首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aims to examine the effect of zinc supplementation on free-radical formation and antioxidant system in individuals who are actively engaged in wrestling as a sport. The study registered a total of 40 male subjects, of whom 20 were wrestlers and 20 were sedentary individuals. The subjects were equally allocated to four groups: group 1, zinc-supplemented sportsmen group; group 2, sportsmen group without supplementation; group 3, zinc-supplemented sedentary group; group 4, sedentary group without supplementation. Blood samples were collected from all subjects twice, once at the beginning of the study and once again at the end of 8-week procedures. The blood samples collected were analyzed to determine the levels of malondialdehyde (MDA), serum glutathione (GSH), serum glutathione peroxidase (GPx) activity, serum superoxide dismutase (SOD) activity (ELISA colorimetric method) and zinc (colorimetric method). No difference was found between MDA levels of the study groups in the beginning of the study. The highest MDA value at the end of the study was obtained in group 4 (p < 0.01). MDA levels in group 2 were established to be significantly higher than those in groups 1 and 3 (p < 0.01). GSH level, GPx, and SOD activities and zinc level measured in the beginning of the study were not different between groups. Measurements performed at the end of the study showed that groups 1 and 3 (zinc-supplemented groups) had the highest GSH level, GPx, and SOD activities and zinc level (p < 0.01). These parameters were not different in the groups without supplementation (groups 2 and 4). Results obtained at the end of the study indicate that zinc supplementation prevents production of free radicals by activating the antioxidant system. In conclusion, physiologic doses of zinc supplementation to athletes may beneficially contribute to their health and performance.  相似文献   

2.
The present study was aimed to examine the effects of 3-week zinc and melatonin administration on testicular tissue injury and serum Inhibin-B levels caused by unilateral testicular torsion–detorsion in rats. The study was performed on 60 Wistar Albino-type adult male rats. The animals were allocated to 6 groups in equal numbers. 1. Control; 2. Sham; 3. Ischemia–reperfusion; 4. Zinc + ischemia–reperfusion; 5. Melatonin + ischemia–reperfusion; 6. Zinc + melatonin + ischemia–reperfusion. Zinc and melatonin were administered before ischemia–reperfusion at doses of 5 and 3 mg/kg respectively, by intraperitoneal route for a period of 3 weeks. Testicular torsion–detorsion procedures consisted of ischemia for 1 h and then reperfusion for another hour of the left testis. Blood and testicular tissue samples were collected to analyze erythrocyte and tissue GSH and plasma and tissue MDA, Inhibin-B levels. The highest erythrocyte and testis GSH values were found in zinc, melatonin, and zinc + melatonin groups (p < 0.001). Torsion–detorsion group has significantly lower erythrocyte GSH levels and higher plasma MDA values (p < 0.001). Serum inhibin-B and spermatogenic activity levels in the torsion–detorsion group were also significantly lower than those in the other groups (p < 0.001). However, zinc-, melatonin-, and melatonin + zinc-supplemented groups have higher inhibin-B and spermatogenetic activity (p < 0.001). The results of the study show that zinc, melatonin, and melatonin + zinc administration partially restores the increased oxidative stress, as well as the reduced inhibin-B and spermatogenic activity levels in testes ischemia–reperfusion in rats. Suppressed inhibin-B levels in the testicular tissue may be a marker of oxidative stress.  相似文献   

3.
The aim of this study was to investigate the effects of supplemental antioxidant vitamins and minerals on lipid peroxidation and on the antioxidant systems in rabbits exposed to X-rays. The rabbits were divided into two experimental groups and one control group, each group containing seven rabbits. The first group (VG) received daily oral doses of vitamin E (460 mg/kg live weight) and vitamin C (100 mg/kg live weight). The second group (MG) was fed a mineral-enriched diet that contained 60 mg manganese chloride, 40 mg zinc sulfate, and 5 mg copper sulfate per kilogram of feed. The third group served as controls and received only a standard diet. Blood samples were obtained before and after the supplementation with vitamins or minerals, as well as before and after irradiation with a total dose of 550-rad X-rays. The blood samples were analyzed for their content of malondialdehyde (MDA), plasma vitamins C and E, retinol, reduced glutathione (GSH), and glutathione peroxidase activity (GPx). After irradiation, the control group showed increased levels of MDA and activity of GPx (p<0.05), whereas the levels of GSH, vitamin C, and vitamin E were decreased. In the VG, the concentration of MDA was lower (p<0.05), and the concentration of GSH and vitamins C and E were higher (p<0.05) when compared to controls. In the MG, the concentrations of MDA, GSH, vitamin C, and retinol were not affected by the mineral administration and radiation. The level of vitamin E in the MG increased with mineral administration (p<0.05), but decreased after irradiation (p<0.05). For the control group, the level of GSH was higher than in the two experimental groups. After irradiation, the VG animals had vitamin E and C levels that were higher than in MG and control groups (p<0.05). The activity of GPx was not affected by vitamin or mineral supplementation or by irradiation. We conclude that the supplementation with antioxidant vitamins and minerals may serve to reinforce the antioxidant systems, thus having a protective effect against cell damage by X-rays.  相似文献   

4.
The aim of the study was to investigate the effects of zinc deficiency and supplementation on lipid peroxidation and glutathione levels in blood and in some tissues of rats performing swimming exercise. Forty adult male Sprague-Dawley rats were divided into four groups: group 1, zinc-deficient consisted of swimming rats; group 2 consisted of zinc-supplemented swimming rats; groups 3 and 4 were the swimming and nonswimming controls, respectively. The levels of malondialdehyde and glutathione were measured after 4 wk of zinc-deficient or zinc-supplemented diet and 30 min of swimming exercise daily. The erythrocyte glutathione levels of groups 2 and 4 were significantly higher than those of groups 1 and 3 (p<0.01). The plasma malondialdehyde level of group 1 was significantly higher than all other groups. The glutathione levels in liver, kidney, striated muscle, and testes of group 2 were higher than in the other groups (p<0.01) and higher in kidney and striated muscle of group 3 than in groups 1 and 4 (p<0.01). The tissue malondialdehyde levels of striated muscle, liver, kidney, and testes of group 1 were significantly higher than for all other groups (p<0.01). Our findings suggest that both swimming exercise and zinc deficiency result in an increase of lipid peroxidation in tissues and that zinc supplementation prevents these alterations by the activation of the antioxidant system.  相似文献   

5.
In this study, plasma and red blood cell (RBC) antioxidant status and plasma lipid peroxidation were investigated in 46 hemodialysis patients. In addition, the effect of erythropoietin (EPO) and EPO-vitamin E combination therapy on plasma and RBC antioxidant status, and plasma lipid peroxidation were examined.

There were 10 healthy subjects in the control group and 10 hemodialysis patients in the untreated group. The third group included 36 hemodialysis patients that were given EPO (100 U/kg) for 3 months, 3 times per week. The fourth group included 36 hemodialysis-patients from the EPO group that were given EPO at a 50% decreased dose + vitamin E (300 mg/day) for 3 months.

MDA levels in the untreated group, the EPO group and the EPO + vitamin E groups were found to be higher than the control group (p<0.001, in both). Furthermore, MDA levels in both of the treatment groups were lower when compared to the untreated group (p<0.001, in both). Plasma vitamin E levels in the untreated, the EPO group and EPO + vitamin E groups were lower than the control group (p<0.001). In contrast, plasma vitamin E levels in the treatment groups were higher in comparison with the control group (p<0.05). SOD activities in the untreated, the EPO group and the EPO + vitamin E groups were found to be lower than the control group (p<0.001). SOD activities in the treatment groups were higher than the control group (p<0.001). The SOD activities in the EPO + vitamin E group increased when compared to the EPO group (p<0.001). CAT activities in the untreated, the EPO group and the EPO + vitamin E groups were found to be lower than the control group (p<0.001 in untreated and EPO groups, p<0.01 in EPO + vitamin E group). CAT activities in EPO and EPO + vitamin E groups were increased when compared to the untreated group (p<0.01).

In conclusion, our findings have shown that antioxidant status decreased and lipid peroxidation increased in hemodialysis patients. EPO has an antioxidant effect on the RBC and plasma antioxidant status, and plasma lipid peroxidation. These effects were moderately increased by the combination of vitamin E and EPO.  相似文献   

6.
Thyroid hormones regulate energy metabolism and act on mitochondria which are an important source of free radicals in the cell. The pineal gland activates antioxidant systems via melatonin secretion and thus has a protective function in body tissues. The present study was conducted to determine the oxidative damage caused by hyperthyroidism in kidney and testis tissues of pinealectomized rats. Experimental animals were allocated to three groups: 1, control group; 2, sham pinealectomy-hyperthyroidic group; and 3, pinealectomy-hyperthyroidic group. Hyperthyroidism was induced by A 3-week intraperitoneal administration of thyroxin after sham pinealectomy or pinealectomy. Malondialdehyde (MDA) and glutathione (GSH) levels were determined in kidney and testis tissues. MDA levels of the kidney and testis tissue in the pinealectomy and hyperthyroidic groups were significantly higher than those in the sham pinealectomy-hyperthyroidic group and the control group (p < 0.001). GSH levels of both kidney and testis tissues were significantly higher in the sham-pinealectomy-hyperthyroidic group when compared to the other two groups (p < 0.001). This increase in GSH levels was more evident in the pinealectomy-hyperthyroidic group than in the control group (p < 0.001). The results of our study demonstrate that MDA and GSH levels in kidney and testis tissues increased due to hyperthyroidism and that pinealectomy made the increase in MDA levels more apparent, while decreasing GSH levels.  相似文献   

7.
Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Even though Cu is essential to life, it can become toxic to cells, at elevated tissue concentrations. Oxidative damage due to Cu has been reported in recent studies in various tissues. In this study, we aimed to determine the effect of excess Cu on oxidative and anti-oxidative substances in brain tissue in a rat model. Sixteen male Wistar albino rats were divided into two groups: the control group, which was given normal tap water, and the experimental group, which received water containing Cu in a dose of 1 g/l. All rats were sacrificed at the end of 4 wk, under ether anesthesia. Cu concentration in the liver and in plasma alanine aminotransferase (ALT) and aspartate transaminase (AST) activities were determined. There were multiparameter changes with significant ALT and AST activity elevation and increased liver Cu concentration. In brain tissue, Cu concentration, superoxide dismutase (SOD) activities, malondialdehyde (MDA) levels and glutathione (GSH) concentrations were determined. Brain Cu concentration was significantly higher in rats receiving excess Cu, compared with control rats (p < 0.05). Our results showed that SOD activities and GSH levels in brain tissue of the Cu-intoxicated animals were significantly lower than in the control group (p < 0.01 and p < 0,001, respectively). The brain MDA levels were found to be significantly higher in the experimental group than in the control group (p < 0.001). The present results indicate that excessive Cu accumulation in the brain depressed SOD activities and GSH levels and resulted in high MDA levels in brain homogenate due to the lipid peroxidation induced by the Cu overload.  相似文献   

8.
The present study was carried out to evaluate the effect of exogenously administered metallothionein (MT) to rats exposed to high cadmium levels. A total of 72 rats were used in the study. The animals were divided into three groups: controls, Cd administered, and Cd+MT. Cadmium was administered by subcutaneous injection of cadmium(II) chloride at a dose of 3.5 mg/kg for 7 d. In addition to CdCl2, 30 μmol/kg MT was administered to the second group of rats (group II). Control rats received 0.5 mL physiologic serum via subcutaneous injection. Eight rats from each group were sacrificed on the 1st, 3rd, 5th, and 7th day after administration of the compounds. Liver, kidney, and blood samples were harvested. Levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px), serum ALT, AST, BUN, ALP, creatinine, and urea were measured. MDA levels in group I were observed to increase starting from d 1 compared to group II (p<0.05). Although MDA levels in group II were higher than controls (p<0.05), they were lower, especially in liver and blood, compared to group II. Erythrocyte GSH-Px activity levels were determined to decrease starting from d 1 in both groups (p<0.05). Decreases in GSH-Px activity levels in group II were less than group I. Serum creatinine levels in both groups were increased significantly compared to controls (p<0.05); the increase in group I was higher than group II. Serum ALT, AST, and ALP levels in group I increased to very high levels compared to controls, whereas increases in group II were at moderate levels (p<0.05). Although serum BUN levels were determined to be reduced, there was no significant change among the groups. Serum urea levels in both groups were higher than controls. Based on our results, it is possible to postulate that exogenous MT can act as antioxidant against Cd toxicity and lipid peroxidation.  相似文献   

9.
We measured the levels of malondialdehyde (MDA), protein carbonyls, glutathione S-transferase (GST) and reducte glutathione (GSH) in seminal plasma and spermatozoa from 95 subjects including 50 infertile patients to evaluate the association between oxidative stress and damage and the components of the anti-oxidant defenses in seminal plasma and spermatozoa of infertile subjects and concentrations of cadmium (Cd) and lead (Pb) in the blood and seminal plasma because of tobacco smoke exposure. The reactive oxygen species (ROS) in spermatozoa were also evaluated by luminol (5-amino-2,3-dihydro-1,4-phthalazinedione)-enhanced chemiluminescence assay. The sperm count, motility, and morphology in the smokers infertile group were found to be lower than those in the fertile male group and nonsmokers infertile group (p < 0.001). Concentrations of Cd, Pb, MDA, protein carbonyls, and ROS levels in the smokers infertile group were significantly higher than those in the fertile male and nonsmokers infertile male groups (p < 0.001). However, GSH levels and GST activities were decreased in the smokers infertile male group than those in the fertile male and nonsmokers infertile male groups (p < 0.001). The results indicate that smoking could affect semen quality and oxidative lipid and protein damage in human spermatozoa. From Pearson correlation analysis, positive correlations were demonstrated between the seminal plasma Cd and seminal plasma protein carbonyls and between seminal plasma Pb and spermatozoa ROS levels in smokers of the subfertile group, while there was a significant positive correlation between blood Cd and ROS levels in smokers of the fertile group. There was also a significant negative correlation of the Cd level of the blood and GSH levels of the sperm and seminal plasma. These findings suggest that cigarette smoking enhances the levels of Cd and Pb in seminal plasma and blood and the extent of oxidative damage associated with a decrease in components of the anti-oxidant defenses in the sperm of infertile males.  相似文献   

10.
The aim of this work was to determine the protective effects of intraperitoneally administered vitamin E and selenium (as Na2SeO3, Se) on the lipid peroxidation as thiobarbituric acid reactive substances (TBARS) and vitamin E levels, glutathione peroxidase (GSH-Px), reduced glutathione (GSH) activities in the plasma, red blood cell (RBC), liver, and muscle of rats with streptozotocin-induced diabetes. Fifty adult male Wistar rats were used and all rats were randomly divided into five groups. The first group was used as a control and the second group as a diabetic control. A placebo was given to first and second groups by injection. The third group was intraperitoneally administered with vitamin E (20 mg over 24 h), the fourth group with Se (0.3 mg over 24 h), and the fifth group with vitamin E and Se combination (COM) (20 mg vitamin E + 0.3 mg Se over 24 h). This administration was done for 25 days and the TBARS, vitamin E, GSH-Px, GSH levels in the plasma, RBC, liver, and muscle samples were determined. The vitamin E level in the plasma and liver was significantly (p < 0.05) higher in the control than in the diabetic control group. Also, the TBARS levels in the RBC, liver, and muscle were significantly (p < 0.05) lower in the control than in the diabetic control group. However, GSH-Px and GSH activities in RBC, liver, and muscle were not statistically different between the control and the diabetic control groups. The vitamin E levels in plasma and liver (p < 0.01 and p < 0.001) and GSH-Px activities (p < 0.01, p < 0.001) in RBC were significantly higher in vitamin E, Se, and COM groups than in both control and diabetic control groups. However, the TBARS levels of RBC, muscle, and liver in vitamin E and Se administered groups were significantly (p < 0.05-p < 0.001, respectively) decreased. These results indicate that intraperitoneally administered vitamin E and Se have significant protective effects on the blood, liver, and muscle against oxidative damage of diabetes. The abstract of this study was presented in Physiological Research 48(Suppl. 1), S99 (1999).  相似文献   

11.
The present investigation reports the effect of rosmarinic acid (RA), an antioxidant on gentamicin sulphate (GS)-induced renal oxidative damage in rats. Rosmarinic acid (RA) has been demonstrated to have antioxidant, free radical scavenger and anti-inflamatory effects. Twenty-eight Sprague-Dawley rats were divided in to four equal groups as follows: group 1 (control), group 2 (GS 100 mg/kg/d ip), group 3 (GS 100 mg/kg/d ip + RA 50 mg/kg/d) and group 4 (GS 100 mg/kg/d ip + RA 100 mg/kg/d). Treatments were administrated once daily for 12 days. After 12 days 24 h urine was collected, blood was sampled and kidneys were removed. Serum and kidney tissue MDA assessed by thiobarbituric acid. Kidney paraffin sections (5 μm thickness) from the left kidney stained with periodic acid Schiff. Tubular necrosis was studied semiquantitatively and glomerular volume and volume density of proximal convoluted tubule (PCT) estimated stereologically. Kidney homogenize were prepared from right kidney. Serum creatinine, urea and kidney antioxidant enzymes activity were assessed by special kits. Data were compared by SPSS 13 software and Mann–Whitney test at p < 0.05. Co treatment of GS and RA (High dose) significantly decreased serum creatinine, MDA, urea, tubular necrosis (p < 0.05) and increase renal GSH, GPX, CAT, SOD, volume density of PCT and creatinine clearance significantly in comparison with GS group (p < 0.05). Treatment with RA (high dose) maintained serum creatinine, volume density of PCT, renal GSH, GPX, SOD and MDA as the same level as control group significantly (p < 0.05). In conclusion, RA alleviates GS nephrotoxicity via antioxidant activity, increase of renal GSH content and increase of renal antioxidant enzymes activity.  相似文献   

12.
The objective of the present study was to determine the effects of exercise and zinc deficiency on some elements in rats. Forty adult male Sprague–Dawley species male rats were allocated to four groups as follows: Group 1: control, Group 2: zinc-deficient, Group 3: exercise in which exercise group fed with a normal diet, Group 4: zinc-deficient exercise, exercise group fed by a zinc-deficient diet for 15 days. After the procedure ended, rats in groups 3 and 4 were exercised on the treadmill for 60 min at a speed of 6 m/min until the exhaustion. The rats were decapitated 48 h after exercise together with their controls, and blood samples were collected to determine copper (Cu), iron (Fe), magnesium (Mg), calcium (Ca), and phosphorus (P) levels. The highest Cu and Fe values in the serum were obtained in group 2 (p < 0.01). The levels of these elements in group 4 were lower than those in group 2 and higher than the levels in groups 1 and 3 (p < 0.01). Serum Mg levels did not differ significantly between groups. Group 4 had the lowest serum Ca and P levels (p < 0.01). These same parameters in Group 2 were higher than those in group 4 but significantly lower than those in groups 1 and 3 (p < 0.01). There was no significant difference between Ca and P levels of groups 1 and 3. The results of the study indicate that zinc deficiency adversely affects copper, iron, calcium, and phosphorus mechanisms and that these adverse effects much more marked after an effort exercise.  相似文献   

13.
Oxidative stress had a great importance in development of complications in diabetes. We investigated effects of melatonin and pentoxifylline in diabetic mice. Swiss albino mice (n = 40) were divided into four groups: alloxan‐induced diabetes mellitus (DM), alloxan‐induced diabetes with melatonin supplementation (DM + MLT), alloxan‐induced diabetes with pentoxifylline supplementation (DM + PTX), and control. Glutathione‐peroxidase (GSH‐Px) activity, malondialdehyde (MDA) and reduced glutathione (GSH) levels, and susceptibility to oxidation of erythrocytes were measured. MDA levels were higher than control in the DM and DM + MLT. The DM had more MDA level than the DM + MLT and DM + PTX (P < 0.001). After in vitro oxidation, MDA levels of all groups were found higher than the control. However, they were significantly lower than the DM in DM + PTX and DM + MLT (P < 0.001). Although GSH levels of the DM and DM + PTX were less than the control, GSH‐Px activity of the DM was lower than the control and DM + PTX (P < 0.05). We suggest that there is increased oxidative stress and compromised antioxidant status of erythrocytes in diabetes; however, it can be effectively prevented by melatonin or pentoxifylline supplementation.  相似文献   

14.
Severity of chronic obstructive pulmonary disease (COPD) exacerbation is associated with increased level of copper (Cu), zinc (Zn), and lipid peroxidation (malodialdehyde, MDA). The aim of this study was to investigate the levels of lipid peroxidation, Coenzyme Q10 (CoQ10), Zn, and Cu in the COPD exacerbations. Forty-five patients with COPD acute exacerbation and 45 healthy smokers as control group were used in the study. Forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were lower in exacerbation group than in control. C- reactive protein levels, white blood cell count, and sedimentation rate were significantly (p < 0.001) higher in patients than in control. CoQ10 level and Cu/Zn ratio was significantly (p < 0.05) lower in patients than in control, although MDA, Cu, and Zn levels were significantly (p < 0.05) higher in patients than in control. Negative correlations were found among MDA, Cu, Zn, FEV1, and FVC values in exacerbation and control subjects (p < 0.05). In conclusion, we observed that oxidative stress in the exacerbation period of COPD patients was increased. The decrease in CoQ10 level and Cu/Zn ratio and elevation in Cu and Zn levels observed in the patients probably result from the defense response of organism and are mediated by inflammatory-like substances.  相似文献   

15.
The present study aims to evaluate the effect of selenium supplementation on lipid peroxidation and lactate levels in rats subjected to acute swimming exercise. Thirty-two adult male rats of Sprague–Dawley type were divided into four groups. Group 1, control; group 2, selenium-supplemented; group 3, swimming control; group 4, selenium-supplemented swimming group. The animals in groups 2 and 4 were supplemented with (i.p.) 6 mg/kg/day sodium selenite for 4 weeks. The blood samples taken from the animals by decapitation method were analyzed in terms of erythrocyte-reduced glutathione (GSH), serum glutathione peroxidase (GPx) and superoxide dismutase (SOD), and plasma malondialdehyde (MDA) and lactate using the colorimetric method, and serum selenium values using an atomic emission device. In the study, the highest MDA and lactate values were found in group 3, while the highest GSH, GPx and SOD values were obtained in group 4 (p < 0,001). Group 2 had the highest and group 3 had the lowest selenium levels (p < 0,001). Results of the study indicate that the increase in free radical production and lactate levels due to acute swimming exercise in rats might be offset by selenium supplementation. Selenium supplementation may be important in that it supports the antioxidant system in physical activity.  相似文献   

16.
Thirty-four infants with acute bronchiolitis and 25 age-matched healthy controls were enrolled to investigate the possible relationship between serum malondialdehyde (MDA) and selenium (Se) levels and the occurrence and severity of acute bronchiolitis in children. Serum samples were taken for serum Se and MDA measurements, and the clinical score was assessed at admission. Blood was taken again from the children with bronchiolitis at 2 mo after discharge from the hospital. Mean serum MDA levels were significantly higher in patients with acute bronchiolitis than at the postbronchiolitis stage and the controls (4.2±2.5nmol./L, 1.4±0.8 nmol/L, and 0.7±0.2 nmol/L, respectively [p<0.001]). Infants with bronchiolitis had lower mean serum Se levels at the acute stage than after 2 mo (31.7±28.9μg/L versus 68.4±26.4 μg/L, p<0.05, respectively); both of which were significantly lower than the control group measurements (145.0±21.9 μg/L) (p<0.001). There was a negative correlation between serum MDA and Se levels in the patient group (=−0.85, p<0.001). The age of the patient, child's immunization status, parental smoking habit, and family crowding index were not correlated with serum Se, MDA levels, or clinical score at admission. In conclusion, increased MDA levels and impaired Se status demonstrate the presence of possible relationship of these parameters with pathogenesis of acute bronchiolitis, and antioxidant supplementation with Se might be thought to supply a beneficial effect against bronchiolitis.  相似文献   

17.
The levels of blood lipid peroxidation, glutathione peroxidase, reduced glutathione, and vitamin C were used to follow the level of oxidative damage caused by 2.45 GHz electromagnetic radiation in rats. The possible protective effects of selenium and L-carnitine were also tested and compared to untreated controls. Thirty male Wistar Albino rats were equally divided into five groups, namely Groups A1 and A2: controls and sham controls, respectively; Group B: EMR; Group C: EMR + selenium, Group D: EMR + L-carnitine. Groups B–D were exposed to 2.45 GHz electromagnetic radiation during 60 min/day for 28 days. The lipid peroxidation levels in plasma and erythrocytes were significantly higher in group B than in groups A1 and A2 (p?<?0.05), although the reduced glutathione and glutathione peroxidase values were slightly lower in erythrocytes of group B compared to groups A1 and A2. The plasma lipid peroxidation level in group A2 was significantly lower than in group B (p?<?0.05). Erythrocyte reduced glutathione levels (p?<?0.01) in group B; erythrocyte glutathione peroxidase activity in group A2 (p?<?0.05), group B (p?<?0.001), and group C (p?<?0.05) were found to be lower than in group D. In conclusion, 2.45 GHz electromagnetic radiation caused oxidative stress in blood of rat. L-carnitine seems to have protective effects on the 2.45-GHz-induced blood toxicity by inhibiting free radical supporting antioxidant redox system although selenium has no effect on the investigated values.  相似文献   

18.
Malondialdehyde (MDA), glutathione (GSH) content, total antioxidant capacity (T-AOC) levels, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione transferase (GST) activities were studied in serum, liver, and kidney of growing pigs after graded doses of cadmium administration in diets. One hundred ninety-two barrows (Duroc x Landrace x Yorkshire), with similar initial body weight 27.67±1.33 kg, were randomly allotted into 4 different treatments with 3 replications (16 pigs per replication). The treatments received the same basal diet added with 0, 0.5, 5.0, and 10.0 mg/kg cadmium (as CdCl2), respectively. The results showed pigs treated with 10 mg/kg cadmium significantly decreased average daily gain (ADG) (p<0.05) and increased feed/gain ratio (F/G) (p<0.05) compared to the control. In this treatment, the contents of MDA increased significantly (p<0.05), GSH concentrations, T-AOC levels, and the activities of SOD, GSH-PX, and GST decreased significantly (p<0.05). The results indicate 10 mg/kg cadmium could decrease pig antioxidant capacity after extended exposure and cadmium-induced increase lipid peroxidation might not be only the result of the possibility of lower level of GSH but could also be as a result of direct action of cadmium on peroxidation reaction.  相似文献   

19.
The aim of this work was to determine the protective effects of intraperitoneally administered vitamins C and E and selenium on the lipid peroxidation (MDA), glutathione peroxidase (GSH-Px), reduced glutathione (rGSH) activities in the lens of rats induced diabetic with streptozotocin (STZ). Lenses in the diabetic control group had a slightly higher mean level of MDA compared with lenses of the vitamin E and selenium groups, although the mean levels of MDA were significantly lower in control, combination, and vitamin C groups than in the diabetic control group (p < 0.05 andp < 0.01). However, MDA levels were significantly lower in vitamin C, vitamin E, and combination groups than in controls (p < 0.01). The GSH-Px activities of lenses were significantly higher in vitamin C-, vitamin E- and selenium-injected groups than that in the diabetic control group (p < 0.01), whereas, the activity of GSH-Px was significantly lower in the diabetic control group than in the control group. In addition, the rGSH content was seen to decrease only in the vitamin C group compared to both control and diabetic control groups (p < 0.05). In conclusion, the results from these experiments indicate that vitamins C and E and selenium can protect the lens against oxidative damage, but the effect of vitamin C appears to be much greater than that of vitamin E and selenium.  相似文献   

20.
Trace element content of different tissues might be altered by both age and exercise training. We aimed to determine the effects of a 1-yr swimming protocol (60 min/d, 5 day/wk) on tissue levels and the distribution of zinc (Zn), magnesium (Mg), and copper (Cu) in aging rats. Three groups were formed: sedentary and trained old groups and a young control group. Tissue Zn, Mg, and Cu concentrations were measured in the kidney, heart, liver, lungs, and gastrocnemius and soleus muscles. Kidney zinc concentration significantly decreased in the sedentary old group compared to the young control group (p<0.01) and was significantly higher in the trained old group compared to the sedentary old group (p<0.01), whereas Zn levels in the soleus muscle significantly increased in the sedentary old group in comparison to young controls (p<0.05). Tissue Mg concentrations remained unchanged. The sedentary old group exhibited a significant decrease in kidney Cu concentration compared to the young control group (p<0.01). Although kidney Cu levels also decreased in trained old rats in comparison to young controls (p<0.05), they were significantly higher than in sedentary old rats (p<0.01). The decrease in kidney Zn and Cu content as a result of aging was partly prevented by long-term swimming exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号