首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of 21Aspergillus sp. strains isolated from cowpeas from Benin (Africa) were characterized by RAPD methodology. Seven of these strains grouped withA. flavus in the dendrogram generated with the RAPD data. Only three were able to produce aflatoxin in significant amounts. Twelve other isolates grouped withA. parasiticus. All of these strains except 3 produced aflatoxin. Two additional strains neither fit with theA. flavus group, nor theA. parasiticus group according to their RAPD pattern. Both did not produce aflatoxin in measurable amounts. Generally the aflatoxin positive strains produced high amounts of aflatoxin after growth on YES medium. However after growth on cowpea based medium aflatoxin biosynthesis was strongly ceased, albeit the growth of the colony was only partly reduced. This was true for media made either with the whole cowpea seed or with cowpea seed without seed coat. Interestingly when the cowpea medium was heat sterilized the fungus was able to produce high amounts of aflatoxin. This, however, was not the case after the use of gamma irradiation as sterilization method for the medium. The expression of thenor- 1 gene, which is one of the early genes involved in aflatoxin biosynthesis, was significantly repressed after growth on gamma irradiated cowpea medium in contrast to YES medium. This study was part of the project “Capability Building for Research and Quality Assurance in Traditional Food Processing in West Africa”  相似文献   

2.
Purchase  I. F. H.  Steyn  M.  Emilie Pretorius  H. 《Mycopathologia》1968,35(3-4):239-244
Summary The ability of 44 strains ofA. flavus and 6 strains ofA. parasiticus to produce aflatoxin M on various substrates was examined. It was found that these strains produced aflatoxin M only with larger quantities of aflatoxin B. The presence of several other minor metabolites in culture extracts is described. The highest yield of aflatoxin M was produced by a strain ofA. flavus grown on maize meal.  相似文献   

3.
筛选黄曲霉毒素生物防控菌,为黄曲霉毒素的生物防控提供支持。以花生原产地土壤为材料,采用牛津杯法筛选所需菌株。对筛选出的拮抗菌株进行抑制产毒曲霉菌株的生长、产孢、降解黄曲霉毒素实验。筛选出2株黄曲霉毒素生防细菌,编号21-1-2、17-3,经鉴定,拮抗菌21-1-2为枯草芽胞杆菌,拮抗菌17-3为地衣芽胞杆菌。分别对拮抗菌对曲霉孢子萌发的抑制、抑制黄曲霉的生长和菌丝延长以及减少黄曲霉毒素的产生、对黄曲霉毒素的分解作用等几个方面进行研究,结果表明,拮抗菌可以明显抑制产毒曲霉孢子的萌发、生长、菌丝的延长,减少黄曲霉毒素的产生以及分解黄曲霉毒素。  相似文献   

4.
Biological control of mycotoxigenic fungi using antagonistic microbes is a promising alternative to agricultural chemicals for postharvest storage. In this study, we evaluated rice‐derived bacterial strains to identify biocontrol agents to inhibit Aspergillus flavus in stored rice grains. Consequently, we obtained three potential biocontrol strains (Microbacterium testaceum KU313, Bacillus megaterium KU143 and Pseudomonas protegens AS15) from 26 tested strains that were prescreened from the 460 strains isolated from rice grains. The three selected strains proved to be effective biocontrol agents showing antifungal activity against A. flavus and good colonisation ability on rice grains, along with inhibition of the fungal growth and aflatoxin production. In particular, P. protegens AS15 greatly inhibited the aflatoxins produced by A. flavus on rice grains to 8.68 (percent aflatoxin reduction relative to control = 82.9%) and 18.05 (68.3 %) ng g?1 dry weight of rice grains, compared with the 50.89 and 56.97 ng g?1 dry weight of rice grains of the MgSO4 control at 1 and 2 weeks after inoculation, respectively. In addition, strain AS15 had a significant ability to not only degrade aflatoxin B1 (the most harmful aflatoxin), but also utilise the toxin for bacterial growth in a nutrient‐deficient medium. Therefore, the selected bacterial strains could be environmentally sound alternatives for the management of A. flavus and aflatoxin production by reducing the fungal damage to stored rice grains. This would also reduce the human and animal health hazards associated with the consumption of fungus‐contaminated rice grains. To our knowledge, this is the first report of the potential of the bacterial species M. testaceum and P. protegens as biocontrol agents for controlling aflatoxigenic A. flavus on stored rice grains.  相似文献   

5.
Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize, and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins through competition with native aflatoxigenic populations. In this study, eight nontoxigenic strains of A. flavus belonging to different vegetative compatibility groups and differing in deletion patterns within the aflatoxin gene cluster were evaluated for their ability to reduce aflatoxin B1 when paired with eight aflatoxigenic strains on individual peanut seeds. Inoculation of wounded viable peanut seeds with conidia demonstrated that nontoxigenic strains differed in their ability to reduce aflatoxin B1. Reductions in aflatoxin B1 often exceeded expected reductions based on a 50:50 mixture of the two A. flavus strains, although one nontoxigenic strain significantly increased aflatoxin B1 when paired with an aflatoxigenic strain. Therefore, nontoxigenicity alone is insufficient for selecting a biocontrol agent and it is also necessary to test the effectiveness of a nontoxigenic strain against a variety of aflatoxigenic strains.  相似文献   

6.
Aflatoxin contamination of major food crops is a serious problem in Senegal. Maize and sesame samples were collected during a survey in five districts located in two agro‐ecological zones in Senegal to determine levels of aflatoxin contamination and the distribution and toxigenicity potential of members of Aspergillus section Flavi. Maize samples from the Guinea Savannah zone (SG) exhibited lower aflatoxin content and colony‐forming units (cfu) than those collected from the Sudan Savannah (SS) zone. In maize, aflatoxin concentration and cfu of A. flavus varied with cultivars, shelling practices and storage methods. The maize variety ‘Jaune de Bambey’ had high aflatoxin levels in both agro‐ecological zones. Aflatoxin content in machine‐shelled maize (120 ng/g) was more than 10‐fold higher than that in manually shelled (8 ng/g) or unshelled maize. Aflatoxin content (between 0.1 and 1.2 ng/g) and cfu values (between 13 and 42 000 cfu/g) of sesame were low, suggesting a low susceptibility to A. flavus. In both agro‐ecological zones, and in all storage systems, aflatoxin contamination was lower in sesame than in maize. In this study, only three species of Aspergillus section Flavi (A. flavus, A. tamarii and the unnamed taxon SBG) were observed with the frequency of toxigenic strains remaining below 50% in maize from the SG zone compared with 51% of isolates from samples collected in Sedhiou district in SS zone. The proportion of toxigenic strains isolated from sesame was variable. For both crops, L‐strains were the most prevalent in the two agro‐ecological zones. Some of the atoxigenic strains collected could be valuable microbial resources for the biological control of aflatoxin in Senegal.  相似文献   

7.
Two strains ofAspergillus flavus Linkex Fr. and two strains ofA. parasiticus Speare were cultured on crushed moist wheat (Triticum durum var. Pané no. 247) for aflatoxin production studies in correlation with morphological changes. The toxicogenic strains were adapted to the substratum by means of successive transfers at regular intervals (72 h.)The amount aflatoxins synthesized by the toxicogenic strains decreased gradually after succesive subculturing. The decrease was accompanied by marked morphological changes. One of the strains studied,A. flavus NRRL 3251, lost completly the capacity of aflatoxin synthesis after several subcultures, presenting at the same time strong morphological variations.A. flavus CBS 120.62 also lost its toxicogenicity after six subcultures.  相似文献   

8.
Trials were performed with three aflatoxin-forming isolates of Aspergillus flavus from formic acid-treated materials containing aflatoxin, one A. flavus strain isolated from mouldy barley kept for two months in an anaerobic jar and one non-toxic A. flavus strain from the culture collection at our Department. The nontoxic strain and one aflatoxin producer were cultured in salts-sugar-asparagine substrate (SLM) for aflatoxin production and in a specially prepared grass substrate (GS). Formic acid and ammonium formate were added to both substrates, and sucrose in a low amount was added to the grass substrate. The aflatoxin-forming isolate segregated on the grass substrate into two different lines, one with high aflatoxin production and one with very low aflatoxin-forming ability, higher growth rate and reduced sporulation, on the SLM substrate. When exposed to sucrose in grass substrate and ammonium formate in SLM, one toxic and one non-toxic strain were provoked to increased aflatoxin formation. The A. flavus isolate from the anaerobic jar also segregated on the grass substrate, and these segregants were more sensitive to a high dose of formic acid. In these A. flavus strains there seems to be a continuous variation between different lines, depending on cultivation conditions. In the two aflatoxin-forming isolates left, such segregation tendencies were not very marked on any substrate.  相似文献   

9.
Aspergillus flavus and A. parasiticus are the two most important aflatoxin‐producing fungi responsible for the contamination of agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O‐methylsterigmatocystin, but not CPA. Only four of forty‐five attempted interspecific crosses between opposite mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important fungi.  相似文献   

10.
The ability of 9-day-old mycelia of Aspergillus parasiticus NRRL 2999 to degrade aflatoxin varied depending on the substrate used to grow the mold. Substrates which allowed substantial mycelial growth yielded mycelia which actively degraded aflatoxin. Substrates which allowed minimal growth of mycelia yielded mycelia with little ability to degrade aflatoxin. Biodegradation of aflatoxin was also strain-dependent. A. parasiticus NRRL 2999 and NRRL 3000 actively degraded aflatoxin, A. flavus NRRL 3353 was less active, and A. flavus NRRL 482 and A. parasiticus NRRL 3315 degraded minimal amounts of aflatoxins. Those aspergilli producing greatest amounts of aflatoxin also degraded aflatoxins most rapidly, whereas those strains which produced minimal amounts of aflatoxin generally degraded aflatoxins less effectively. Substrates which allowed maximum aflatoxin production also yielded mycelia which actively degraded aflatoxins, whereas media which allowed limited production of aflatoxin generally yielded mycelia with minimal ability to degrade the toxin. Although exceptions exist, generally as aflatoxin production increased so did the ability of mycelia to degrade the toxin.  相似文献   

11.
Effect of nickel and aluminium was studied on aflatoxin and lipid production by two strains ofAspergillus flavus in a sucrose—asparagine—salts medium. Inclusion of aluminium in the medium established an inverse relationship between aflatoxin and lipid production. At lower concentrations aluminium stimulated aflatoxin production, whereas at higher concentrations it stimulated total lipid production. Nickel at higher concentrations resulted in an increase in total aflatoxin production. However, no definite correlation was observed between total aflatoxin and total lipid production when nickel was included in the medium. *** DIRECT SUPPORT *** A00FP116 00002  相似文献   

12.
Aims: To evaluate the potential role of fungal community structure in predisposing Kenyan maize to severe aflatoxin contamination by contrasting aflatoxin‐producing fungi resident in the region with repeated outbreaks of lethal aflatoxicosis to those in regions without a history of aflatoxicosis. Methods and Results: Fungi belonging to Aspergillus section Flavi were isolated from maize samples from three Kenyan provinces between 2004 and 2006. Frequencies of identified strains and aflatoxin‐producing abilities were assessed, and the data were analysed by statistical means. Most aflatoxin‐producing fungi belonged to Aspergillus flavus. The two major morphotypes of A. flavus varied greatly between provinces, with the S strain dominant in both soil and maize within aflatoxicosis outbreak regions and the L strain dominant in nonoutbreak regions. Conclusions: Aspergillus community structure is an important factor in the development of aflatoxins in maize in Kenya and, as such, is a major contributor to the development of aflatoxicosis in the Eastern Province. Significance and Impact of the Study: Since 1982, deaths caused by aflatoxin‐contaminated maize have repeatedly occurred in the Eastern Province of Kenya. The current study characterized an unusual fungal community structure associated with the lethal contamination events. The results will be helpful in developing aflatoxin management practices to prevent future outbreaks in Kenya.  相似文献   

13.
Thirty seven strains of the Aspergillus flavus group isolated from animal mixed feeds have been screened for their ability to produce aflatoxins in yeast extract and sucrose (YES), aflatoxin producing ability (APA), and coconut agar medium (CAM) media. The concentration and detection of the aflatoxins by different methods is compared. Five known aflatoxin-positive and one aflatoxin-negative strains have been used as controls. Only 5 out of the 37 strains (13.5%) were aflatoxin-producers in YES medium. Of these five strains and the five known aflatoxin-positive strains, only three showed blue fluorescence in APA medium and four in CAM medium. Generally, the aflatoxin concentration in CAM medium was higher than in YES and APA media. Using the agar-plug method and by direct spotting of the YES broth on TLC plates, some aflatoxin-producing strains were not detected.  相似文献   

14.
Sterigmatocystin (ST) is a secondary metabolite and a principal mycotoxin known to be produced by over 30 species of filamentous fungi. It is also one of the late intermediates in aflatoxin biosynthesis. We have tested the ability of 7 species ofAspergillus, including 4 strains ofA. versicolor, one species ofBipolaris, and two species ofChaetomium, to produce ST on a sucrose-salts-phenylalanine defined medium as well as on three complex substrates. Highest ST production in our survey was by a strain ofA. versicolor grown on wheat, whereas, the highest ST production on defined medium was byC. cellulolyticum. To our knowledge, this is the first report of ST production byC. cellulolyticum on any substrate. In precursor feeding studies, resting cultures of wild typeA. nidulans andA. versicolor were unable to biotransform O-methylsterigmatocystin (OMST), the last known intermediate in aflatoxin biosynthesis. These results suggest that ST is the end product of polyketide metabolism in the strains tested.  相似文献   

15.
Dorner JW  Horn BW 《Mycopathologia》2007,163(4):215-223
A 2-year study was carried out to determine the effect of applying nontoxigenic strains of Aspergillus flavus and A. parasiticus to soil separately and in combination on preharvest aflatoxin contamination of peanuts. A naturally occurring, nontoxigenic strain of A. flavus and a UV-induced mutant of A. parasiticus were applied to peanut soils during the middle of each of two growing seasons using a formulation of conidia-coated hulled barley. In addition to an untreated control, treatments included soil inoculated with nontoxigenic A. flavus only, soil inoculated with nontoxigenic A. parasiticus only, and soil inoculated with a mixture of the two nontoxigenic strains. Plants were exposed to late-season drought conditions that were optimal for aflatoxin contamination. Results from year one showed that significant displacement (70%) of toxigenic A. flavus occurred only in peanuts from plots treated with nontoxigenic A. flavus alone; however, displacement did not result in a statistically significant reduction in the mean aflatoxin concentration in peanuts. In year two, soils were re-inoculated as in year one and all treatments resulted in significant reductions in aflatoxin, averaging 91.6%. Regression analyses showed strong correlations between the presence of nontoxigenic strains in peanuts and aflatoxin reduction. It is concluded that treatment with the nontoxigenic A. flavus strain alone is more effective than the A. parasiticus strain alone and equally as effective as the mixture. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

16.
Aspergillus flavus and Aspergillus parasiticus cause perennial infection of agriculturally important crops in tropical and subtropical areas. Invasion of crops by these fungi may result in contamination of food and feed by potent carcinogenic aflatoxins. Consumption of aflatoxin contaminated foods is a recognised risk factor for human hepatocellular carcinoma (HCC) and may contribute to the high incidence of HCC in Southeast Asia. This study conducted a survey of Vietnamese crops (peanuts and corn) and soil for the presence of aflatoxigenic fungi and used microsatellite markers to investigate the genetic diversity of Vietnamese Aspergillus strains. From a total of 85 samples comprising peanut (25), corn (45) and soil (15), 106 strains were isolated. Identification of strains by colony morphology and aflatoxin production found all Vietnamese strains to be A. flavus with no A. parasiticus isolated. A. flavus was present in 36.0% of peanut samples, 31.1% of corn samples, 27.3% of farmed soil samples and was not found in virgin soil samples. Twenty-five per cent of the strains produced aflatoxins. Microsatellite analysis revealed a high level of genetic diversity in the Vietnamese A. flavus population. Clustering, based on microsatellite genotype, was unrelated to aflatoxin production, geographic origin or substrate origin.  相似文献   

17.
Until recently, only three species (Aspergillus flavus, A. parasiticus and A. nomius) have been widely recognized as producers of aflatoxin. In this study we examine aflatoxin production by two other species, A. tamarii and A. ochraceoroseus, the latter of which also produces sterigmatocystin. Toxin-producing strains of A. tamarii and A. ochraceoroseus were examined morphologically, and toxin production was assayed on different media at different pH levels using thin layer chromatography and a densitometer. Genomic DNA of these two species was probed with known aflatoxin and sterigmatocystin biosynthesis genes from A. flavus, A. parasiticus and A. nidulans. Under the high stringency conditions, A. tamarii DNA hybridized to all four of the A. flavus and A. parasiticus gene probes, indicating strong similarities in the biosynthetic pathway genes of these three species. The A. ochraceoroseus DNA hybridized weakly to the A. flavus and A. parasiticus verB gene probe, and to two of the three A. nidulans probes. These data indicate that, at the DNA level, the aflatoxin and sterigmatocystin biosynthetic pathway genes for A. ochraceoroseus are somewhat different from known pathway genes. Received: 21 May 1999 / Received revision: 17 November 1999 / Accepted: 3 December 1999  相似文献   

18.
Pectinase and sclerotium production by strains ofAspergillus flavus were determined with a pectinase culture plate assay and a Cz 3% NaNO3 medium plate assay. In theA. flavus population, 51% of isolates produced sclerotia, the toxigenic strains showing a tendency to have smaller sclerotia. Strains producing both abundant small sclerotia and a large quantity of aflatoxin were not found. There was no linear correlation between the amount of aflatoxin produced and the number of sclerotia. Levels of pectinase produced by the toxigenic strains were higher than that of the non-toxigenic strains, and this character was more obvious in the sclerotium-producing strains than in the non-sclerotium-prodcing strains. In theA. flavus population from Zhejiang in which the toxigenic strain rate was low, toxigenic strains may require higher levels of pectinase to compete with the non-toxigenic strains when infecting foodstuffs.  相似文献   

19.
Aflatoxins in maize and peanuts remain a major cause of liver cancer and other human and animal health issues. The principal causal fungi are Aspergillus flavus and A. parasiticus. Relatively little attention has been paid to reducing aflatoxin formation before harvest. The most promising approach is biocontrol by competitive exclusion. This project aimed to demonstrate the efficacy of locally isolated strains of A. flavus for biocontrol of aflatoxin in maize in Thailand. After a rigorous process utilising molecular methods was used to select non-toxigenic A. flavus strains, field inoculum was produced by using hulled rice coated with A. flavus spores in molasses. Field experiments were conducted over two years in two districts, one of light sandy soil (Chokchai), the other a heavy, close textured, soil (Pakchong). Postharvest treatments representative of local practice were also undertaken. Crops 1 and 2 were not significantly contaminated with aflatoxin at the time of harvest, so any impact of biocontrol could not be assessed. However, wet shelling plus storage before drying resulted in increased aflatoxin contamination; biocontrol had no impact on this increase. In crops 3 and 4, biocontrol had a beneficial impact in some freshly harvested maize. Biocontrol treatments also significantly reduced aflatoxin contamination in samples from some treatments stored for two or four days after shelling, but had minimal effect in others. These experiments demonstrated that biocontrol can be highly effective in reducing aflatoxin contamination in maize in Thailand, both at harvest and during poor postharvest crop handling. However, results were inconsistent.  相似文献   

20.
The effect of different nitrogen sources and varying glucose concentration on aflatoxin production by a toxigenic and non-toxigenic strain of Aspergillus flavus was studied. Greatest production (3.8 ppm) of aflatoxin B1 was produced in a synthetic medium when casamino acids were supplied as the nitrogen source. Optimum sugar concentration for aflatoxin B1 production ranged between 3 and 10 g/100 ml. There was no appreciable difference in the metabolic behaviour between toxigenic and non-toxigenic strains of A. flavus when dry mycelial weight, total proteins, non-protein nitrogen and reducing sugar were the criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号