首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ribosomal RNA gene sequences and hominoid phylogeny   总被引:17,自引:2,他引:15  
Sequences totaling 3,500 bases from the 28S rRNA gene and from one of the ribosomal internal transcribed spacers (ITS1) have been determined for human, chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus). Analyses of the rRNA alignments show (1) a clustering of substitutions in the "variable regions" of the 28S gene, (2) a 1.5-3-fold increase in divergence in the transcribed spacer over that in the exon, and (3) that human and chimpanzee are the most closely related pair, in agreement with the results of Miyamoto et al., Sibley and Ahlquist, and Caccone and Powell.  相似文献   

2.
We hybridized a human M-BCR DNA probe to the chromosomes of chimpanzee (Pan troglodytes), gorilla (Gorilla gorilld) and orangutan (Pongo pygmaeus) by FISH-technique. The human M-BCR gene was localized to chromosome 23 band q11 (23q11), which is equivalent to the human chromosome 22 band q11 in all three species. The conservation of M-BCR gene in higher primates at the corresponding human chromosome locus provides phylogenetic clues concerning the evolution of genes.  相似文献   

3.
Restriction endonucleases have recently been proved to be active on fixed chromatin, producing differences in staining of metaphase chromosomes. In this paper we show the results obtained by treating the metaphase chromosomes of Pan troglodytes, Pan paniscus, and Gorilla gorilla with the restriction enzyme AluI. These results demonstrate qualitative differences in the telomeric heterochromatin between Pan and Gorilla despite the fact that these areas appear homogeneous in the two genera by the C-banding method. The results found with individual chromosomes in the different species also appear relevant, in the light of the evolutionary relationships between these nonhuman primates and man. Lastly, the results suggest the presence, in great apes, of some highly repetitive DNA sequences different from the human satellites I-IV.  相似文献   

4.
Background  During an outbreak of respiratory disease in captive chimpanzees ( Pan troglodytes ), gorillas ( Gorilla gorilla ), Bornean orangutans ( Pongo pygmaeus ), and red-capped mangabeys ( Cercocebus torquatus ) also staff members showed non-specific upper respiratory signs. One infant female chimpanzee with severe respiratory symptoms died despite immediate medical treatment and was submitted for necropsy.
Methods  Routine post mortem, histological and bacteriological examinations were conducted. Additionally lung tissue samples form the chimpanzee and swab samples from the staff members and the other primates were examined by PCR.
Results  A severe catarrhal to purulent bronchopneumonia and an interstitial pneumonia were found and human respiratory syncytial virus (HRSV) as well as Streptococcus pneumoniae was detected in lung samples by PCR. Swab samples from one animal keeper revealed the same HRSV sequence as of the chimpanzee.
Conclusions  Therefore, it is suggested that the outbreak of respiratory disease within a zoological institution was due to transmission of HRSV between both human and primates.  相似文献   

5.
Additional DNA sequence information from a range of primates, including 13.7 kb from pygmy chimpanzee (Pan paniscus), was added to data sets of beta-globin gene cluster sequence alignments that span the gamma 1, gamma 2, and psi eta loci and their flanking and intergenic regions. This enlarged body of data was used to address the issue of whether the ancestral separations of gorilla, chimpanzee, and human lineages resulted from only one trichotomous branching or from two dichotomous branching events. The degree of divergence, corrected for superimposed substitutions, seen in the beta-globin gene cluster between human alleles is about a third to a half that observed between two species of chimpanzee and about a fourth that between human and chimpanzee. The divergence either between chimpanzee and gorilla or between human and gorilla is slightly greater than that between human and chimpanzee, suggesting that the ancestral separations resulted from two closely spaced dichotomous branchings. Maximum parsimony analysis further strengthened the evidence that humans and chimpanzees share the longest common ancestry. Support for this human-chimpanzee clade is statistically significant at P = 0.002 over a human-gorilla clade or a chimpanzee-gorilla clade. An analysis of expected and observed homoplasy revealed that the number of sequence changes uniquely shared by human and chimpanzee lineages is too large to be attributed to homoplasy. Molecular clock calculations that accommodated lineage variations in rates of molecular evolution yielded hominoid branching times that ranged from 17-19 million years ago (MYA) for the separation of gibbon from the other hominoids to 5-7 MYA for the separation of chimpanzees from humans. Based on the relatively late dates and mounting corroborative evidence from unlinked nuclear genes and mitochondrial DNA for the close sister grouping of humans and chimpanzees, a cladistic classification would place all apes and humans in the same family. Within this family, gibbons would be placed in one subfamily and all other extant hominoids in another subfamily. The later subfamily would be divided into a tribe for orangutans and another tribe for gorillas, chimpanzees, and humans. Finally, gorillas would be placed in one subtribe with chimpanzees and humans in another, although this last division is not as strongly supported as the other divisions.  相似文献   

6.
Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes.  相似文献   

7.
Hominoid phylogeny was investigated in terms of unique DNA sequence homologies. In comparisons from the human standpoint the ΔTe50 DNA values were Man 0, chimpanzee 0·7, gorilla 1·4, gibbon 2·7, orangutan 2·9, and African green monkey 5·7. In comparisons from the orangutan standpoint the ΔTe50 DNA values were orangutan 0, chimpanzee 1·8, Man 1·9, gorilla 2·3, gibbon 2·4 and African green monkey 4·3. These results indicate that chimpanzee and gorilla are cladistically closer to Man than to orangutan and other primates, and that gorilla DNA may have diverged slightly more from the ancestral state than chimpanzee or human DNA. Comparisons from chimpanzee and gorilla DNA standpoints are needed to achieve a more definitive picture of hominoid phylogeny.  相似文献   

8.
We have isolated a chimpanzee processed pseudogene for subunit IV of cytochrome c oxidase (COX; EC 1.9.3.1) by screening a chimpanzee genomic library in lambda Charon 32 with a bovine liver cDNA encoding COX subunit IV (COX IV), and localized it to a 1.9-kb HindIII fragment. Southern-blot analysis of genomic DNA from five primates showed that DNAs from human, gorilla, and chimpanzee each contained the 1.9-kb pseudogene fragment, whereas orangutan and pigtail macaque monkey DNA did not. This result clearly indicates that the pseudogene arose before the divergence of the chimpanzee and gorilla from the primate lineage. By screening Chinese hamster x human hybrid panels with the human COX4 cDNA, we have mapped COX4 genes to two human chromosomes, 14 and 16. The 1.9-kb HindIII fragment containing the pseudogene, COX4P1, can be assigned to chromosome 14, and by means of rearranged chromosomes in somatic cell hybrids, to 14q21-qter. Similarly, the functional gene, COX4, has been mapped to 16q22-qter.  相似文献   

9.
Protocadherin X (PCDHX) and Protocadherin Y (PCDHY) are cell-surface adhesion molecules expressed predominantly in brain. The human PCDH11X/Y gene pair is located in the non-pseudoautosomal X-Y homologous region (Xq21.3/Yp11.2). The possible existence of PCDH11 gene dosage differences between human and non-human primates is of evolutionary significance with respect to species differences and escape from X inactivation, and has been repeatedly debated. Previous investigations on the X/Y homologous status of PCDH11 and adjacent sequences in non-human primates have highlighted the complexity of the molecular pattern and evolutionary history of this genomic region. This paper provides for the first time direct evidence for the absence of the PCDH11 genefrom the Y chromosome of chimpanzee (Pan troglodytes) as well as gorilla (Gorilla gorilla). By confirmingthe suspected lack of X-Y homologous status for PCDH11 in non-human primates, our results reinforce the hypothesis of a hominid-specific role for this gene in brain development.  相似文献   

10.
Mature spermatozoa of the chimpanzee (Pan troglodytes), the gorilla (Gorilla gorilla), and the orangutan (Pongo pygmaeus) were stained with quinacrine dihydrochloride. Fluorescent (F) bodies were visualized in the spermatozoa of the chimpanzee and gorilla but were absent in the orangutan, in which there is no brilliant fluorescence in any chromosome. The F bodies appeared to be randomly located in the sperm heads of these two species, as they usually are in human spermatozoa. However, the proportion of sperm showing one or more F bodies in the chimpanzee and gorilla was not comparable to what is usually found in man. The F bodies in the chimpanzee presumably represent brilliant regions in the autosomes, since the Y chromosome has no brilliant fluorescence in this species. This is contrary to man, in which the F body is an useful indicator of the Y chromosome. In the gorilla, the F bodies probably correspond to both the Y chromosome and to some brilliant regions in the autosomes.  相似文献   

11.
12.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   

13.
The PV subfamily of Alu repeats in human DNA is largely composed of recently inserted members. Here we document additional members of the PV subfamily that are found in chimpanzee but not in the orthologous loci of human and gorilla, confirming the relatively recent and independent expansion of this Alu subfamily in the chimpanzee lineage. As further evidence for the youth of this Alu subfamily, one PV Alu repeat is specific to Pan troglodytes, whereas others are present in Pan paniscus as well. The A-rich tails of these Alu repeats have different lengths in Pan paniscus and Pan troglodytes. The dimorphisms caused by the presence and absence of PV Alu repeats and the length polymorphisms attributed to their A-rich tails should provide valuable genetic markers for molecular-based studies of chimpanzee relationships. The existence of lineage-specific Alu repeats is a major sequence difference between human and chimpanzee DNAs. Correspondence to: C.W. Schmid  相似文献   

14.
Heterochromatic regions of chromosomes contain highly repetitive, tandemly arranged DNA sequences that undergo very rapid variation compared to unique DNA sequences that are predominantly conserved. In this study the chromosomal basis of speciation has been looked at in terms of repeat sequences. We have hybridized twenty-one chromosome-specific human alphoid satellite DNA probes to metaphase spreads of the chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus) to investigate the evolutionary relationship of heterochromatic regions among such hominoid species. The majority of the probes did not hybridize to their corresponding equivalent chromosome but presented hybridization signals on non-corresponding chromosomes. Such observations suggest that rapid changes may have occurred in the ancestral alphoid satellite DNA sequence, resulting in divergence among the great ape species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Human satellite DNAs I, II and IV were transcribed to yield radioactive complementary RNAs (cRNAs). These cRNAs were hybridised to metaphase chromosomes of man, chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla) and orang utan (Pongo pygmaeus). The results of this in situ hybridisation were analysed quantitatively and compared with accepted chromosome homologies based on Giemsa banding patterns. The cRNA to satellite II (cRNAII) did not hybridise to chimpanzee chromosomes, although its hybridisation to chromosomes of gorilla and orang utan yielded more autoradiograph grains than hybridisation to human chromosomes, and cRNAIV hybridised to many chromosomes of gorilla and chimpanzee but was almost entirely restricted to the Y chromosome in orang utan. Most sites of hybridisation were located on homologous chromosomes in all four species, but there were a number of sites which showed no correspondence between satellite DNA location and chromosome banding patterns, and others where a given chromosomal location hybridised with different cRNAs in each species. These results are in contrast to those found for many transcribed DNA sequences, where the same sequence is usually located at homologous chromosome sites in different species, and appear to cast doubt on many proposed models of satellite DNA function.  相似文献   

16.
We analyzed the conservation of large paralogous regions (more than 200 kb) on human chromosome regions 21q22.1 and 21q11.2 and on pericentromeric regions of chromosomes 2, 13, and 18 in three nonhuman primate species. Orthologous regions were found by FISH analysis of metaphase chromosomes from Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus. Only one orthologous region was detected in chromosomes of P. pygmaeus, showing that the original locus was at 21q22.1 and that the duplication arose after the separation of Asian orangutans from the other hominoids. Surprisingly, the paralogous regions were more highly conserved in gorilla than in chimpanzee. PCR amplification of STSs derived from sequences of the chromosome 21 loci and low-stringency FISH analysis showed that this duplication occurred recently in the evolution of the genome. Different rates of sequence evolution through substitutions or deletions, after the duplication, may have resulted in diversity between closely related primates.  相似文献   

17.
The two major apolipoproteins associated with human and chimpanzee (Pan troglodytes) high density lipoproteins (HDL) are apoA-I and dimeric apoA-II. Although humans are closely related to great apes, apolipoprotein data do not exist for bonobos (Pan paniscus), western lowland gorillas (Gorilla gorilla gorilla) and the Sumatran orangutans (Pongo abelii). In the absence of any data, other great apes simply have been assumed to have dimeric apoA-II while other primates and most other mammals have been shown to have monomeric apoA-II. Using mass spectrometry, we have measured the molecular masses of apoA-I and apoA-II associated with the HDL of these great apes. Each was observed to have dimeric apoA-II. Being phylogenetically related, one would anticipate these apolipoproteins having a high percentage of invariant sequences when compared with human apolipoproteins. However, the orangutan, which diverged from the human lineage between 16 and 21 million years ago, had an apoA-II with the lowest monomeric mass, 8031.3 Da and the highest apoA-I value, 28,311.7 Da, currently reported for various mammals. Interestingly, the gorilla that diverged from the lineage leading to the human–chimpanzee branch after the orangutan had almost identical mass values to those reported for human apoA-I and apoA-II. But chimpanzee and the bonobo that diverged more recently had identical apoA-II mass values that were slightly larger than reported for the human apolipoprotein. The chimpanzee A-I mass values were very close to those of humans; however, the bonobo had values intermediate to the molecular masses of orangutan and the other great apes. With the already existing genomic data for chimpanzee and the recent entries for the orangutan and gorilla, we were able to demonstrate a close agreement between our mass spectral data and the calculated molecular weights determined from the predicted primary sequences of the respective apolipoproteins. Post-translational modification of these apolipoproteins, involving truncation and oxidation of methionine, are also reported.  相似文献   

18.
测定人猿超科(人、黑猩猩、大猩猩、红毛猩猩和长臂猿)和旧大陆猴(猕猴和叶猴)7种高等灵长类FKN全基因序列, 探讨其系统进化分析。用简并引物PCR(Degenerated PCR)法分别扩增FKN的3个外显子, 其产物经琼脂糖凝胶回收、纯化后测序, 然后用BioEdit软件剪切拼接FKN基因全序列, 用DNAStar比对后比较基因和氨基酸序列同源性, Mega软件重构FKN基因进化树, 应用Datamonkey分析FKN的负选择位点。序列分析发现人猿超科较旧大陆猴FKN基因除了有散在的点突变外, 还有一明显的30 bp的核苷酸缺失突变; 人FKN基因序列与黑猩猩、大猩猩、红毛猩猩、长臂猿、猕猴和叶猴的同源性分别是99.2%、98.4%、98.1%、96.5%、95.9%和93.8%, 由此推导的氨基酸序列同源性分别是98.5%、98.0%、97.7%、94.7%、93.7%和90.5%; FKN基因进化树表明人与黑猩猩关系更近, FKN基因进化和通常认为的物种进化一致; Datamonkey分析结果显示FKN存在3个负选择位点53Q、84D、239N。成功获得人、黑猩猩、大猩猩、红毛猩猩、长臂猿、猕猴和叶猴7种高等灵长类物种FKN全基因序列, 为后续探讨FKN在高等灵长类物种进化过程中免疫学功能演变及其结构与功能的关系奠定基础。  相似文献   

19.
Nuclear and mitochondrial genomes have to work in concert to generate a functional oxidative phosphorylation (OXPHOS) system. We have previously shown that we could restore partial OXPHOS function when chimpanzee or gorilla mitochondrial DNA (mtDNA) were introduced into human cells lacking mtDNA. However, we were unable to maintain orangutan mitochondrial DNA in a human cell. We have now produced chimpanzee, gorilla, orangutan, and baboon cells lacking mtDNA and attempted to introduce mtDNA from different apes into them. Surprisingly, we were able to maintain human mtDNA in an orangutan nuclear background, even though these cells showed severe OXPHOS abnormalities, including a complete absence of assembled ATP synthetase. Phylogenetic analysis of complex V mtDNA-encoded subunits showed that they are among the most evolutionarily divergent components of the mitochondrial genome between orangutan and the other apes. Our studies showed that adaptive coevolution of nuclear and mitochondrial components in apes can be fast and accelerate in recent branches of anthropoid primates.  相似文献   

20.
Restriction endonuclease fragments produced by EcoRI/AvaI or KpnI digestion and containing the small (12S) ribosomal RNA (rRNA) genes from the mitochondrial DNAs (mtDNAs) of the common chimpanzee, pygmy chimpanzee, gorilla, and orangutan were inserted into the plasmids pBR322 or pADD1. After species verification the inserted fragments were digested with SauIIIA, subcloned into M13mp7 vectors, and sequenced. The small rRNA gene sequences were compared with each other and with the published human sequence (Anderson et al. 1981). Substitutions were detected at 118 of the 955 nucleotide positions compared. Pairwise, the sequence differences ranged from 1% (between the chimpanzee species) to 9% (comparisons involving the orangutan); the proportion that were transitions ranged from 87% to 100%. Deletions and/or additions were noted at seven locations. With respect to evolutionary sequence lability, kinetic analysis indicated the presence of at least two classes of nucleotide positions; the more labile class occurs in sequences thought to form self-complementary duplexes (stems) in the mature rRNA. The high frequency of compensating substitutions, which maintain base-pairing within these sequences, corroborates their inferred structure. Phylogenetic inferences drawn from the sequence comparisons support the notion of an approximately equidistant relationship among chimpanzees, gorilla, and man, with the orangutan much less closely related. However, inference from a shared deletion suggests that the gorilla and the chimpanzees may be more closely related to one another than they are to man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号