首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
2.
3.
4.
5.
6.
7.
Xing Y  Zhao X  Cai L 《Genomics》2011,98(5):359-366
Knowledge of the detailed organization of nucleosomes across genomes and the mechanisms of nucleosome positioning is critical for the understanding of gene regulation and expression. In the present work, the bias of 4-mer frequency in nucleosome and linker sequences of the S. cerevisiae genome was analyzed statistically. A novel position-correlation scoring function algorithm based on the bias of 4-mer frequency in linker sequences was presented to distinguish nucleosome vs linker sequences. Five-fold cross-validation demonstrated that the algorithm achieved a good performance with mean area under the receiver operator characteristics curve of 0.981. Next, the algorithm was used to predict nucleosome occupancy throughout the S. cerevisiae genome and relatively high correlation coefficients with experiment maps of nucleosome positioning were obtained. Besides, the distinct nucleosome depleted regions in the vicinity of regulatory sites were confirmed. The results suggest that intrinsic DNA sequence preferences in linker regions have a significant impact on the nucleosome occupancy.  相似文献   

8.
9.
10.
11.
12.
13.
HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the −1 nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic (dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.  相似文献   

14.
15.
16.
Despite its potential role in the evolution of complex phenotypes, the detection of negative (purifying) and positive selection on noncoding regulatory sequence has been elusive because of the inherent difficulty in predicting the functional consequences of mutations on noncoding sequence. Because the functioning of regulatory sequence depends upon both chromatin configuration and cis-regulatory factor binding, we investigate the idea that the functional conservation of regulatory regions should be associated with the conservation of sequence-dependent bending properties of DNA that determine its affinity for the nucleosome. Recent advances in the computational prediction of sequence-dependent affinity to nucleosomes provide an opportunity to distinguish between neutral and nonneutral evolution of fine-scale chromatin organization. Here, a statistical test is presented for detecting evolutionary conservation and/or adaptive evolution of nucleosome affinity from interspecies comparisons of DNA sequences. Local nucleosome affinities of homologous sequences were calculated using 2 recently published methods. A randomization test was applied to sites of mutation to evaluate the similarity of DNA-nucleosome affinity between several closely related species of Saccharomyces yeast. For most of the genes we analyzed, the conservation of local nucleosome affinity was detected at a few distinct locations in the upstream noncoding region. Our results also demonstrate that different patterns of chromatin evolution have shaped DNA-nucleosome interaction at the core promoters of TATA-containing and TATA-less genes and that elevated purifying selection has maintained low affinity for nucleosome in the core promoters of the latter group. Across the entire yeast genome, DNA-nucleosome interaction was also discovered to be significantly more conserved in TATA-less genes compared with TATA-containing genes.  相似文献   

17.
Nucleosomes are the fundamental repeating unit of chromatin and comprise the structural building blocks of the living eukaryotic genome. Micrococcal nuclease (MNase) has long been used to delineate nucleosomal organization. Microarray-based nucleosome mapping experiments in yeast chromatin have revealed regularly-spaced translational phasing of nucleosomes. These data have been used to train computational models of sequence-directed nuclesosome positioning, which have identified ubiquitous strong intrinsic nucleosome positioning signals. Here, we successfully apply this approach to nucleosome positioning experiments from human chromatin. The predictions made by the human-trained and yeast-trained models are strongly correlated, suggesting a shared mechanism for sequence-based determination of nucleosome occupancy. In addition, we observed striking complementarity between classifiers trained on experimental data from weakly versus heavily digested MNase samples. In the former case, the resulting model accurately identifies nucleosome-forming sequences; in the latter, the classifier excels at identifying nucleosome-free regions. Using this model we are able to identify several characteristics of nucleosome-forming and nucleosome-disfavoring sequences. First, by combining results from each classifier applied de novo across the human ENCODE regions, the classifier reveals distinct sequence composition and periodicity features of nucleosome-forming and nucleosome-disfavoring sequences. Short runs of dinucleotide repeat appear as a hallmark of nucleosome-disfavoring sequences, while nucleosome-forming sequences contain short periodic runs of GC base pairs. Second, we show that nucleosome phasing is most frequently predicted flanking nucleosome-free regions. The results suggest that the major mechanism of nucleosome positioning in vivo is boundary-event-driven and affirm the classical statistical positioning theory of nucleosome organization.  相似文献   

18.
To examine the role of nucleosome occupancy in the evolution of gene expression, we measured the genome-wide nucleosome profiles of four yeast species, three belonging to the Saccharomyces sensu stricto lineage and the more distantly related Candida glabrata. Nucleosomes and associated promoter elements at C. glabrata genes are typically shifted upstream by ~20 bp, compared to their orthologs from sensu stricto species. Nonetheless, all species display the same global organization features first described for Saccharomyces cerevisiae: a stereotypical nucleosome organization along genes and a division of promoters into those that contain or lack a pronounced nucleosome-depleted region (NDR), with the latter displaying a more dynamic pattern of gene expression. Despite this global similarity, however, nucleosome occupancy at specific genes diverged extensively between sensu stricto and C. glabrata orthologs (~50 million years). Orthologs with dynamic expression patterns tend to maintain their lack of NDR, but apart from that, sensu stricto and C. glabrata orthologs are nearly as similar in nucleosome occupancy patterns as nonorthologous genes. This extensive divergence in nucleosome occupancy contrasts with a conserved pattern of gene expression. Thus, while some evolutionary changes in nucleosome occupancy contribute to gene expression divergence, nucleosome occupancy often diverges extensively with apparently little impact on gene expression.  相似文献   

19.
转录因子对顺势调控元件的选择性结合,在哺乳动物细胞类型特异的基因表达中扮演重要的角色.这个过程受到染色质表观遗传状态的潜在调控.近期,染色质免疫共沉淀结合测序的研究提供了大量泛基因组水平的数据,阐述转录因子结合以及组蛋白修饰的位点,这为系统地研究转录因子和表观遗传标记之间的空间及调控关系提供了基础.该研究对公共数据库中的染色质免疫共沉淀结合测序数据进行整合分析,涉及5个细胞系中的85种转录因子、9种组蛋白修饰,目的是研究转录因子结合位点与组蛋白修饰模式以及基因表达在泛基因组水平上的关联.作者发现,不同转录因子与组蛋白修饰的共定位模式高度一致,并且组蛋白修饰在距离转录因子结合位点约500碱基对的位置富集.作者还发现,转录因子结合位点的占有率与活性组蛋白修饰的水平和双峰模式正相关,并且启动子区域组蛋白修饰的双峰和共定位模式和基因的高转录水平相一致.组蛋白修饰模式、转录因子结合位点的占有率与基因转录之间的关联暗示了细胞可能利用的基因表达调控机制.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号