首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of low doses of melatonin (0.1, 0.5 and 1 mg) given at 16:00 h on induction and quality of sleep in the late afternoon (17:00-21:00 h), as well as on subjective fatigue and mood ratings before and after sleep were studied. Ten healthy male volunteers (age 26-30 years) were given on a double-blind crossover basis, tablets containing melatonin, or placebo, with one day washout between treatments. Mood and fatigue were assessed before and after bedtime. Sleep quality was objectively monitored using wrist-worn actigraphs and subjectively by using sleep logs. Data were analysed by means of analysis of variance for repeated measures with a factor of group (placebo and the three melatonin doses). The analysis revealed dose-dependent increase by melatonin in subjective evaluation of fatigue and sleepiness, and decrease in alertness, efficiency, vigor and concentration before the nap. Melatonin did not significantly affect actigraph-measured nap sleep latency and efficiency but reduced wake time after sleep onset and delayed sleep offset time compared to placebo, Melatonin did not significantly affect sleep latency and sleep efficiency in the night following the treatment. These data indicate acute effects of low doses of melatonin given at 16:00h on sleepiness and fatigue but not on sleep efficiency or latency in healthy young individuals.  相似文献   

2.
《Chronobiology international》2013,30(8):1125-1134
Exercise can induce circadian phase shifts depending on the duration, intensity and frequency. These modifications are of special meaning in athletes during training and competition. Melatonin, which is produced by the pineal gland in a circadian manner, behaves as an endogenous rhythms synchronizer, and it is used as a supplement to promote resynchronization of altered circadian rhythms. In this study, we tested the effect of melatonin administration on the circadian system in athletes. Two groups of athletes were treated with 100?mg?day?1 of melatonin or placebo 30?min before bed for four weeks. Daily rhythm of salivary melatonin was measured before and after melatonin administration. Moreover, circadian variables, including wrist temperature (WT), motor activity and body position rhythmicity, were recorded during seven days before and seven days after melatonin or placebo treatment with the aid of specific sensors placed in the wrist and arm of each athlete. Before treatment, the athletes showed a phase-shift delay of the melatonin circadian rhythm, with an acrophase at 05:00?h. Exercise induced a phase advance of the melatonin rhythm, restoring its acrophase accordingly to the chronotype of the athletes. Melatonin, but not placebo treatment, changed daily waveforms of WT, activity and position. These changes included a one-hour phase advance in the WT rhythm before bedtime, with a longer nocturnal steady state and a smaller reduction when arising at morning than the placebo group. Melatonin, but not placebo, also reduced the nocturnal activity and the activity and position during lunch/nap time. Together, these data reflect the beneficial effect of melatonin to modulate the circadian components of the sleep–wake cycle, improving sleep efficiency.  相似文献   

3.
Exogenous melatonin administration in humans is known to exert both chronobiotic (phase shifting) and soporific effects. In a previous study in our lab, young, healthy, subjects worked five consecutive simulated night shifts (23:00 to 07:00 h) and slept during the day (08:30 to 15:30 h). Large phase delays of various magnitudes were produced by the study interventions, which included bright light exposure during the night shifts, as assessed by the dim light melatonin onset (DLMO) before (baseline) and after (final) the five night shifts. Subjects also ingested either 1.8 mg sustained-release melatonin or placebo before daytime sleep. Although melatonin at this time should delay the circadian clock, this previous study found that it did not increase the magnitude of phase delays. To determine whether melatonin had a soporific effect, we controlled the various magnitudes of phase delay produced by the other study interventions. Melatonin (n=18) and placebo (n=18) groups were formed by matching a melatonin participant with a placebo participant that had a similar baseline and final DLMO (±1 h). Sleep log measurements of total sleep time (TST) and actigraphic measurements of sleep latency, TST, and three movement indices for the two groups were examined. Although melatonin was associated with small improvements in sleep quality and quantity, the differences were not statistically significant by analysis of variance. However, binomial analysis indicated that melatonin participants were more likely to sleep better than their placebo counterparts on some days with some measures. It was concluded that, the soporific effect of melatonin is small when administered prior to 7 h daytime sleep periods following night shift work.  相似文献   

4.
Exogenous melatonin administration in humans is known to exert both chronobiotic (phase shifting) and soporific effects. In a previous study in our lab, young, healthy, subjects worked five consecutive simulated night shifts (23:00 to 07:00 h) and slept during the day (08:30 to 15:30 h). Large phase delays of various magnitudes were produced by the study interventions, which included bright light exposure during the night shifts, as assessed by the dim light melatonin onset (DLMO) before (baseline) and after (final) the five night shifts. Subjects also ingested either 1.8 mg sustained‐release melatonin or placebo before daytime sleep. Although melatonin at this time should delay the circadian clock, this previous study found that it did not increase the magnitude of phase delays. To determine whether melatonin had a soporific effect, we controlled the various magnitudes of phase delay produced by the other study interventions. Melatonin (n=18) and placebo (n=18) groups were formed by matching a melatonin participant with a placebo participant that had a similar baseline and final DLMO (±1 h). Sleep log measurements of total sleep time (TST) and actigraphic measurements of sleep latency, TST, and three movement indices for the two groups were examined. Although melatonin was associated with small improvements in sleep quality and quantity, the differences were not statistically significant by analysis of variance. However, binomial analysis indicated that melatonin participants were more likely to sleep better than their placebo counterparts on some days with some measures. It was concluded that, the soporific effect of melatonin is small when administered prior to 7 h daytime sleep periods following night shift work.  相似文献   

5.
While napping has previously been shown to alleviate the effects of sleep loss, before advocating the use of naps in transport accident campaigns it is necessary to consider whether a nap opportunity in a noisy uncomfortable environment can produce the same benefits as a nap opportunity in conditions that are conducive to sleep. To examine this, eight participants drove a driving simulator for 50 min at 11:00 h on three different test days. The simulator used has previously been found to be sensitive to the effects of sleep loss, alcohol consumption, and time of day. All three sessions were conducted after one night of sleep loss. Prior to driving during each session the participants either had a 60 min nap opportunity in a quiet or noisy environment, or no nap opportunity. Driving performance and reaction time while driving were measured, as were subjective sleepiness and ratings of sleep quality. No significant benefits of nap opportunities on driving performance were found. Levels of subjective sleepiness were not affected by the nap opportunity condition; however, sleep was rated as more refreshing and restful after a nap in a quiet environment compared to noisy environment. The measures of effect size reported suggest further research is required to unequivocally test the effects of nap opportunities on driving ability.  相似文献   

6.
While napping has previously been shown to alleviate the effects of sleep loss, before advocating the use of naps in transport accident campaigns it is necessary to consider whether a nap opportunity in a noisy uncomfortable environment can produce the same benefits as a nap opportunity in conditions that are conducive to sleep. To examine this, eight participants drove a driving simulator for 50 min at 11:00 h on three different test days. The simulator used has previously been found to be sensitive to the effects of sleep loss, alcohol consumption, and time of day. All three sessions were conducted after one night of sleep loss. Prior to driving during each session the participants either had a 60 min nap opportunity in a quiet or noisy environment, or no nap opportunity. Driving performance and reaction time while driving were measured, as were subjective sleepiness and ratings of sleep quality. No significant benefits of nap opportunities on driving performance were found. Levels of subjective sleepiness were not affected by the nap opportunity condition; however, sleep was rated as more refreshing and restful after a nap in a quiet environment compared to noisy environment. The measures of effect size reported suggest further research is required to unequivocally test the effects of nap opportunities on driving ability.  相似文献   

7.
8.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n?=?12, mean age?=?25.1 yrs; Protocol 2: n?=?12, mean age?=?23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00?h after ~20?h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00?h after ~30?h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15?min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45?min post-awakening for naps of 40?min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15?min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60?min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45?min after waking.  相似文献   

9.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n = 12, mean age = 25.1 yrs; Protocol 2: n = 12, mean age = 23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00 h after ~20 h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00 h after ~30 h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15 min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45 min post-awakening for naps of 40 min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15 min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60 min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45 min after waking.  相似文献   

10.
11.
Melatonin is synthesized and secreted during the dark period of the light-dark cycle. The rhythmic nocturnal melatonin secretion is directly generated by the circadian clock, located in mammals within the suprachiasmatic nucleus (SCN), and is entrained to a 24-hour period by the light-dark cycle. The periodic secretion of melatonin may be used as a circadian mediator to any system that can 'read' the message. In addition, direct effects of the hormone on the SCN could explain some of the melatonin effects on the circadian system. Duration of the melatonin nocturnal secretion is directly proportional to the length of the night and it has experimentally been demonstrated to be the critical parameter for photoperiod integration. The sites and mechanisms of action of melatonin for circadian and photoperiodic responses are far from being elucidated, but action through specific membrane receptor sites starts to emerge. A possible bicompartmental model of distribution for melatonin, the first compartment in plasma acting on peripheral organs and the second in the cerebrospinal fluid affecting neurally mediated functions at a much higher concentration, has recently been proposed. From earlier studies it was concluded that melatonin administration to humans reduces sleep latency and induces sleepiness and fatigue. More recently, the effect of lower pharmacologic or physiologic doses of melatonin was examined in different laboratories. These studies included young normal volunteers and patients with chronic insomnia, as well as dementia patients exhibiting sundowning syndrome. Irrespective of the method of assessment, melatonin showed effects in insomniac patients in most studies. With some exceptions, melatonin administration reduced sleep latency and/or increased total sleep time and sleep efficiency. Furthermore, melatonin was more effective when given to elderly insomniacs, or Alzheimer disease patients, although sleep improvement was not strictly correlated with prior levels of the hormone.  相似文献   

12.
Extended nap opportunities have been effective in maintaining alertness in the context of extended night shifts (+12?h). However, there is limited evidence of their efficacy during 8-h shifts. Thus, this study explored the effects of extended naps on cognitive, physiological and perceptual responses during four simulated, 8-h night shifts. In a laboratory setting, 32 participants were allocated to one of three conditions. All participants completed four consecutive, 8-h night shifts, with the arrangements differing by condition. The fixed night condition worked from 22h00 to 06h00, while the nap early group worked from 20h00 to 08h00 and napped between 00h00 and 03h20. The nap late group worked from 00h00 to 12h00 and napped between 04h00 and 07h20. Nap length was limited to 3 hours and 20 minutes. Participants performed a simple beading task during each shift, while also completing six to eight test batteries roughly every 2?h. During each shift, six test batteries were completed, in which the following measures were taken. Performance indicators included beading output, eye accommodation time, choice reaction time, visual vigilance, simple reaction time, processing speed and object recognition, working memory, motor response time and tracking performance. Physiological measures included heart rate and tympanic temperature, whereas subjective sleepiness and reported sleep length and quality while outside the laboratory constituted the self reported measures. Both naps reduced subjective sleepiness but did not alter the circadian and homeostatic-related changes in cognitive and physiological measures, relative to the fixed night condition. Additionally, there was evidence of sleep inertia following each nap, which resulted in transient reductions in certain perceptual cognitive performance measures. The present study suggested that there were some benefits associated with including an extended nap during 8-h night shifts. However, the effects of sleep inertia need to be effectively managed to ensure that post-nap alertness and performance is maintained.  相似文献   

13.
Although studies have reported the effects of the menstrual cycle on melatonin rhythmicity, none has investigated the effects of menopause on the melatonin rhythm. The circadian rhythm in melatonin and its relationship to subjective alertness was investigated in pre- and postmenopausal women under constant routine conditions (controlled posture, dim lighting, calorie intake, temperature, and prolonged wakefulness). Eleven healthy pre-menopausal (42+/-4 yr) and 10 postmenopausal women (55+/-2 yr) participated in the study. Salivary melatonin samples and subjective measures of alertness and sleepiness were assessed hourly during the 22 h constant routine protocol. Postmenopausal women had a significantly earlier melatonin acrophase (1.1+/-0.5 h clock time in decimal h; mean+/-SEM, p<0.05) compared to the pre-menopausal women (2.3+/-0.3 h). There was no significant difference between melatonin onset and amplitude between the pre-menopausal and postmenopausal women. Self-rated alertness declined in both study groups as the length of sleep deprivation increased. Melatonin onset preceded the onset of self-rated sleepiness in both groups. The time interval between melatonin onset and the onset of sleepiness and alertness offset was significantly greater in the postmenopausal women compared to the pre-menopausal women. In conclusion, under controlled experimental conditions the timing of the melatonin rhythm was advanced in postmenopausal women altering its phase relationship to subjective alertness and sleepiness.  相似文献   

14.
Sleep loss has been associated with increased sleepiness, decreased performance, elevations in inflammatory cytokines, and insulin resistance. Daytime napping has been promoted as a countermeasure to sleep loss. To assess the effects of a 2-h midafternoon nap following a night of sleep loss on postnap sleepiness, performance, cortisol, and IL-6, 41 young healthy individuals (20 men, 21 women) participated in a 7-day sleep deprivation experiment (4 consecutive nights followed by a night of sleep loss and 2 recovery nights). One-half of the subjects were randomly assigned to take a midafternoon nap (1400-1600) the day following the night of total sleep loss. Serial 24-h blood sampling, multiple sleep latency test (MSLT), subjective levels of sleepiness, and psychomotor vigilance task (PVT) were completed on the fourth (predeprivation) and sixth days (postdeprivation). During the nap, subjects had a significant drop in cortisol and IL-6 levels (P < 0.05). After the nap they experienced significantly less sleepiness (MSLT and subjective, P < 0.05) and a smaller improvement on the PVT (P < 0.1). At that time, they had a significant transient increase in their cortisol levels (P < 0.05). In contrast, the levels of IL-6 tended to remain decreased for approximately 8 h (P = 0.1). We conclude that a 2-h midafternoon nap improves alertness, and to a lesser degree performance, and reverses the effects of one night of sleep loss on cortisol and IL-6. The redistribution of cortisol secretion and the prolonged suppression of IL-6 secretion are beneficial, as they improve alertness and performance.  相似文献   

15.
Although studies have reported the effects of the menstrual cycle on melatonin rhythmicity, none has investigated the effects of menopause on the melatonin rhythm. The circadian rhythm in melatonin and its relationship to subjective alertness was investigated in pre‐ and postmenopausal women under constant routine conditions (controlled posture, dim lighting, calorie intake, temperature, and prolonged wakefulness). Eleven healthy pre‐menopausal (42±4 yr) and 10 postmenopausal women (55±2 yr) participated in the study. Salivary melatonin samples and subjective measures of alertness and sleepiness were assessed hourly during the 22 h constant routine protocol. Postmenopausal women had a significantly earlier melatonin acrophase (1.1±0.5 h clock time in decimal h; mean±SEM, p<0.05) compared to the pre‐menopausal women (2.3±0.3 h). There was no significant difference between melatonin onset and amplitude between the pre‐menopausal and postmenopausal women. Self‐rated alertness declined in both study groups as the length of sleep deprivation increased. Melatonin onset preceded the onset of self‐rated sleepiness in both groups. The time interval between melatonin onset and the onset of sleepiness and alertness offset was significantly greater in the postmenopausal women compared to the pre‐menopausal women. In conclusion, under controlled experimental conditions the timing of the melatonin rhythm was advanced in postmenopausal women altering its phase relationship to subjective alertness and sleepiness.  相似文献   

16.
The purpose of our study was to understand the relationship between the components of the three-process model of sleepiness regulation (homeostatic, circadian, and sleep inertia) and the thermoregulatory system. This was achieved by comparing the impact of a 40-h sleep deprivation vs. a 40-h multiple nap paradigm (10 cycles with 150/75 min wakefulness/sleep episodes) on distal and proximal skin temperatures, core body temperature (CBT), melatonin secretion, subjective sleepiness, and nocturnal sleep EEG slow-wave activity in eight healthy young men in a "controlled posture" protocol. The main finding of the study was that accumulation of sleep pressure increased subjective sleepiness and slow-wave activity during the succeeding recovery night but did not influence the thermoregulatory system as measured by distal, proximal, and CBT. The circadian rhythm of sleepiness (and proximal temperature) was significantly correlated and phase locked with CBT, whereas distal temperature and melatonin secretion were phase advanced (by 113 +/- 28 and 130 +/- 30 min, respectively; both P < 0.005). This provides evidence for a primary role of distal vasodilatation in the circadian regulation of CBT and its relationship with sleepiness. Specific thermoregulatory changes occur at lights off and on. After lights off, skin temperatures increased and were most pronounced for distal; after lights on, the converse occurred. The decay in distal temperature (vasoconstriction) was significantly correlated with the disappearance of sleep inertia. These effects showed minor and nonsignificant circadian modulation. In summary, the thermoregulatory system seems to be independent of the sleep homeostat, but the circadian modulation of sleepiness and sleep inertia is clearly associated with thermoregulatory changes.  相似文献   

17.
Bright light at night improves the alertness of night workers. Melatonin suppression induced by light at night is, however, reported to be a possible risk factor for breast cancer. Short-wavelength light has a strong impact on melatonin suppression. A red-visor cap can cut the short-wavelength light from the upper visual field selectively with no adverse effects on visibility. The purpose of this study was to investigate the effects of a red-visor cap on light-induced melatonin suppression, performance, and sleepiness at night. Eleven healthy young male adults (mean age: 21.2±0.9 yr) volunteered to participate in this study. On the first day, the subjects spent time in dim light (<15 lx) from 20:00 to 03:00 to measure baseline data of nocturnal salivary melatonin concentration. On the second day, the subjects were exposed to light for four hours from 23:00 to 03:00 with a nonvisor cap (500 lx), red-visor cap (approx. 160 lx) and blue-visor cap (approx. 160 lx). Subjective sleepiness and performance of a psychomotor vigilance task (PVT) were also measured on the second day. Compared to salivary melatonin concentration under dim light, the decrease in melatonin concentration was significant in a nonvisor cap condition but was not significant in a red-visor cap condition. The percentages of melatonin suppression in the nonvisor cap and red-visor cap conditions at 4 hours after exposure to light were 52.6±22.4% and 7.7±3.3%, respectively. The red-visor cap had no adverse effect on performance of the PVT, brightness and visual comfort, though it tended to increase subjective sleepiness. These results suggest that a red-visor cap is effective in preventing melatonin suppression with no adverse effects on vigilance performance, brightness and visibility.  相似文献   

18.
Menstrual cycle-associated changes in reproductive hormones affect body temperature in women. We aimed to characterize the interaction between the menstrual, circadian, and scheduled sleep-wake cycles on body temperature regulation. Eight females entered the laboratory during the midfollicular (MF) and midluteal (ML) phases of their menstrual cycle for an ultradian sleep-wake cycle procedure, consisting of 36 cycles of 60-minute wake episodes alternating with 60-minute nap opportunities, in constant bed-rest conditions. Core body temperature (CBT) and distal skin temperature (DT) were recorded and used to calculate a distal-core gradient (DCG). Melatonin, sleep, and subjective sleepiness were also recorded. The circadian variation of DT and DCG was not affected by menstrual phase. DT and DCG showed rapid, large nap episode-dependent increases, whereas CBT showed slower, smaller nap episode-dependent decreases. DCG values were significantly reduced for most of the wake episode in an overall 60-minute wake/60-minute nap cycle during ML compared to MF, but these differences were eliminated at the wake-to-nap lights-out transition. Nap episode-dependent decreases in CBT were further modulated as a function of both circadian and menstrual factors, with nap episode-dependent deceases occurring more prominently during the late afternoon/evening in ML, whereas nap episode-dependent DT and DCG increases were not significantly affected by menstrual phase but only circadian phase. Circadian rhythms of melatonin secretion, DT, and DCG were significantly phase-advanced relative to CBT and sleep propensity rhythms. This study explored how the thermoregulatory system is influenced by an interaction between circadian phase and vigilance state and how this is further modulated by the menstrual cycle. Current results agree with the thermophysiological cascade model of sleep and indicate that despite increased CBT during ML, heat loss mechanisms are maintained at a similar level during nap episodes, which may allow for comparable circadian sleep propensity rhythms between menstrual phases.  相似文献   

19.
The objectives of the investigation were to assess hypersomnia, which progressively appeared in a young patient after a pinealectomy, chemotherapy, and radiotherapy for a typical germinoma, as well as the potential benefit of melatonin administration in the absence of its endogenous secretion. 24 h ambulatory polysomnography and the Multiple Sleep Latency Test (MSLT) were performed; in addition, daily plasma melatonin, cortisol, growth hormone, prolactin, and rectal temperature profiles were determined before and during melatonin treatment (one 2 mg capsule given nightly at 21:00 h for 4 weeks). MSLT showed abnormal sleep latency and two REM sleep onsets. Nighttime total sleep duration was lengthened, mainly as a consequence of an increased REM sleep duration. These parameters were slightly modified by melatonin replacement. Plasma melatonin levels, which were constantly nil in the basal condition, were increased to supraphysiological values with melatonin treatment. The plasma cortisol profile showed nycthemeral variation within the normal range, and the growth hormone profile showed supplementary diurnal peaks. Melatonin treatment did not modify the secretion of either hormone. The plasma prolactin profile did not display a physiological nocturnal increase in the basal condition; however, it did during melatonin treatment, with the rise coinciding with the nocturnal peak of melatonin concentration. A 24 h temperature rhythm of normal amplitude was persistent, though the mean level was decreased and the rhythm was dampened during melatonin treatment. The role of radiotherapy on the studied parameters cannot be excluded; the findings of this case study suggest that the observed hypersomnia is not the result of melatonin deficiency alone. Overall, melatonin treatment was well tolerated, but the benefit on the sleep abnormality, especially on daytime REM sleep, was minor, requiring the re-introduction of modafinil treatment.  相似文献   

20.
The objectives of the investigation were to assess hypersomnia, which progressively appeared in a young patient after a pinealectomy, chemotherapy, and radiotherapy for a typical germinoma, as well as the potential benefit of melatonin administration in the absence of its endogenous secretion. 24 h ambulatory polysomnography and the Multiple Sleep Latency Test (MSLT) were performed; in addition, daily plasma melatonin, cortisol, growth hormone, prolactin, and rectal temperature profiles were determined before and during melatonin treatment (one 2 mg capsule given nightly at 21:00 h for 4 weeks). MSLT showed abnormal sleep latency and two REM sleep onsets. Nighttime total sleep duration was lengthened, mainly as a consequence of an increased REM sleep duration. These parameters were slightly modified by melatonin replacement. Plasma melatonin levels, which were constantly nil in the basal condition, were increased to supraphysiological values with melatonin treatment. The plasma cortisol profile showed nycthemeral variation within the normal range, and the growth hormone profile showed supplementary diurnal peaks. Melatonin treatment did not modify the secretion of either hormone. The plasma prolactin profile did not display a physiological nocturnal increase in the basal condition; however, it did during melatonin treatment, with the rise coinciding with the nocturnal peak of melatonin concentration. A 24 h temperature rhythm of normal amplitude was persistent, though the mean level was decreased and the rhythm was dampened during melatonin treatment. The role of radiotherapy on the studied parameters cannot be excluded; the findings of this case study suggest that the observed hypersomnia is not the result of melatonin deficiency alone. Overall, melatonin treatment was well tolerated, but the benefit on the sleep abnormality, especially on daytime REM sleep, was minor, requiring the re‐introduction of modafinil treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号