首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Focusing on the synonymous substitution rate, we carried out detailed sequence analyses of hominoid mitochondrial (mt) DNAs of ca. 5-kb length. Owing to the outnumbered transitions and strong biases in the base compositions, synonymous substitutions in mtDNA reach rapidly a rather low saturation level. The extent of the compositional biases differs from gene to gene. Such changes in base compositions, even if small, can bring about considerable variation in observed synonymous differences and may result in the region-dependent estimate of the synonymous substitution rate. We demonstrate that such a region dependency is due to a failure to take proper account of heterogeneous compositional biases from gene to gene but that the actual synonymous substitution rate is rather uniform. The synonymous substitution rate thus estimated is 2.37 ± 0.11 × 10–8 per site per year and comparable to the overall rate for the noncoding region. On the other hand, the rate of nonsynonymous substitutions differs considerably from gene to gene, as expected under the neutral theory of molecular evolution. The lowest rate is 0.8 × 10–9 per site per year forCOI and the highest rate is 4.5 × 10–9 forATPase 8, the degree of functional constraints (measured by the ratio of the nonsynonymous to the synonymous substitution rate) being 0.03 and 0.19, respectively. Transfer RNA (tRNA) genes also show variability in the base contents and thus in the nucleotide differences. The average rate for 11 tRNAs contained in the 5-kb region is 3.9 × 10–9 per site per year. The nucleotide substitutions in the genome suggest that the transition rate is about 17 times faster than the transversion rate.  相似文献   

2.
Summary The rate of nucleotide substitution (k(nuc)) of 5s RNA was estimated to be (1.8 ± 0.5) × 10–10 per site per year by comparing the nucleotide sequences of human andXenopus 5s RNA and using the geological time elapsed since the separation of mammals and amphibians. Similarly, k(nuc) of 5.8s rRNA was calculated to be 0.93 – 1.4 × 10–10 per site per year from the sequences of rat hepatoma cells andSaccharomyces cerevisiae. For the comparison of these data with the amino acid substitution rate of known proteins, the k(nuc) values of 5s rRNA and 5.8s rRNA were converted to the rate of amino acid substitution (k(aa)). The k(aa) values in pauling units were 0.4 and 0.2 – 0.3, respectively.The average k(aa) of ribosomal proteins was also estimated to be 0.2 – 0.3 pauling from the N-terminal amino acid sequences of seventeen 30s ribosomal proteins ofBacillus stearothermophilus andEscherichia coli. Thus, the evolutionary rates of these ribosomal components studied here are similar to each other; they are considerably slower than that of the known cellular proteins. Most, if not all, of the replacements in ribosomal proteins occurred between amino acids of a chemically similar nature.  相似文献   

3.
Summary For each of eleven different types of nuclear genes, comparisons of the protein coding sequences were made between human, mouse and rat pairwisely, and the evolutionary rate of silent substitution, v S nucl. , was estimated. It is shown that the v S nucl. is not only very high (=5.37×10–9/site/yr), but also approximately uniform for different genes regardless of the types, which confirms our previous results (Miyata et al. 1980b). This is in sharp contrast to the rate of protein evolution which differes greatly from protein to protein. Furthermore the v S nucl. is shown to be approximately constant with respect to different divergence times, at least within a short time period (75 Myr). Based on these observations, we propose a new molecular clock which has several advantages over a protein clock. Using this clock, we show that the rate of amino acid replacement in the immunoglobulin Ck gene of b4 rabbit is unexpectedly high, almost comparable to the rate of silent changes. This rate may be the highest one for protein evolution that we know so far. We further examine the rate of silent substitutions in mitochondrial genes comparing mouse and rat. Surprisingly the rate is extremely high (35×10–9/site/yr), at least 6-times as high as the corresponding rate of nuclear genes. Based on the estimate, we discuss a possible origin of the rapid rate found in mitochondrial DNA.  相似文献   

4.
Synonymous substitution rates in mitochondrial and nuclear genes of Drosophila were compared. To make accurate comparisons, we considered the following: (1) relative synonymous rates, which do not require divergence time estimates, should be used; (2) methods estimating divergence should take into account base composition; (3) only very closely related species should be used to avoid effects of saturation; (4) the heterogeneity of rates should be examined. We modified the methods estimating synonymous substitution numbers to account for base composition bias. By using these methods, we found that mitochondrial genes have 1.7–3.4 times higher synonymous substitution rates than the fastest nuclear genes or 4.5–9.0 times higher rates than the average nuclear genes. The average rate of synonymous transversions was 2.7 (estimated from the melanogaster species subgroup) or 2.9 (estimated from the obscura group) times higher in mitochondrial genes than in nuclear genes. Synonymous transversions in mitochondrial genes occurred at an approximately equivalent rate to those in the fastest nuclear genes. This last result is not consistent with the hypothesis that the difference in turnover rates between mitochondrial and nuclear genomes is the major factor determining higher synonymous substitution rates in mtDNA. We conclude that the difference in synonymous substitution rates is due to a combination of two factors: a higher transitional mutation rate in mtDNA and constraints on nuclear genes due to selection for codon usage. Received: 27 November 1996 / Accepted: 8 May 1997  相似文献   

5.
We obtained 16 nucleotide sequences (∼1400 bp each) of the first intron of the mitochondrial (mt) gene for NADH subunit 4 (nad4) from 10 species of Brassicaceae. Using these new sequences and five published sequences from GenBank, we constructed a phylogenetic tree of the Brassicaceae species under study and showed that the rate of nucleotide substitution in the first intron of nad4 is very low, about 0.16–0.23 × 10−9 substitution per site per year, which is about half of the silent rate in exons of nad4. The ratios of substitution rates in this intron, ITS, and IGS are approximately 1:23:73, where ITS is the nuclear intergenic spacer between 18S and 25S rRNA genes and IGS is the intergenic spacer of 5S rRNA genes. A segment (335 bp) in the first intron of nad4 in Brassicaceae species that is absent in wheat was considered as a nonfunctional sequence and used to estimate the neutral rate (the rate of mutation) in mtDNA to be 0.5–0.7 × 10−9 substitution per site per year, which is about three times higher than the substitution rate in the rest of the first intron of nad4. We estimated that the dates of divergence are 170–235 million years (Myr) for the monocot–dicot split, 112–156 Myr for the Brassicaceae–Lettuce split, 14.5–20.4 Myr for the Brassica–Arabidopsis split, and 14.5–20.4 Myr for the Arabidopsis–Arabideae split. Received: 14 July 1998 / Accepted: 1 October 1998  相似文献   

6.
Rates of DNA Duplication and Mitochondrial DNA Insertion in the Human Genome   总被引:11,自引:0,他引:11  
The hundreds of mitochondrial pseudogenes in the human nuclear genome sequence (numts) constitute an excellent system for studying and dating DNA duplications and insertions. These pseudogenes are associated with many complete mitochondrial genome sequences and through those with a good fossil record. By comparing individual numts with primate and other mammalian mitochondrial genome sequences, we estimate that these numts arose continuously over the last 58 million years. Our pairwise comparisons between numts suggest that most human numts arose from different mitochondrial insertion events and not by DNA duplication within the nuclear genome. The nuclear genome appears to accumulate mtDNA insertions at a rate high enough to predict within-population polymorphism for the presence/absence of many recent mtDNA insertions. Pairwise analysis of numts and their flanking DNA produces an estimate for the DNA duplication rate in humans of 2.2 × 10–9 per numt per year. Thus, a nucleotide site is about as likely to be involved in a duplication event as it is to change by point substitution. This estimate of the rate of DNA duplication of noncoding DNA is based on sequences that are not in duplication hotspots, and is close to the rate reported for functional genes in other species.  相似文献   

7.
The effective sizes of ancestral populations and species divergence times of six primate species (humans, chimpanzees, gorillas, orangutans, and representatives of Old World monkeys and New World monkeys) are estimated by applying the two-species maximum likelihood (ML) method to intron sequences of 20 different loci. Examination of rate heterogeneity of nucleotide substitutions and intragenic recombination identifies five outrageous loci (ODC1, GHR, HBE, INS, and HBG). The estimated ancestral polymorphism ranges from 0.21 to 0.96% at major divergences in primate evolution. One exceptionally low polymorphism occurs when African and Asian apes diverged. However, taking into consideration the possible short generation times in primate ancestors, it is concluded that the ancestral population size in the primate lineage was no smaller than that of extant humans. Furthermore, under the assumption of 6 million years (myr) divergence between humans and chimpanzees, the divergence time of humans from gorillas, orangutans, Old World monkeys, and New World monkeys is estimated as 7.2, 18, 34, and 65 myr ago, respectively, which are generally older than traditional estimates. Beside the intron sequences, three other data sets of orthologous sequences are used between the human and the chimpanzee comparison. The ML application to these data sets including 58,156 random BAC end sequences (BES) shows that the nucleotide substitution rate is as low as 0.6–0.8 × 10–9 per site per year and the extent of ancestral polymorphism is 0.33–0.51%. With such a low substitution rate and short generation time, the relatively high extent of polymorphism suggests a fairly large effective population size in the ancestral lineage common to humans and chimpanzees.[Reviewing Editor: Dr. Magnus Nordborg]  相似文献   

8.
Molecular evolution of nitrate reductase genes   总被引:9,自引:0,他引:9  
To understand the evolutionary mechanisms and relationships of nitrate reductases (NRs), the nucleotide sequences encoding 19 nitrate reductase (NR) genes from 16 species of fungi, algae, and higher plants were analyzed. The NR genes examined show substantial sequence similarity, particularly within functional domains, and large variations in GC content at the third codon position and intron number. The intron positions were different between the fungi and plants, but conserved within these groups. The overall and nonsynonymous substitution rates among fungi, algae, and higher plants were estimated to be 4.33 × 10−10 and 3.29 × 10−10 substitutions per site per year. The three functional domains of NR genes evolved at about one-third of the rate of the N-terminal and the two hinge regions connecting the functional domains. Relative rate tests suggested that the nonsynonymous substitution rates were constant among different lineages, while the overall nucleotide substitution rates varied between some lineages. The phylogenetic trees based on NR genes correspond well with the phylogeny of the organisms determined from systematics and other molecular studies. Based on the nonsynonymous substitution rate, the divergence time of monocots and dicots was estimated to be about 340 Myr when the fungi–plant or algae–higher plant divergence times were used as reference points and 191 Myr when the rice–barley divergence time was used as a reference point. These two estimates are consistent with other estimates of divergence times based on these reference points. The lack of consistency between these two values appears to be due to the uncertainty of the reference times. Received: 10 April 1995 / Accepted: 10 September 1995  相似文献   

9.
Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila.  相似文献   

10.
Comparison of plant uptake and plant toxicity of various ions in wheat   总被引:1,自引:0,他引:1  
The effects of varying solution concentrations of manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga) and lanthanum (La) on plant chemical concentrations, plant uptake and plant toxicity were determined in wheat (Triticum aestivum L.) grown in a low ionic strength (2.7×10–3 M solution culture). Increasing the solution concentration of Mn, Zn, Cu, B, Fe, Ga and La increased plant concentrations of that ion. Asymptotic maximum plant concentrations were reached for Zn (10 mg kg DM–1 in the roots), Ga (2 mg kg DM–1 in the tops and 18 mg kg DM–1 in the roots) and La (0.4 mg kg DM–1 in the tops and 4 mg kg DM–1 in the roots). Plant ion concentrations were, on average, 3 times higher in the roots than the tops for Mn and Zn, 7 times for Cu, 9 times for Fe, 12 times for Ga and 15 times for La. In contrast, B concentrations were higher in the tops than the roots by, on average, 2 times. The estimated toxicity threshold (plant concentration at which a rapid decrease in yield occurred) in the tops was 0.4 mg g DM–1 for B, 2 for Zn, 0.075 for Cu and 0.09 for La and in the roots 0.2 mg g DM–1 for B, 5 for Zn, 0.3 for Cu and 3 for La. Plant uptake rates of the ions (as estimated by the slope of the relationship between solution ion concentrations and plant ion concentrations) was in the order B 250 mg kg DM–1 M –1). Plant toxicity was estimated as the reciprocal of the plant concentration that reduced yield by 50% (change in relative yield per mg ion kg DM–1). The plant toxicity of the ions tested was in the order Mn相似文献   

11.
Sarma  S.S.S.  Nandini  S. 《Hydrobiologia》2001,(1):75-83
We studied the life history variables and population growth characteristics of Brachionus variabilis, which was recorded for the first time from Mexico. The animals were fed Chlorella, using five concentrations (0.25, 0.5, 1, 2 and 4 × 106 cells ml–1) at 25 °C. Food density was observed to have significant effect on life expectancy, average lifespan, gross reproductive rate, net reproductive rate, generation time and population growth rate. The average lifespan ranged from 3 to 6 days depending on the food density. The net reproductive rate ranged from 2 to 7 neonates female–1 d–1. The rate of population increase per day varied from 0.14 to 0.35. The highest net reproductive rate and average lifespan and life expectancy were recorded at Chlorella concentrations of 1 × 106 and 2 × 106 cells ml–1.  相似文献   

12.
Summary The neutral theory of molecular evolution postulates that nucleotide substitutions inherently take place in DNA as a result of point mutations followed by random genetic drift. In the absence of selective constraints, the substitution rate reaches the maximum value set by the mutation rate. The rate in globin pseudogenes is about 5 × 10–9 substitutions per site per year in mammals. Rates slower than this indicate the presence of constraints imposed by negative (natural) selection, which rejects and discards deleterious mutations.We wish to dedicate this paper to the memory of Professor Jack Lester King  相似文献   

13.
Atmospheric deposition of nutrients to the North Atlantic Basin   总被引:18,自引:6,他引:12  
Atmospheric chemical models are used to estimate the deposition rate of various inorganic oxides of nitrogen (NOy), reduced nitrogen species (NHx) and mineral dust to the North Atlantic Ocean (NAO). The estimated deposition of NOy to the NAO (excluding the coastal ocean) and the Caribbean is 360 × 109 Moles-N m–2 yr–1 (5.0 Tg N); this is equivalent to about 13% of the estimated global emission rate (natural and anthropogenic) and a quarter of the emission rate from sources in North America and Europe. In the case of NHx, 258 Moles-N m–2 yr–1 (3.6 Tg N) are deposited to the NAO and the Caribbean; this is about 6% of the global continental emissions. There is relatively little data on the deposition rate of organic nitrogen species; nonetheless, this evidence suggests that concentrations and deposition rates are comparable to those for inorganic nitrogen.Because of anthropogenic emissions, the present-day deposition rate of NOy to the NAO is about five times greater than pre-industrial times largely due to emissions from energy production and biomass burning. The present-day emissions of NHx from continental anthropogenic sources are about four-to-five times greater than natural sources, mostly due to the impact of emissions from animal wastes associated with food production. Indeed, present-day emissions of NHx from animal waste are estimated to be about 10 times greater than the pre-human era. The deposition rate of mineral dust to the NAO is about 170 Tg yr–1; deposited with the dust (assuming average crustal abundances) is about 6 Tg yr–1 of Fe and 0.2 Tg yr–1 of P. Dust deposition in the NAO is almost completely attributable to transport from North African sources; a substantial fraction of the dust over the NAO is probably mobilized as a consequence of land use practices in arid regions and, consequently, it should be regarded as a pollutant.  相似文献   

14.
Summary The proteins of cytoplasmic and mitochondrial ribosomes from the cow and the rat were analyzed by co-electrophoresis in two dimensional polyacrylamide gels to determine their relative evolutionary rates. In a pairwise comparison of individual ribosomal proteins (r-proteins) from the cow and the rat, over 85% of the cytoplasmic r-proteins have conserved electrophoretic properties in this system, while only 15% of the proteins of mitochondrial ribosomes from these animals fell into this category. These values predict that mammalian mitochondrial r-proteins are evolving about 13 times more rapidly than cytoplasmic r-proteins. Based on actual evolutionary rates for representative cytoplasmic r-proteins, this mitochondrial r-protein evolutionary rate corresponds to an amino acid substitution rate of 40×10–10 per site per year, placing mitochondrial r-proteins in the category of rapidly evolving proteins. The mitochondrial r-proteins are apparently evolving at a rate comparable to that of the mitochondrial rRNA, suggesting that functional constraints act more or less equally on both kinds of molecules in the ribosome. It is significant that mammalian mitochondrial r-proteins are evolving more rapidly than cytoplasmic r-proteins in the same cell, since both sets of r-proteins are encoded by nuclear genes. Such a difference in evolutionary rates implies that the functional constraints operating on ribosomes are somewhat relaxed for mitochondrial ribosomes.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

15.
Molecular evolutionary analyses were carried out to elucidate the phylogenetic relationships, the evolutionary rate, and the divergence times of hepatitis C viruses. Using the nucleotide sequences of the viruses isolated from various locations in the world, we constructed phylogenetic trees. The trees showed that strains isolated from a single location were not necessarily clustered as a group. This suggests that the viruses may be transferred with blood on a worldwide scale. We estimated the evolutionary rates at synonymous and nonsynonymous sites for all genes in the viral genome. We then found that the rate (1.35 × 10–3 per site per year) at synonymous sites for the C gene was much smaller than those for the other genes (e.g., 6.29 × 10–3 per site per year for the E gene). This indicates that a special type of functional constraint on synonymous substitutions may exist in the C gene. Because we found an open reading frame (ORF) with the C gene region, the possibility exists that synonymous substitutions for the C gene are constrained by the overlapping ORF whose reading frame is different from that of the C gene. Applying the evolutionary rates to the trees, we also suggest that major groups of hepatitis C viruses diverged from their common ancestor several hundred years ago. Correspondence to: T. Gojobori  相似文献   

16.
Rapid evolution of goat and sheep globin genes following gene duplication   总被引:12,自引:3,他引:9  
Statistical analyses of DNA sequences of globin genes (beta A, beta C, and gamma) from goat and sheep (including new sequence information for the second intron of sheep beta A and gamma, kindly provided by A. Davis and A. W. Nienhuis) indicate that the rates of nonsynonymous substitution in these genes have been greatly accelerated following the gene duplication separating gamma and the ancestor of beta A and beta C and the gene duplication separating beta A and beta C. In both cases the acceleration was apparently due to relaxation of purifying selection (functional constraints) rather than advantageous mutations because acceleration occurred only in less important parts of the beta globin chain. The rates of nonsynonymous substitution in these genes are estimated to be about 2.3 x 10(-9) per site per year, which is three times higher than that for the divergence between human beta and mouse beta major globin genes. Our analyses further suggest that the rate of synonymous substitution in functional genes and the rate of substitution in pseudogenes are approximately equal and are between 2.8 x 10(-9) and 5.0 x 10(-9) and that the rate of substitution in introns is about 3.0 x 10(-9). The divergence time between beta A and beta C and that between gamma and the beta A-beta C pair are about 12 and 30 million years, respectively. The proportion of transition mutations is estimated to be 64%, two times higher than expected under random mutation but considerably lower than the 96% estimated for animal mitochondrial DNA.   相似文献   

17.
The caterpillarCaloptilia serotinella generates the force required to roll leaves by stretching the silk strands it fixes between opposable plant surfaces. The Young's modulus of strands drawn by caterpillars at an average rate of 16 mm s–1 was 1.1×108 N m–2. Single strands stretched in a tensiometer had a final Young's modulus of 1.4×109 N m–2 and withstood a maximum force of 60 × 10–5 N (i.e., a 60-mg force) before breaking at 30% extension. Strands stretched approximately 14% beyond their equilibrium length by rolling caterpillars exerted an average axially retractive force of 3.2×10–5 N and drew the leaf 7×10–3 mm into the roll. During episodes of rolling, the caterpillars spun hundreds of strands capable of generating a collective force in excess of 0.1 N. Potential forces associated with wet contraction of strands were not harnessed by the caterpillar when rolling but subsequent supercontraction of the strands caused them to bind the roll tightly. Caterpillars appeared to facilitate leaf rolling by weakening the midrib with their mandibles.  相似文献   

18.
Insulin binding in adipocytes from patients with a phaeochromocytoma (PH) approached that of the controls (C) at low and higher concentrations of unlabeled insulin. The apparent receptor affinity was unchanged (ED50: PH 0.50×10–9M and C0.60×10–9M). Scatchard analysis of the binding data using the negative cooperative model revealed a 46% decrease in the total number of receptors together with no changes in both Ke (PH 0.55×109M–1 and C 0.36×109M–1) and Kf (PH 0.13×109 M–1 and C 0.07×109 M–1). According to the two site model, an altered proportion in the two classes of insulin binding sites was detected. This was accompanied by a catecholamine-desensitization of the adipocytes to the antilipolytic action of insulin. These events could represent a final situation of a chronic and endogeneous regulation by high levels of catecholamines of insulin receptors in human adipose tissue.  相似文献   

19.
Estimating denitrification in North Atlantic continental shelf sediments   总被引:17,自引:3,他引:14  
A model of coupled nitrification/denitrification was developed for continental shelf sediments to estimate the spatial distribution of denitrification throughout shelf regions in the North Atlantic basin. Using data from a wide range of continental shelf regions, we found a linear relationship between denitrification and sediment oxygen uptake. This relationship was applied to specific continental shelf regions by combining it with a second regression relating sediment oxygen uptake to primary production in the overlying water. The combined equation was: denitrification (mmol N m–2 d–1)=0.019* phytoplankton production (mmol C m–2 d–1). This relationship suggests that approximately 13% of the N incorporated into phytoplankton in shelf waters is eventually denitrified in the sediments via coupled nitrification/denitrification, assuming a C:N ratio of 6.625:1 for phytoplankton. The model calculated denitrification rates compare favorably with rates reported for several shelf regions in the North Atlantic.The model-predicted average denitrification rate for continental shelf sediments in the North Atlantic Basin is 0.69 mmol N m– 2 d–1. Denitrification rates (per unit area) predicted by the model are highest for the continental shelf region in the western North Atlantic between Cape Hatteras and South Florida and lowest for Hudson Bay, the Baffin Island region, and Greenland. Within latitudinal belts, average denitrification rates were lowest in the high latitudes, intermediate in the tropics and highest in the mid-latitudes. Although denitrification rates per unit area are lowest in the high latitudes, the total N removal by denitrification (53 × 1010 mol N y–1) is similar to that in the mid-latitudes (60 × 1010 mol N y–1) due to the large area of continental shelf in the high latitudes. The Gulf of St. Lawrence/Grand Banks area and the North Sea are responsible for seventy-five percent of the denitrification in the high latitude region. N removal by denitrification in the western North Atlantic (96 × 1010 mol N y–1) is two times greater than in the eastern North Atlantic (47 × 1010 mol N y–1). This is primarily due to differences in the area of continental shelf in the two regions, as the average denitrification rate per unit area is similar in the western and eastern North Atlantic.We calculate that a total of 143 × 1010 mol N y–1 is removed via coupled nitrification/denitrification on the North Atlantic continental shelf. This estimate is expected to underestimate total sediment denitrification because it does not include direct denitrification of nitrate from the overlying water. The rate of coupled nitrification/denitrification calculated is greater than the nitrogen inputs from atmospheric deposition and river sources combined, and suggests that onwelling of nutrient rich slope water is a major source of N for denitrification in shelf regions. For the two regions where N inputs to a shelf region from onwelling have been measured, onwelling appears to be able to balance the denitrification loss.  相似文献   

20.
The tolerance of sol-gel immobilised and free Saccharomyces cerevisiae to ethanol was studied. The effects of ethanol preincubation time showed that the specific death velocity decreased from 2×105 c.f.u. min–1 for free cells to 2×104 c.f.u. min–1 for immobilised cells thus indicating that immobilised yeast was far less sensitive to the ethanol damage. The specific glucose consumption of immobilised and free cells on a per cell basis was 3×10–12 g cell–1 h–1 and 9×10–12 g cell–1 h–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号