首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
G L?ngst  E J Bonte  D F Corona  P B Becker 《Cell》1999,97(7):843-852
The chromatin accessibility complex (CHRAC) belongs to the class of nucleosome remodeling factors that increase the accessibility of nucleosomal DNA in an ATP-dependent manner. We found that CHRAC induces movements of intact histone octamers to neighboring DNA segments without facilitating their displacement to competing DNA or histone chaperones in trans. CHRAC-induced energy-dependent nucleosome sliding may, in principle, explain nucleosome remodeling, nucleosome positioning, and nucleosome spacing reactions known to be catalyzed by CHRAC. The catalytic core of CHRAC, the ATPase ISWI, also mobilized nucleosomes at the expense of energy. However, the directionality of the CHRAC- and ISWI-induced nucleosome movements differed drastically, indicating that the geometry of the native complex modulates the activity of its catalytic core.  相似文献   

3.
Chromatin remodelling complexes containing the nucleosome-dependent ATPase ISWI were first isolated from Drosophila embryos (NURF, CHRAC and ACF). ISWI was the only common component reported in these complexes. Our purification of human CHRAC (HuCHRAC) shows that ISWI chromatin remodelling complexes can have a conserved subunit composition in completely different cell types, suggesting a conserved function of ISWI. We show that the human homologues of two novel putative histone-fold proteins in Drosophila CHRAC are present in HuCHRAC. The two human histone-fold proteins form a stable complex that binds naked DNA but not nucleosomes. HuCHRAC also contains human ACF1 (hACF1), the homologue of Acf1, a subunit of Drosophila ACF. The N-terminus of mouse ACF1 was reported as a heterochromatin-targeting domain. hACF1 is a member of a family of proteins with a related domain structure that all may target heterochromatin. We discuss a possible function for HuCHRAC in heterochromatin dynamics. HuCHRAC does not contain topoisomerase II, which was reported earlier as a subunit of Drosophila CHRAC.  相似文献   

4.
5.
The nucleosomal ATPase ISWI is the catalytic subunit of several protein complexes that either organize or perturb chromatin structure in vitro. This work reports the cloning and biochemical characterization of a Xenopus ISWI homolog. Surprisingly, whereas we find four complex forms of ISWI in egg extracts, we find no functional homolog of NURF. One of these complexes, xACF, consists of ISWI, Acf1, and a previously uncharacterized protein of 175 kDa. Like both ACF and CHRAC, this complex organizes randomly deposited histones into a regularly spaced array. The remaining three forms include two novel ISWI complexes distinct from known ISWI complexes plus a histone-dependent ATPase complex. This comprehensive biochemical characterization of ISWI underscores the evolutionary conservation of the ACF/CHRAC family.  相似文献   

6.
The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding   总被引:21,自引:0,他引:21  
Nucleosome remodelling complexes CHRAC and ACF contribute to chromatin dynamics by converting chemical energy into sliding of histone octamers on DNA. Their shared ATPase subunit ISWI binds DNA at the sites of entry into the nucleosome. A prevalent model assumes that DNA distortions catalysed by ISWI are converted into relocation of DNA relative to a histone octamer. HMGB1, one of the most abundant nuclear non-histone proteins, binds with preference to distorted DNA. We have now found that transient interaction of HMGB1 with nucleosomal linker DNA overlapping ISWI-binding sites enhances the ability of ACF to bind nucleosomal DNA and accelerates the sliding activity of limiting concentrations of remodelling factor. By contrast, an HMGB1 mutant with increased binding affinity was inhibitory. These observations are consistent with a role for HMGB1 as a DNA chaperone facilitating the rate-limiting DNA distortion during nucleosome remodelling.  相似文献   

7.
The chromatin accessibility complex (CHRAC) is an abundant, evolutionarily conserved nucleosome remodeling machinery able to catalyze histone octamer sliding on DNA. CHRAC differs from the related ACF complex by the presence of two subunits with molecular masses of 14 and 16 kDa, whose structure and function were not known. We determined the structure of Drosophila melanogaster CHRAC14-CHRAC16 by X-ray crystallography at 2.4-angstroms resolution and found that they dimerize via a variant histone fold in a typical handshake structure. In further analogy to histones, CHRAC14-16 contain unstructured N- and C-terminal tail domains that protrude from the handshake structure. A dimer of CHRAC14-16 can associate with the N terminus of ACF1, thereby completing CHRAC. Low-affinity interactions of CHRAC14-16 with DNA significantly improve the efficiency of nucleosome mobilization by limiting amounts of ACF. Deletion of the negatively charged C terminus of CHRAC16 enhances DNA binding 25-fold but leads to inhibition of nucleosome sliding, in striking analogy to the effect of the DNA chaperone HMGB1 on nucleosome sliding. The presence of a surface compatible with DNA interaction and the geometry of an H2A-H2B heterodimer may provide a transient acceptor site for DNA dislocated from the histone surface and therefore facilitate the nucleosome remodeling process.  相似文献   

8.
Targeted chromatin remodelling is essential for many nuclear processes, including the regulation of V(D)J recombination. ATP-dependent nucleosome remodelling complexes are important players in this process whose activity must be tightly regulated. We show here that histone acetylation regulates nucleosome remodelling complex activity to boost RAG cutting during the initiation of V(D)J recombination. RAG cutting requires nucleosome mobilization from recombination signal sequences. Histone acetylation does not stimulate nucleosome mobilization per se by CHRAC, ACF or their catalytic subunit, ISWI. Instead, we find the more open structure of acetylated chromatin regulates the ability of nucleosome remodelling complexes to access their nucleosome templates. We also find that bromodomain/acetylated histone tail interactions can contribute to this targeting at limited concentrations of remodelling complex. We therefore propose that the changes in higher order chromatin structure associated with histone acetylation contribute to the correct targeting of nucleosome remodelling complexes and this is a novel way in which histone acetylation can modulate remodelling complex activity.  相似文献   

9.
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.  相似文献   

10.
11.
The nucleosome remodelling ATPase ISWI resides in several distinct protein complexes whose subunit composition reflects their functional specialization. Association of ISWI with ACF1, the largest subunit of CHRAC and ACF complexes, improves the efficiency of ISWI-induced nucleosome mobilization by an order of magnitude and also modulates the reaction qualitatively. In order to understand the principle by which ACF1 improves the efficiency of ISWI, we mapped their mutual interaction requirements and generated a series of ACF complexes lacking conserved ACF1 domains. Deletion of the C-terminal PHD finger modules of ACF1 or their disruption by zinc chelation profoundly affected the nucleosome mobilization capability of associated ISWI in trans. Interactions of the PHD fingers with the central domains of core histones contribute significantly to the binding of ACF to the nucleosome substrate, suggesting a novel role for PHD modules as nucleosome interaction determinants. Connecting ACF to histones may be prerequisite for efficient conversion of ATP-dependent conformational changes of ISWI into translocation of DNA relative to the histones during nucleosome mobilization.  相似文献   

12.
The ATPase ISWI is the molecular motor of several nucleosome remodeling complexes including ACF. We analyzed the ACF-nucleosome interactions and determined the characteristics of ACF-dependent nucleosome remodeling. In contrast to ISWI, ACF interacts symmetrically with DNA entry sites of the nucleosome. Two-color fluorescence cross-correlation spectroscopy measurements show that ACF can bind four DNA duplexes simultaneously in a complex that contains two Acf1 and ISWI molecules. Using bead-bound nucleosomal substrates, nucleosome movement by mechanisms involving DNA twisting was excluded. Furthermore, an ACF-dependent local detachment of DNA from the nucleosome was demonstrated in a novel assay based on the preferred intercalation of ethidium bromide to free DNA. The findings suggest a loop recapture mechanism in which ACF introduces a DNA loop at the nucleosomal entry site that propagates over the histone octamer surface and leads to nucleosome repositioning.  相似文献   

13.
14.
15.
The ATPase ISWI is the catalytic core of several nucleosome remodeling complexes, which are able to alter histone–DNA interactions within nucleosomes such that the sliding of histone octamers on DNA is facilitated. Dynamic nucleosome repositioning may be involved in the assembly of chromatin with regularly spaced nucleosomes and accessible regulatory sequence elements. The mechanism that underlies nucleosome sliding is largely unresolved. We recently discovered that the N-terminal ‘tail’ of histone H4 is critical for nucleosome remodeling by ISWI. If deleted, nucleosomes are no longer recognized as substrates and do not stimulate the ATPase activity of ISWI. We show here that the H4 tail is part of a more complex recognition epitope which is destroyed by grafting the H4 N-terminus onto other histones. We mapped the H4 tail requirement to a hydrophilic patch consisting of the amino acids R17H18R19 localized at the base of the tail. These residues have been shown earlier to contact nucleosomal DNA, suggesting that ISWI recognizes an ‘epitope’ consisting of the DNA-bound H4 tail. Consistent with this hypothesis, the ISWI ATPase is stimulated by isolated H4 tail peptides ISWI only in the presence of DNA. Acetylation of the adjacent K12 and K16 residues impairs substrate recognition by ISWI.  相似文献   

16.
We have identified two classes of in vivo topoisomerase II cleavage sites in the Drosophila histone gene repeat. One class co-localizes with DNase I-hypersensitive regions and another novel class maps to a subset of consecutive nucleosome linker sites in the scaffold-associated region (SAR) of the histone gene loop. Prominent topoisomerase II cleavage is also observed in one of the linker regions of the two nucleosomes spanning satellite III, a centromeric SAR-like DNA sequence with a repeat length of 359 bp. At the sequence level, in vivo topoisomerase II cleavage is highly site specific. Comparison of 10 nucleosome linker sites defines an in vivo cleavage sequence whose major characteristic is a prominent GC-rich core. These GC-rich cleavage sites are flanked by extensive arrays of oligo(dA).oligo(dT) tracts characteristic of SAR sequences. Treatment of cells with distamycin selectively enhances cleavage at nucleosome linker sites of the SAR and satellite regions, suggesting that AT-rich sequences flanking cleavage sites may be involved in determining topoisomerase II activity in the cell. These observations provide evidence for the association of topoisomerase II with SARS in vivo.  相似文献   

17.
ATP‐dependent chromatin remodelers are multi‐subunit enzymes that catalyze nucleosome dynamics essential for chromosomal functions, and their inactivation or dysregulation can lead to numerous diseases, including neuro‐degenerative disorders and cancers. Each remodeler contains a conserved ATPase “motor” whose activity or targeting can be regulated by enzyme‐specific, accessory subunits. The human ISWI subfamily of remodelers has been defined as a group of more than six different enzyme complexes where one of two related ATPase subunits (Snf2L/SMARCA1 and Snf2H/SMARCA5) is paired with one of six different accessory subunits. In this issue of EMBO Reports, Oppikofer et al 1 find that the human ISWI subfamily is even more polymorphic in nature—every known accessory subunit can interact and function with both ATPase isoforms. This raises the complexity of the human ISWI subfamily to > 12 distinct enzymes, with the possibility for much higher levels of combinatorial assemblies, and has the potential to create enzymes with novel biochemical activities, as well as novel regulatory wiring through differential interactions with locus‐specific factors or histone modifications.  相似文献   

18.
The ATPase ISWI is a subunit of several distinct nucleosome remodeling complexes that increase the accessibility of DNA in chromatin. We found that the isolated ISWI protein itself was able to carry out nucleosome remodeling, nucleosome rearrangement, and chromatin assembly reactions. The ATPase activity of ISWI was stimulated by nucleosomes but not by free DNA or free histones, indicating that ISWI recognizes a specific structural feature of nucleosomes. Nucleosome remodeling, therefore, does not require a functional interaction between ISWI and the other subunits of ISWI complexes. The role of proteins associated with ISWI may be to regulate the activity of the remodeling engine or to define the physiological context within which a nucleosome remodeling reaction occurs.  相似文献   

19.
20.
The nucleosome remodeling factor NURF is a four-subunit, ISWI-containing chromatin remodeling complex that catalyzes nucleosome sliding in an ATP-dependent fashion, thereby modulating the accessibility of the DNA. To elucidate the mechanism of nucleosome sliding, we have investigated by hydroxyl radical footprinting how NURF makes initial contact with a nucleosome positioned at one end of a DNA fragment. NURF binds to two separate locations on the nucleosome: a continuous stretch of linker DNA up to the nucleosome entry site and a region asymmetrically surrounding the nucleosome dyad within the minor grooves, close to residues of the histone H4 tail that have been implicated in the activation of ISWI activity. Kinetic analysis reveals that nucleosome sliding occurs in apparent increments or steps of 10 bp. Furthermore, single nucleoside gaps as well as nicks about two helical turns before the dyad interfere with sliding, indicating that structural stress at this region assists the relative movement of DNA. These findings support a sliding model in which the position-specific tethering of NURF forces a translocating ISWI ATPase to pump a DNA distortion over the histone octamer, thereby changing the translational position of the nucleosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号