-desensitized), with an ATP concentration-dependent activation rate and an ATP concentration-independent (constant) desensitization rate. In the range of 18-300 nM ATP, the total areas under the elicited current transients were equal, suggesting that P2X1 receptor desensitization occurs exclusively via the open conformation. Hence, our results are compatible with a model, according to which P2X1 receptor activation and desensitization follow the same reaction pathway, i.e., without significant C to D transition. We assume that the K1/2 of 3.2 nM for receptor desensitization reflects the nanomolar ATP affinity of the receptor found by others in agonist binding experiments. The high EC50 value of 0.7 microM for receptor activation is a consequence of fast desensitization combined with nonsteady-state conditions during recording of peak currents, which are the basis of the dose-response curve. Our results imply that nanomolar extracellular ATP concentrations can obscure P2X1 receptor responses by driving a significant fraction of the receptor pool into a long-lasting refractory closed state.  相似文献   

12.
Channelrhodopsin-2 (ChR2) from the green alga Chlamydomonas reinhardtii functions as a light-gated cation channel that has been developed as an optogenetic tool to stimulate specific nerve cells in animals and control their behavior by illumination. The molecular mechanism of ChR2 has been extensively studied by a variety of spectroscopic methods, including light-induced difference Fourier transform infrared (FTIR) spectroscopy, which is sensitive to structural changes in the protein upon light activation. An atomic structure of channelrhodopsin was recently determined by x-ray crystallography using a chimera of channelrhodopsin-1 (ChR1) and ChR2. Electrophysiological studies have shown that ChR1/ChR2 chimeras are less desensitized upon continuous illumination than native ChR2, implying that there are some structural differences between ChR2 and chimeras. In this study, we applied light-induced difference FTIR spectroscopy to ChR2 and ChR1/ChR2 chimeras to determine the molecular basis underlying these functional differences. Upon continuous illumination, ChR1/ChR2 chimeras exhibited structural changes distinct from those in ChR2. In particular, the protonation state of a glutamate residue, Glu-129 (Glu-90 in ChR2 numbering), in the ChR chimeras is not changed as dramatically as in ChR2. Moreover, using mutants stabilizing particular photointermediates as well as time-resolved measurements, we identified some differences between the major photointermediates of ChR2 and ChR1/ChR2 chimeras. Taken together, our data indicate that the gating and desensitizing processes in ChR1/ChR2 chimeras are different from those in ChR2 and that these differences should be considered in the rational design of new optogenetic tools based on channelrhodopsins.  相似文献   

13.
G Váró  J K Lanyi 《Biochemistry》1990,29(9):2241-2250
The photocycle of bacteriorhodopsin (BR) was studied at alkaline pH with a gated multichannel analyzer, in order to understand the origins of kinetic complexities in the rise and decay of the M intermediate. The results indicate that the biphasic rise and decay kinetics are unrelated to a photoreaction of the N intermediate of the BR photocycle, proposed earlier by others [Kouyama et al. (1988) Biochemistry 27, 5855-5863]. Rather, under conditions where N did not accumulate in appreciable amounts (high pH, low salt concentration), they were accounted for by conventional kinetic schemes. These contained reversible interconversions, either M in equilibrium with N in one of two parallel photocycles or L in equilibrium with as well as M in equilibrium with N in a single photocycle. Monomeric BR also showed these kinetic complications. Conditions were then created where N accumulated in a photo steady state (high pH, high salt concentration, background illumination). The apparent increase in the proportion of the slow M decay component by the background illumination could be quantitatively accounted for with the single photocycle model, by the mixing of the relaxation of the background light induced photo steady state with the inherent kinetics of the photocycle. Postulating a new M intermediate which is produced by the photoreaction of N was neither necessary nor warranted by the data. The difference spectra suggested instead that absorption of light by N generates only one intermediate, observable between 100 ns and 1 ms, which absorbs near 610 nm. Thus, the photoreaction of N resembles in some respects that of BR containing 13-cis-retinal.  相似文献   

14.
Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR.  相似文献   

15.
Channelrhodopsin-2 (ChR2) is a light-gated cation channel widely used as a biotechnological tool to control membrane depolarization in various cell types and tissues. Although several ChR2 variants with modified properties have been generated, the structural determinants of the protein function are largely unresolved. We used bioinformatic modeling of the ChR2 structure to identify the putative cationic pathway within the channel, which is formed by a system of inner cavities that are uniquely present in this microbial rhodopsin. Site-directed mutagenesis combined with patch clamp analysis in HeLa cells was used to determine key residues involved in ChR2 conductance and selectivity. Among them, Gln-56 is important for ion conductance, whereas Ser-63, Thr-250, and Asn-258 are previously unrecognized residues involved in ion selectivity and photocurrent kinetics. This study widens the current structural information on ChR2 and can assist in the design of new improved variants for specific biological applications.  相似文献   

16.
For studying the function of specific neurons in their native circuitry, it is desired to precisely control their activity. This often requires dissection to allow accurate electrical stimulation or neurotransmitter application , and it is thus inherently difficult in live animals, especially in small model organisms. Here, we employed channelrhodopsin-2 (ChR2), a directly light-gated cation channel from the green alga Chlamydomonas reinhardtii, in excitable cells of the nematode Caenorhabditis elegans, to trigger specific behaviors, simply by illumination. Channelrhodopsins are 7-transmembrane-helix proteins that resemble the light-driven proton pump bacteriorhodopsin , and they also utilize the chromophore all-trans retinal, but to open an intrinsic cation pore. In muscle cells, light-activated ChR2 evoked strong, simultaneous contractions, which were reduced in the background of mutated L-type, voltage-gated Ca2+-channels (VGCCs) and ryanodine receptors (RyRs). Electrophysiological analysis demonstrated rapid inward currents that persisted as long as the illumination. When ChR2 was expressed in mechanosensory neurons, light evoked withdrawal behaviors that are normally elicited by mechanical stimulation. Furthermore, ChR2 enabled activity of these neurons in mutants lacking the MEC-4/MEC-10 mechanosensory ion channel . Thus, specific neurons or muscles expressing ChR2 can be quickly and reversibly activated by light in live and behaving, as well as dissected, animals.  相似文献   

17.
Sakae Katoh  Akihiko Yamagishi 《BBA》1984,767(2):185-191
The inductive kinetics of fluorescence and photoacoustic signal were measured simultaneously in dark-adapted thalli of the green coenocytic alga Bryopsis maxima. Under illumination with weak red light modulated at 60 Hz, the fluorescence yield varied, showing three maxima P, M1 and M2 almost immediately, 10 s and 6 min after the onset of the illumination, respectively (Yamagishi, A., Satoh, K. and Katoh, S. (1978) Plant Cell Physiol. 19, 17–25). The photoacoustic signal also showed inductive transients which parallel well those of the fluorescence up to the M2 stage. After M2, the photoacoustic signal remained at a constant level, while the emission yield gradually decreased. The first peak of the fluorescence induction and a corresponding peak of the photoacoustic transients were selectively eliminated by prior illumination or methyl viologen treatment of the dark-adapted thalli. The second peaks of the two induction curves were abolished by carbonylcyanide-m-chlorophenylhydrazone, whereas dicyclohexylcarbodiimide enhanced their peak heights and suppressed the subsequent decreases. The results indicate that the fluorescence yield is mainly determined by the redox state of the Photosystem II reaction center throughout the induction period except the last phase. Mechanisms underlying inductive transients of fluorescence are discussed in the light of the present findings.  相似文献   

18.
The dependence of the bacteriorhodopsin (bR) photocycle on the intensity of the exciting flash was investigated in purple membranes. The dependence was most pronounced at slightly alkaline pH values. A comparison study of the kinetics of the photocycle and proton uptake at different intensities of the flash suggested that there exist two parallel photocycles in purple membranes at a high intensity of the flash. The photocycle of excited bR in a trimer with the two other bR molecules nonexcited is characterized by an almost irreversible M --> N transition. Excitation of two or three bR in a trimer induces the N --> M back reaction and accelerates the N --> bR transition. Based on the qualitative similarity of the pH dependencies of the photocycles of solubilized bR and excited dimers and trimers we proposed that the interaction of nonexcited bR in trimers alters the photocycle of the excited monomer as compared to solubilized bR and the changes in the photocycles in excited dimers and trimers are the result of decoupling of this interaction.  相似文献   

19.
Electrophysiological experiments showed that the light-activated cation channel channelrhodopsin-2 (ChR2) pumps protons in the absence of a membrane potential. We determined here the kinetics of transient pH change using a water-soluble pH-indicator. It is shown that ChR2 released protons prior to uptake with a stoichiometry of 0.3 protons per ChR2. Comparison to the photocycle kinetics revealed that proton release and uptake match rise and decay of the P(3)(520) intermediate. As the P(3)(520) state also represents the conductive state of cation channeling, the concurrence of proton pumping and channel gating implies an intimate mechanistic link of the two functional modes. Studies on the E123T and S245E mutants show that these residues are not critically involved in proton translocation.  相似文献   

20.
Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and cardiac optogenetics at the cell and organ level and provide guidance for the development of in vivo tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号