首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
EFFECT OF ADENOSINE 3''-5''-CYCLIC MONOPHOSPHATE ON CELL PROLIFERATION   总被引:17,自引:5,他引:12  
Secondary cultures of human diploid fibroblasts, which demonstrate density-dependent inhibition of cell growth, were used to study the effect of adenosine 3'-5'-cyclic monophosphate (cAMP) on cell proliferation. DNA synthesis in nonconfluent cultures and in contact-inhibited cultures stimulated to grow by refeeding with fresh medium was found to be inhibited by exogenous cAMP. The properties of this inhibition of DNA synthesis, together with the alterations in cAMP metabolism observed in confluent cultures of cells stimulated with fresh medium to resume growth, strongly suggest that cAMP is involved in contact-inhibition of cell proliferation.  相似文献   

2.
1. Contact-inhibited confluent monolayers of WI-38 human diploid fibroblasts can be stimulated to divide by replacing the medium with fresh medium containing 30% foetal calf serum. 2. Of the cells 40–75% are stimulated to divide with a peak DNA synthesis between 15 and 21h and a peak mitotic index between 28 and 30h after stimulation. 3. In the first 12h before the initiation of DNA synthesis there is a biphasic increase in the incorporation of [3H]uridine into RNA of whole cells. 4. This is paralleled by a similar biphasic stimulation of chromatin template activity measured in vitro in a system in which purified cell chromatin is incubated with an exogenous RNA polymerase isolated from Escherichia coli. 5. The changes in chromatin template activity are believed to represent activation of the genome, with more sites available for RNA synthesis, and to account almost entirely for the changes in RNA synthesis occurring in the whole cell.  相似文献   

3.
Density-dependent inhibition of growth of cultured human fibroblasts was associated with a 3- to 4-fold rise in the intracellular concentration of cyclic AMP (cAMP). Serum lowered cAMP levels in 2–5 min, with the low levels persisting for several hours. When quiescent fibroblast cultures were treated with 10% serum, the incorporation of [3H]TdR into DNA increased after a 10–16 h lag, reaching a peak by 20–24 h. Dibutyryl cyclic AMP (db-cAMP), when present throughout serum treatment, produced a dose-dependent inhibition of [3H]TdR incorporation. Half-maximal inhibition was seen with 0.1 mM db-cAMP. When db-cAMP or another cyclic nucleotide phosphodiesterase inhibitor, l-methyl-3-isobutylxanthine (SC-2964), was added together with serum to maintain elevated cAMP levels and after 4 h was replaced with fresh serum-containing medium, the wave of DNA synthesis induced by serum was not delayed. This implied that stimulation by serum could occur without an initial decrease in cAMP concentration. In contrast, db-cAMP added 8 h later than serum and not removed, inhibited [3H]TdR incorporation at the peak to the same extent as db-cAMP added together with serum. The inhibition decreased progressively when db-cAMP was added more than 8 h after serum. These results suggested that a cAMP-sensitive step occurred approx. 8 h after the addition of serum in mid-G1 of the cell cycle. Results obtained using fibroblasts synchronized at the G1/S boundary with hydroxyurea or exposed to db-cAMP for 24 h suggested that db-cAMP also inhibited TdR incorporation at the G1/S interphase or during S phase. Thus, whereas reduced cAMP concentrations did not appear to serve as an initial trigger for serum-stimulated DNA synthesis in human fibroblasts, db-cAMP and SC-2964, presumably by elevating cAMP levels, appeared to act in mid-G1 and possibly at the G1/S boundary or within S phase to inhibit thymidine incorporation.  相似文献   

4.
The high potassium concentration effect on the human diploid fibroblasts (HDF) and 3T3 cells was investigated. The incubation of confluent cultures of HDF or 3T3 Swiss cells in the medium with 50 mM K+ for 35 min induced, 12 h later, the onset of DNA replication in a significant proportion of culture cell population. The same treatment had no effect upon the sparce cell cultures. No stimulation of DNA replication was observed in the absence of serum in culture medium.  相似文献   

5.
Quiescent confluent monolayers of WI38 human diploid fibroblasts were stimulated to proliferate by replacement of the exhausted medium with fresh medium containing 10% fetal calf serum. The cellular content of the polyamines, putrescine, spermidine, and spermine was studied at various intervals after the nutritional change. The putrescine content increased during the pre-replicative phase of the cell cycle, whereas the content of spermidine and spermine did not increase until after the initiation of DNA synthesis. By varying the composition of the stimulating medium it was possible to alter the percentage of cells that were stimulated to proliferate. Measurement of the cellular polyamine content and 3H-thymidine (3H-TdR) incorporation into DNA at the time of the maximal rate of DNA synthesis showed that the magnitude of putrescine accumulation depended on the percentage of cells that were stimulated to proliferate. These results indicate that there may be a connection between polyamine synthesis and subsequent DNA replication.  相似文献   

6.
Role of pH in fibroblast proliferation   总被引:1,自引:0,他引:1  
Secondary cultures of human diploid fibroblasts were used to study the effect of pH on cellular proliferation. In nonconfluent cultures, the growth rate at pH 7.1 was similar to that at pH 7.7 regardless of serum concentration. However, the saturation density achieved at pH 7.7 at any serum concentration was always 2–4 times that achieved at pH 7.1, although the greatest differences in saturation density were observed at the higher serum levels. The results suggest that the effect of pH on saturation density is due to two factors. One, cells at pH 7.1 seem to have a greater ability to undergo contact-inhibition than at pH 7.7, independent of any serum functions; and, two, confluent cells in medium at pH 7.1 are somewhat less sensitive to growth stimulation by increasing serum concentration than are confluent cells raised in medium at pH 7.7.  相似文献   

7.
DNA synthesis and cell division are markedly reduced in confluent mono-layers of WI-38 diploid fibroblasts, but resume again if the depleted medium is replaced by fresh medium containing 10% fetal calf serum. If the cells are kept quiescent for prolonged periods of time after confluence (1 or 2 weeks), the fraction of cells that can be stimulated to proliferate by fresh serum decreases and the length of the prereplicative phase increases. The template activity of isolated nuclei decreases with increasing time of quiescence, and parallel changes occur in chromatin as evidenced by circular dichroism spectra and capacity to bind the intercalating dye, ethidium bromide. When WI-38 cells are stimulated to proliferate after prolonged quiescence, the increase in template activity of nuclei is delayed by several hours in comparison to cells stimulated after short periods of quiescence. Two distinct steps, both requiring serum, can be identified in the prereplicative phase of cells stimulated to proliferative after prolonged quiescence. We interpret the results as indicating that, during prolonged quiescence, WI-38 fibroblasts go into a deeper GO state from which they can be rescued only after prolonged stimulation. In this respect, prolonged quiescence may bear some resemblance to the process of aging.  相似文献   

8.
Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.  相似文献   

9.
Confluent quiescent monolayers of aneuploid and euploid cells in culture can be stimulated to proliferate by appropriate nutritional changes. In confluent monolayers of WI-38 human diploid fibroblasts the uptake of cycloleucine is increased three hours after these cells are stimulated to proliferate by a change of medium plus 10% serum. No changes in the uptake of cycloleucine are observed in logarithmically-growing WI-38 cells exposed to fresh medium plus 10% serum, or in WI-38 confluent monolayers in which the conditioned medium has been replaced by fresh medium with 0.3% serum (a change that does not cause stimulation of cellular proliferation in WI-38 cells). In 3T6 cells in the stationary phase stimulated to proliferate by nutritional changes, there is a prompt increase in the uptake of cycloleucine, within one hour after stimulation of cell proliferation. Similar results were obtained with stationary 2RA cells which are SV-40 transformed WI-38 fibroblasts. In addition, chromatin template activity which is known to increase in the early stages after stimulation of confluent WI-38 cells, was unchanged in confluent 3T6 or 2RA cells stimulated to proliferate. These results show that at least two of the very early biochemical events occurring in response to stimulation of cell proliferation are different in WI-38 diploid cells and in aneuploid 2RA or 3T6 cells. It is proposed that WI-38 cells in the stationary phase are arrested in the G0 phase of the cell cycle, while 2RA and 3T6 cells are arrested in the G1 phase.  相似文献   

10.
HeLa cells cultured in a biotin-deficient medium showed reduced rates of protein synthesis, DNA synthesis and growth. Continuous synthesis is required for the increase in DNA synthesis observed upon addition of biotin to cells cultured in biotin-deficient medium. The addition of biotin to the biotin-deficient culture medium increased the activity of guanylate cyclase in both HeLa cells and fibroblasts. Both cell types cultured in biotin deficient medium showed reduced activity of RNA Polymerase II. The exogenous addition of biotin to the biotin-deficient cell cultures also resulted in increased activity of RNA Polymerase II in HeLa cells and fibroblasts. The maximal response was observed in 4 hours. Significant increase in enzyme activity was observed at 10–8 M biotin in the culture medium. The growth promoting effect of biotin seems to involve stimulations of cellular guanylate cyclase and RNA Polymerase II activity.  相似文献   

11.
Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylami-nofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6-3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of ~2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of ~2.7% in 10–20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites.  相似文献   

12.
Cell types in addition to those previously described (Kruse et al. 1963. J. Nat. Cancer Inst. 31:109; Kruse and Miedema. 1965. J. Cell Biol. 27:273) were found to form multiple-layered cultures by perfusion-culture technique. Dense populations containing 43 x 106 embryonic rat muscle (NF-ER) cells, 23 x 106 diploid human tonsillar (NF-JAM) cells, 77 x 106 human pleural effusion isolate (RPMI 2650) cells, 35 x 106 embryonic diploid human lung (Flow 2000) cells, 21 x 106 bovine lung (FB4BM) cells, 108 x 106 bat lung (Tb1Lu) cells, and 81 x 106 SV-40 virus-transformed embryonic diploid human lung (WI-38VA13A) cells were obtained in 6–14 days from dilute inocula in T-60 or T-75 flasks; these were equivalent to about 4, 3, 3, 4, 2, 4, and eight monolayers, respectively. Perfusion of an NF-ER culture for 6 wk with medium plus 10% whole calf serum yielded a cell density equivalent to 12 monolayers (140 x 106 cells per T-75 flask). This culture exhibited random labeling of nuclei from bottom to top after pulsing for 90 min with thymidine-3H. Medium plus 0.1% serum maintained NF-JAM cultures at constant viable cell numbers with virtual absence of thymidine-3H labeling. Similar results were obtained with WI-38 cultures, but WI-38VA13A cells continued active DNA synthesis and mitosis in medium with 0.1% serum to form 16–20 layers of cells (191–239 x 106 cells per T-75 flask) in 27 days. WI-38VA13A cells ceased proliferation and became nonviable rapidly in serumless medium.  相似文献   

13.
Excision repair-proficient diploid fibroblasts from normal persons (NF) and repair-deficient cells from a xeroderma pigmentosum patient (XP12BE, group A) were grown to confluence and allowed to enter the G0 state. Autoradiography studies of cells released from G0 after 72 h and replated at lower densities (3?9 × 103 cells/cm2) in fresh medium containing 15% fetal bovine serum showed that semiconservative DNA synthesis (S phase) began ~24 h after the replating. To determine whether the time available for DNA excision repair between ultraviolet irradiation (254 nm) and the onset of DNA synthesis was critical in determining the cytotoxic and/or mutagenic effect of UV in human fibroblasts, we released cultures of NF or XP12BE cells from G0, allowed them to reattach at lower densities, irradiated them in early G1 (~18 h prior to the onset of S) or just prior to S phase, and assayed the frequency of mutations to 6-thioguanine resistance and the survival of colony-forming ability. The XP12BE cells, which are virtually incapable of excising UV-induced DNA lesions, showed approximately the same frequency of mutations and survival regardless of the time of UV irradiation. In NF cells, the slope of the dose response for mutations induced in cells irradiated just prior to S was about 7-fold steeper than that of cells irradiated 18 h earlier. However, the two sets of NF cells showed no significant difference in survival. Neither were there significant differences in the survival of NF cells released from G0, plated at cloning densities and irradiated as soon as they had attached and flattened out (~20 h prior to S) or 4, 8, 12, 16, 20 or 24 h later. We conclude that the frequency of mutations induced by UV is dependent upon the number of unexcised lesions remaining at the time of semi-conservative DNA replication. However, the amount of time available for excision of potentially cytotoxic lesions is not determined primarily by the period between irradiation and the onset of S phase.  相似文献   

14.
Synthesis of DNA-binding proteins during the cell cycle of WI-38 cells   总被引:1,自引:0,他引:1  
Synthesis of DNA-binding proteins was investigated in WI-38 human diploid fibroblast cultures after stimulation with serum containing medium. Density-inhibited confluent monolayers of young (phase II) and aging (phase III) WI-38 cells can be stimulated to synthesize DNA by replacing the medium with fresh medium containing 10% fetal calf serum. Of the phase II cells, 35–50% showed a partially synchronized burst of DNA-synthesizing activity between 15 and 24 h whereas only 4–6% of phase III cells showed DNA-synthesizing activity at 20 h, and that cell fraction was increasing even at 38 h. This suggests either an extremely prolonged G 1 in stimulated phase III cells, or a heterogeneity of the population (e.g., a mixed population of pre- and postmitotic cells) for phase III cells. At various times after the change of medium, DNA-binding protein synthesis was examined in these stimulated cultures. Protein of mol. wt 20 000–25 000 D accumulated rapidly during early G 1 and declined thereafter, whereas larger protein (40 000 and 68 000 D) accumulated during the late G 1 or G 1-S transition period indicating that accumulation of these proteins is associated with the onset of DNA synthesis in the serum-stimulated cells. In cultures where the DNA synthesis has been reduced or inhibited by an excess of thymidine, hydroxyurea or dibutyryl cAMP, the accumulation of the larger proteins (40 000 and 68 000 D) was neglible as compared with non-stimulated cultures. Hydrocortisone did not exert any effect on the DNA-binding protein synthesis in phase II cells. However, it seems to increase the cell fraction which can respond to the serum factor in phase III cells as evidenced from the pattern of DNA-binding proteins synthesis.  相似文献   

15.
Synchronous cultures of WI-38 were obtained using an automated system for detachment and partitioning of mitotic cells which operates without the use of inhibitors, altered medium, or lowered temperatures. The generation time in synchronous WI-38 is 19.5 h and the duration of S phase when determined from the percentage of labeled metaphase cells or nuclei is 12 h. DNA replication in WI-38 occurs in three temporally distinct and rapid bursts separated by intervals of greatly reduced synthesis within what is nominally described as the DNA synthetic (S) period. Lactate dehydrogenase (LDH) displayed maxima in G1 between 2 and 4 h and again at 10 and 16 h. Peaks in LDH activity were coordinated with DNA replication in a fashion similar to that reported for diploid Chinese hamster cells. Oscillations in LDH activity are more pronounced in normal diploid fibroblasts than in established and neoplastic lines.  相似文献   

16.
Summary This study examined whether nonconfluent endothelial cell cultures reacted differently than confluent ones toward thrombin-stimulated platelets or a heparinized salt solution. The adherence to the endothelial cell cultures of51Cr-labeled human platelets stimulated at different thrombin concentrations was studied. There was significantly higher adherence of stimulated platelets to nonconfluent cultures compared with confluent ones. This was confirmed by scanning electron microscopy, which also revealed a tendency for the platelets to adhere at the cell periphery. Electron microscopy also showed that thrombin-stimulated platelets induced endothelial cell contraction. Part of the peripheral endothelial cell surface toward the bottom of the culture dish was inverted, facing the lumen of the dish. This phenomenon was particularly seen in nonconfluent cultures. When51Cr-labeled endothelial cultures were incubated with a mildly injurious fluid as heparinized sodium acetate and 20% serum, at 20° C for 30 min, the nonconfluent cultures showed significantly more cell detachment and release of51Cr than the confluent ones. We conclude that under the conditions of the present experiments there are differences in the reactivity of confluent and nonconfluent endothelial cell cultures. These differences probably reflect biological dissimilarities. In experiments where properties of cultured endothelium are studied, care should be taken that the degree of confluency is standardized.  相似文献   

17.
Despite a decrease in the extent to which confluent monolayers of late compared to early passage CF3 human diploid fibroblasts can be stimulated to proliferate, the time course of DNA synthesis onset is similar regardless of the in vitro age of the cells. A parallel and stoichiometric relationship is maintained between the rate of DNA synthesis and the cellular levels of histone mRNA independent of the age of the cell cultures. Furthermore, DNA synthesis and cellular histone mRNA levels decline in a coordinate manner after inhibition of DNA replication by hydroxyurea treatment. These results indicate that while the proliferative activity of human diploid fibroblasts decreases with passage in culture, those cells that retain the ability to proliferate continue to exhibit a tight coupling of DNA replication and histone gene expression.  相似文献   

18.
Suspension cultures of Chinese hamster cells (line CHO) were grown to stationary phase (approximately 8–9 x 105 cells/ml) in F-10 medium. Cells remained viable (95%) for at least 80 hr in stationary phase, and essentially all of the cells were in G1 Upon resuspension or dilution with fresh medium, the cells were induced to resume traverse of the life cycle in in synchrony, and the patterns of DNA synthesis and division were similar to those observed in cultures prepared by mitotic selection. Immediately after dilution, the rates of synthesis of RNA and protein increased threefold. This system provides a simple technique for production of large quantities of highly synchronized cells and may ultimately provide information on the biochemical mechanisms regulating cell-cycle traverse.  相似文献   

19.
The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20–24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.  相似文献   

20.
Summary In synchronous cultures of P-815 murine mastocytoma and of Chinese hamster ovary (CHO) cells, the relative contribution of exogenous thymidine to DNA synthesis was studied by comparing rates of (3H)thymidine incorporation with the rate of DNA synthesis as derived from incorporation of (3H)thymidine (10–5 m) in the presence of amethopterin. In synchronous P-815 cultures, time-dependent variations of DNA synthesis rates were in close agreement with those of (3H)thymidine incorporation rates at concentrations of the precursor ranging from 5 × 10–8 to 10–5 m. Similarly, in synchronous CHO cell cultures prepared by two different methods, time-dependent changes in DNA synthesis rate were almost identical with those of the rate of incorporation of (3H)thymidine supplied at 5 × 10–8 m. Thus, at a given thymidine concentration in the medium, the proportion of thymine residues in DNA that were derived from exogenous thymidine remained nearly constant, even though rates of cellular DNA synthesis underwent pronounced changes. This indicates that in the synchronous culture systems used, utilization of exogenous thymidine is efficiently adapted to changing rates of DNA synthesis.In partial fulfillment of the requirements for the degree of Ph.D. by G.G.M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号