首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Flaviviruses are a group of single-stranded, positive-sense RNA viruses causing ∼100 million infections per year. We have recently shown that flaviviruses produce a unique, small, noncoding RNA (∼0.5 kb) derived from the 3′ untranslated region (UTR) of the genomic RNA (gRNA), which is required for flavivirus-induced cytopathicity and pathogenicity (G. P. Pijlman et al., Cell Host Microbe, 4: 579-591, 2008). This RNA (subgenomic flavivirus RNA [sfRNA]) is a product of incomplete degradation of gRNA presumably by the cellular 5′-3′ exoribonuclease XRN1, which stalls on the rigid secondary structure stem-loop II (SL-II) located at the beginning of the 3′ UTR. Mutations or deletions of various secondary structures in the 3′ UTR resulted in the loss of full-length sfRNA (sfRNA1) and production of smaller and less abundant sfRNAs (sfRNA2 and sfRNA3). Here, we investigated in detail the importance of West Nile virus Kunjin (WNVKUN) 3′ UTR secondary structures as well as tertiary interactions for sfRNA formation. We show that secondary structures SL-IV and dumbbell 1 (DB1) downstream of SL-II are able to prevent further degradation of gRNA when the SL-II structure is deleted, leading to production of sfRNA2 and sfRNA3, respectively. We also show that a number of pseudoknot (PK) interactions, in particular PK1 stabilizing SL-II and PK3 stabilizing DB1, are required for protection of gRNA from nuclease degradation and production of sfRNA. Our results show that PK interactions play a vital role in the production of nuclease-resistant sfRNA, which is essential for viral cytopathicity in cells and pathogenicity in mice.Arthropod-borne flaviviruses such as West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) cause major outbreaks of potentially fatal disease and affect over 50 million people every year. The highly pathogenic North American strain of WNV (WNVNY99) has already claimed more than 1,000 lives with over 27,000 cases reported since its emergence in New York in 1999 and has raised global public health concerns (9). In contrast, the closely related Australian strain of WNV, WNVKUN, is highly attenuated and does not cause overt disease in humans and animals (11). WNVKUN has been used extensively as a model virus to study flavivirus replication and flavivirus-host interactions (13, 14, 16-19, 26, 38, 39).The ∼11-kb positive-stranded, capped WNV genomic RNA (gRNA) lacks a poly(A) tail and consists of 5′ and 3′ untranslated regions (UTRs) flanking one open reading frame, which encodes the viral proteins required for the viral life cycle (6, 15, 38, 39). Flavivirus UTRs are involved in translation and initiation of RNA replication and likely determine genome packaging (13, 14, 16, 21, 30, 39-41). Both the 5′ UTR (∼100 nucleotides [nt] in size) and the 3′ UTR (from ∼400 to 700 nucleotides) can form secondary and tertiary structures which are highly conserved among mosquito-borne flaviviruses (1, 8, 10, 14, 29, 32, 34). More specifically, the WNVKUN 3′ UTR consists of several conserved regions and secondary structures (Fig. (Fig.1A)1A) which were previously predicted or shown to exist in various flaviviruses by computational and chemical analyses, respectively (4, 10, 25, 26, 29-32). The 5′ end of the 3′ UTR starts with an AU-rich region which can form stem-loop structure I (SL-I) followed by SL-II, which we previously showed to be vitally important for subgenomic flavivirus RNA (sfRNA) production (26; see also below). SL-II is followed by a short, repeated conserved hairpin (RCS3) and SL-III (26). Further downstream of SL-III are the SL-IV and CS3 structures, which are remarkably similar to the preceding SL-II-RCS3 structure (26, 29). Further downstream of the SL-IV-CS3 structure are dumbbells 1 and 2 (DB1 and DB2, respectively) followed by a short SL and the 3′ SL (25, 26).Open in a separate windowFIG. 1.(A) Model of the WNVKUN 3′ UTR RNA structure. Highlighted in bold are the secondary structures investigated here. Dashed lines indicate putative PKs. The two sites of the putative PK interactions are shown in open boxes. sfRNA1, -2, -3, and -4 start sites are indicated by arrows. (R)CS, (repeated) conserved sequence; DB, dumbbell structure; PK, pseudoknot; SL, stem-loop. (B) Structural model of PK1 in SL-II with disruptive mutations. Nucleotide numbering is from the end of the 3′ UTR. The sfRNA1 start is indicated by an arrow. Nucleotides forming PK1 are on a gray background, and mutated nucleotides are white on a black background. (C) Sequences mutated in the different constructs. Nucleotides in the wt PK sequences used for mutations are bold and underlined. Introduced mutations are shown under the corresponding nucleotides in the wt sequence.The described structures have been investigated in some detail for their requirement in RNA replication and translation. Generally, a progressive negative effect on viral growth was shown with progressive deletions into the 3′-proximal region of the JEV 3′ UTR (41). However, only a relatively short region of the JEV 3′ UTR, consisting of the 3′-terminal 193 nt, was shown to be absolutely essential for gRNA replication (41). The minimal region for DENV replication was reported to be even shorter (23). Extensive analysis has shown that the most 3′-terminal, essential regions of the 3′ UTR include the cyclization sequence and 3′ SL, which are required for efficient RNA replication (2, 14, 16, 23, 35). As we showed, deletion of SL-II or SL-I did not overtly affect WNVKUN replication (26). However, deletion of CS2, RCS2, CS3, or RCS3 in WNV replicon RNA significantly reduced RNA replication but not translation (20), indicating that these elements facilitate but are not essential for RNA replication. In addition, it was shown that deletion of DB1 or DB2 resulted in a viable mutant virus that was reduced in growth efficiency, while deletion of both DB structures resulted in a nonviable mutant (23).In addition to the above-mentioned secondary stem-loop structures, computational and chemical analysis of the flavivirus 3′ UTR suggested the presence of 5 pseudoknot (PK) interactions (Fig. (Fig.1A)1A) (25, 26, 32). A PK is a structure formed upon base pairing of a single-stranded region of RNA in the loop of a hairpin to a stretch of complementary nucleotides elsewhere in the RNA chain (Fig. (Fig.1B).1B). These structures are referred to as hairpin type (H-type) PKs (3), and they usually stabilize secondary RNA structures. Typically, the final tertiary structure does not significantly alter the preformed secondary structure (5). In general, PK interactions have been shown to be important in biological processes such as initiation and/or elongation of translation, initiation of gRNA replication, and ribosomal frameshifting for a number of different viruses, including flaviviruses (reviewed in references 3 and 22). The first PK in the WNV 3′ UTR was predicted to form in SL-II, followed by a similar PK in SL-IV (26) (PK1 and PK2 in Fig. Fig.1A).1A). For the DENV, yellow fever virus (YFV), and JEV subgroup of flaviviruses, two PKs further downstream were predicted to form between DB1 and DB2 and corresponding single-stranded RNA regions located further downstream (25) (PK3 and PK4 in Fig. Fig.1A).1A). The formation of these structures is supported by covariations in the WNV RNAs. In addition, a PK was proposed to form between a short SL and the 3′ SL at the 3′ terminus of the viral genome (32) (PK5 in Fig. Fig.1A1A).Importantly, in addition to its role in viral replication and translation, we have shown that the WNVKUN 3′ UTR is important for the production of a small noncoding RNA fragment designated sfRNA (26). This short RNA fragment of ∼0.5 kb is derived from the 3′ UTR of the gRNA and exclusively produced by the members of the Flavivirus genus of the Flaviviridae family, where it is required for efficient viral replication, cytopathicity, and pathogenicity (26). Our studies suggested that sfRNA is a product of incomplete degradation of the gRNA presumably by the cellular 5′-3′ exoribonuclease XRN1, resulting from XRN1 stalling on the rigid secondary/tertiary structures located at the beginning of the 3′ UTR (26). XRN1 is an exoribonuclease which usually degrades mRNA from the 5′ to the 3′ end as part of cellular mRNA decay and turnover (33), and it was shown previously that XRN1 can be stalled by SL structures (28). Mutations or deletions of WNV 3′ UTR secondary structures resulted in the loss of full-length sfRNA (sfRNA1) and production of smaller and less abundant sfRNAs (sfRNA2 and sfRNA3) (26). In particular, SL-II (Fig. (Fig.1A)1A) was shown to be important for sfRNA1 production; deletion of this structure either alone or in conjunction with other structures located downstream of SL-II abolished sfRNA1 production, leading to the production of the smaller RNA fragments sfRNA2 and sfRNA3.Here, we extended our investigation and studied the importance of several predicted 3′ UTR secondary structures and PK interactions for the production of sfRNA. To further understand the generation mechanism of sfRNA and its requirements, we deleted or mutated a number of RNA structures in the WNVKUN 3′ UTR and investigated the size and amount of sfRNA generated from these mutant RNAs. The results show that not only SLs but also PK interactions play a vital role in stabilizing the 3′ UTR RNA and preventing complete degradation of viral gRNA to produce nuclease-resistant sfRNA, which is required for efficient virus replication and cytopathicity in cells and virulence in mice.  相似文献   

6.
7.
8.
The positive-strand RNA genome of Japanese encephalitis virus (JEV) terminates in a highly conserved 3′-noncoding region (3′NCR) of six domains (V, X, I, II-1, II-2, and III in the 5′-to-3′ direction). By manipulating the JEV genomic RNA, we have identified important roles for RNA elements present within the 574-nucleotide 3′NCR in viral replication. The two 3′-proximal domains (II-2 and III) were sufficient for RNA replication and virus production, whereas the remaining four (V, X, I, and II-1) were dispensable for RNA replication competence but required for maximal replication efficiency. Surprisingly, a lethal mutant lacking all of the 3′NCR except domain III regained viability through pseudoreversion by duplicating an 83-nucleotide sequence from the 3′-terminal region of the viral open reading frame. Also, two viable mutants displayed severe genetic instability; these two mutants rapidly developed 12 point mutations in domain II-2 in the mutant lacking domains V, X, I, and II-1 and showed the duplication of seven upstream sequences of various sizes at the junction between domains II-1 and II-2 in the mutant lacking domains V, X, and I. In all cases, the introduction of these spontaneous mutations led to an increase in RNA production that paralleled the level of protein accumulation and virus yield. Interestingly, the mutant lacking domains V, X, I, and II-1 was able to replicate in hamster BHK-21 and human neuroblastoma SH-SY5Y cells but not in mosquito C6/36 cells, indicating a cell type-specific restriction of its viral replication. Thus, our findings provide the basis for a detailed map of the 3′ cis-acting elements in JEV genomic RNA, which play an essential role in viral replication. They also provide experimental evidence for the function of 3′ direct repeat sequences and suggest possible mechanisms for the emergence of these sequences in the 3′NCR of JEV and perhaps in other flaviviruses.Japanese encephalitis virus (JEV), a mosquito-borne flavivirus of the family Flaviviridae, is serologically related to several significant human pathogens, including West Nile virus (WNV), Kunjin virus (KUNV), St. Louis encephalitis virus, and Murray Valley encephalitis virus. It is also phylogenetically close to other clinically important human pathogens, including yellow fever virus (YFV) and dengue virus (DENV) (11, 67). JEV is the leading cause of viral encephalitis in Southeast Asia, including China, Japan, Korea, the Philippines, Thailand, and India, and it has begun to expand throughout the Indonesian archipelago and as far as Australia (21, 43). Despite the fact that JEV is generally asymptomatic, ∼50,000 cases are reported annually, and the disease has a mortality rate of ∼25%, mainly in children and young adults (29, 63). Thus, the geographic expansion and clinical importance of JEV infection have drawn increasing attention from the international public health community (44, 71).Like other flaviviruses, JEV is a spherical enveloped virus (∼50 nm diameter) with a single-stranded positive-sense RNA genome that contains a 5′ cap structure but lacks a 3′ polyadenylated tail. Its genomic RNA of ∼11,000 nucleotides (nt) consists of a single long open reading frame (ORF) with two noncoding regions (NCRs) at the 5′ and 3′ ends (41, 84). The ORF is translated into an ∼3,400-amino acid polyprotein precursor, which is co- or posttranslationally cleaved by a cellular protease(s) or a viral protease complex into 10 mature proteins: (i) three structural proteins, the capsid (C), premembrane (prM; which is further processed into pr and M), and envelope (E) proteins; and (ii) seven nonstructural proteins, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5, as arranged in the genome (13, 41, 84). The nonstructural proteins, together with cellular factors, form a viral replicase complex that directs the replication of the genomic RNA in the cytoplasm of the host cell in association with perinuclear membranes (40, 74). For the synthesis of the genomic RNA to take place, this replicase complex must specifically recognize viral cis-acting RNA elements, defined by primary sequences or secondary/tertiary structures. These RNA elements are found in various locations within the genome but most frequently are located in the 5′- and 3′NCRs (23, 47). The identification and characterization of these cis-acting RNA elements is critical for understanding the complete cycle of JEV genome replication.The availability of the complete nucleotide sequence of YFV genomic RNA (57) has led to the identification of three major conserved elements in the 5′- and 3′-terminal regions of the genomic RNA that contain the short primary sequences and secondary structures required for flavivirus RNA replication. (i) Both ends of the genomic RNA terminate with the conserved dinucleotides 5′-AG and CU-3′ (9, 10, 32, 45, 57, 72, 73) in all flaviviruses except an insect cell fusing agent virus (12). Mutations substituting another nucleotide for one of these four nucleotides in KUNV or WNV replicon RNA are known to abolish or compromise RNA replication (35, 69). (ii) A 3′ stem-loop structure (3′SL) has been recognized in all flaviviruses within the ∼90-nt 3′-terminal region of the genomic RNA (9, 45, 57). The structural and functional importance of this 3′SL in RNA replication has been demonstrated in several flaviviruses (9, 18, 49, 50, 61, 70, 82, 86). (iii) The presence of short 5′ and 3′ cyclization sequences (5′CYC and 3′CYC, respectively) in all mosquito-borne flaviviruses suggests that flavivirus genomes can cyclize via 5′-3′ long-range base-pairing interaction, since the 3′CYC upstream of the 3′SL is complementary to the 5′CYC in the 5′ coding region of the C protein (30). The role of these CYC motifs in RNA replication has been well characterized via cell-based assays in many mosquito-borne flaviviruses, including KUNV (34), WNV (42), YFV (8, 14), and DENV (2, 22, 49), and in cell-free systems in the case of WNV (51) and DENV (1, 3, 79, 80). Other RNA elements that have recently been shown to be important for RNA replication in DENV and WNV include an additional pair of complementary sequences (designated 5′- and 3′UARs) that participate in genome cyclization (3, 4, 17, 87) and a 5′ stem-loop structure (designated 5′SLA) present within the 5′NCR that promotes RNA synthesis in association with the 3′NCR (22).In all flaviviruses, the 3′NCR of the genomic RNA is relatively long (∼400 to ∼800 nt), with an array of conserved primary sequences and secondary structures. Although significant progress has been made in identifying cis-acting elements within the 3′NCRs that are essential for RNA replication, most of these elements (i.e., the 3′CYC, 3′SL, and CU-3′) are limited to the ∼100-nt 3′-terminal region that is highly conserved in these viruses (see recent reviews in references 23 and 47). However, the functional importance of the remaining 5′-proximal region of the 3′NCR, which differs in sequence between the various serological groups, is poorly understood. In particular, comparative sequence analyses and genetic algorithm-based computer modeling have suggested that in addition to the well-studied ∼100-nt 3′-proximal region, the remaining ∼474-nt 5′-proximal region of the 574-nt JEV 3′NCR also contains several RNA elements that may play critical roles in the viral life cycle (52, 55, 56, 68). To date, however, experimental evidence for the functional importance of these potential RNA elements in JEV genomic RNA replication is lacking.In the present study, we have identified and characterized the 3′ cis-acting RNA elements within the JEV 3′NCR and shown that they play an essential and/or regulatory role in genomic RNA replication. In particular, we have constructed and functionally characterized genome-length JEV mutant cDNAs with a series of 5′-to-3′ or 3′-to-5′ progressive deletions within the 3′NCR. In addition to identifying particular mutations within this region that affect either the competence or efficiency of genomic RNA replication, we found that the serial passaging of these mutants in susceptible BHK-21 cells produced a large number of pseudorevertants bearing a wide variety of spontaneous point mutations and sequence duplications, some of which were capable of restoring the replication competence of the defective mutants or enhancing replication efficiency. In addition, we assessed the replication of these mutants in three different cell types (BHK-21, SH-SY5Y, and C6/36 cells). Collectively, these data offer new insights into the functional importance of 3′ cis-acting RNA elements that regulate the cell type-dependent replication of JEV and perhaps other closely related mosquito-borne flaviviruses. Our findings also provide experimental evidence for the emergence of functional 3′ direct repeat sequences that are duplicated from the coding region and 3′NCR of JEV genomic RNA.  相似文献   

9.
10.
11.
12.
13.
Andes virus (ANDV) causes a fatal hantavirus pulmonary syndrome (HPS) in humans and Syrian hamsters. Human αvβ3 integrins are receptors for several pathogenic hantaviruses, and the function of αvβ3 integrins on endothelial cells suggests a role for αvβ3 in hantavirus directed vascular permeability. We determined here that ANDV infection of human endothelial cells or Syrian hamster-derived BHK-21 cells was selectively inhibited by the high-affinity αvβ3 integrin ligand vitronectin and by antibodies to αvβ3 integrins. Further, antibodies to the β3 integrin PSI domain, as well as PSI domain polypeptides derived from human and Syrian hamster β3 subunits, but not murine or bovine β3, inhibited ANDV infection of both BHK-21 and human endothelial cells. These findings suggest that ANDV interacts with β3 subunits through PSI domain residues conserved in both Syrian hamster and human β3 integrins. Sequencing the Syrian hamster β3 integrin PSI domain revealed eight differences between Syrian hamster and human β3 integrins. Analysis of residues within the PSI domains of human, Syrian hamster, murine, and bovine β3 integrins identified unique proline substitutions at residues 32 and 33 of murine and bovine PSI domains that could determine ANDV recognition. Mutagenizing the human β3 PSI domain to contain the L33P substitution present in bovine β3 integrin abolished the ability of the PSI domain to inhibit ANDV infectivity. Conversely, mutagenizing either the bovine PSI domain, P33L, or the murine PSI domain, S32P, to the residue present human β3 permitted PSI mutants to inhibit ANDV infection. Similarly, CHO cells transfected with the full-length bovine β3 integrin containing the P33L mutation permitted infection by ANDV. These findings indicate that human and Syrian hamster αvβ3 integrins are key receptors for ANDV and that specific residues within the β3 integrin PSI domain are required for ANDV infection. Since L33P is a naturally occurring human β3 polymorphism, these findings further suggest the importance of specific β3 integrin residues in hantavirus infection. These findings rationalize determining the role of β3 integrins in hantavirus pathogenesis in the Syrian hamster model.Hantaviruses persistently infect specific small mammal hosts and are spread to humans by the inhalation of aerosolized excreted virus (41, 42). Hantaviruses predominantly infect endothelial cells and cause one of two vascular leak-based diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) (41). Hantavirus diseases are characterized by increased vascular permeability and acute thrombocytopenia in the absence of endothelial cell lysis (36, 41, 42, 54). In general, hantaviruses are not spread from person to person; however, the Andes hantavirus (ANDV) is an exception, since there are several reports of person-to-person transmission of ANDV infection (11, 37, 47, 52). ANDV is also unique in its ability to cause an HPS-like disease in Syrian hamsters and serves as the best-characterized hantavirus disease model with a long onset, symptoms, and pathogenesis nearly identical to that of HPS patients (20, 21, 50).Hantavirus infection of the endothelium alters endothelial cell barrier functions through direct and immunological responses (8, 14). Although the means by which hantaviruses cause pulmonary edema or hemorrhagic disease has been widely conjectured, the mechanisms by which hantaviruses elicit pathogenic human responses have yet to be defined. Hantaviruses coat the surface of infected VeroE6 cells days after infection (17), and this further suggests that dynamic hantavirus interactions with immune and endothelial cells are likely to contribute to viral pathogenesis. Hantavirus pathogenesis has been suggested to involve CD8+ T cells, tumor necrosis factor alpha or other cytokines, viremia, and the dysregulation of β3 integrins (7, 8, 13-16, 25-28, 32, 34, 38, 44-46). However, these responses have not been demonstrated to contribute to hantavirus pathogenesis, and in some cases there are conflicting data on their involvement (18, 25-28, 34, 35, 44, 45, 48). Immune complex deposition clearly contributes to HFRS patient disease and renal sequelae (4, 7), but it is unclear what triggers vascular permeability in HPS and HFRS diseases or why hemorrhage occurs in HFRS patients but not in HPS patients (8, 36, 54). Acute thrombocytopenia is common to both diseases, and platelet dysfunction resulting from defective platelet aggregation is reported in HFRS patients (7, 8).Pathogenic hantaviruses have in common their ability to interact with αIIbβ3 and αvβ3 integrins present on platelets and endothelial cells (13, 16), and β3 integrins have primary roles in regulating vascular integrity (1, 2, 6, 19, 22, 39, 40). Consistent with the presence of cell surface displayed virus (17), pathogenic hantaviruses uniquely block αvβ3 directed endothelial cell migration and enhance endothelial cell permeability for 3 to 5 days postinfection (14, 15). Pathogenic hantaviruses dysregulate β3 integrin functions by binding domains present at the apex of inactive β3 integrin conformers (38). αvβ3 forms a complex with vascular endothelial cell growth factor receptor 2 (VEGFR2) and normally regulates VEGF-directed endothelial cell permeability (2, 3, 10, 39, 40). However, both β3 integrin knockouts and hantavirus-infected endothelial cells result in increased VEGF-induced permeability, presumably by disrupting VEGFR2-β3 integrin complex formation (2, 14, 19, 39, 40). This suggests that at least one means for hantaviruses to increase vascular permeability occurs through interactions with β3 integrins that are required for normal platelet and endothelial cell functions.αvβ3 and αIIbβ3 integrins exist in two conformations: an active extended conformation where the ligand binding head domain is present at the apex of the heterodimer and a basal, inactive bent conformation where the globular head of the integrin is folded toward the cell membrane (30, 53, 55). Pathogenic HTN and NY-1 hantaviruses bind to the N-terminal plexin-semaphorin-integrin (PSI) domain of β3 integrin subunits and are selective for bent, inactive αvβ3 integrin conformers (38). Pathogenic hantavirus binding to inactive αvβ3 integrins is consistent with the selective inhibitory effect of hantaviruses on αvβ3 function and endothelial cell permeability (14, 15, 38). Although the mechanism of hantavirus induced vascular permeability has yet to be defined, there is a clear role for β3 integrin dysfunction in vascular permeability deficits (5, 6, 22, 29, 39, 40, 51) which make an understanding of hantavirus interactions with β3 subunits important for both entry and disease processes.The similarity between HPS disease in humans and Syrian hamsters (20, 21) suggests that pathogenic mechanisms of ANDV disease are likely to be coincident. Curiously, other hantaviruses (Sin Nombre virus [SNV] and Hantaan virus [HTNV]) are restricted in Syrian hamsters and fail to cause disease in this animal, even though they are prominent causes of human disease (50). Although the host range restriction for SNV and HTNV in Syrian hamsters has not been defined (33), the pathogenesis of ANDV in Syrian hamsters suggests that both human and Syrian hamster β3 integrins may similarly be used by ANDV and contribute to pathogenesis.We demonstrate here that ANDV infection of the Syrian hamster BHK-21 cell line and human endothelial cells is dependent on αvβ3 and inhibited by αvβ3 specific ligands and antibodies. Further, polypeptides expressing the N-terminal 53 residues of human and Syrian hamster β3 subunits block ANDV infection. This further indicates that ANDV interaction with the N-terminal 53 residues of both human and Syrian hamster β3 integrins is required for viral entry. We also demonstrate that ANDV recognition of human and Syrian hamster β3 integrins is determined by proline substitutions at residues 32/33 within the β3 integrin PSI domain. These results define unique ANDV interactions with human and Syrian hamster β3 integrins.  相似文献   

14.
Nonstructural protein 1 (nsp1), a 28-kDa protein in the bovine coronavirus (BCoV) and closely related mouse hepatitis coronavirus, is the first protein cleaved from the open reading frame 1 (ORF 1) polyprotein product of genome translation. Recently, a 30-nucleotide (nt) cis-replication stem-loop VI (SLVI) has been mapped at nt 101 to 130 within a 288-nt 5′-terminal segment of the 738-nt nsp1 cistron in a BCoV defective interfering (DI) RNA. Since a similar nsp1 coding region appears in all characterized groups 1 and 2 coronavirus DI RNAs and must be translated in cis for BCoV DI RNA replication, we hypothesized that nsp1 might regulate ORF 1 expression by binding this intra-nsp1 cistronic element. Here, we (i) establish by mutation analysis that the 72-nt intracistronic SLV immediately upstream of SLVI is also a DI RNA cis-replication signal, (ii) show by gel shift and UV-cross-linking analyses that cellular proteins of ∼60 and 100 kDa, but not viral proteins, bind SLV and SLVI, (SLV-VI) and (iii) demonstrate by gel shift analysis that nsp1 purified from Escherichia coli does not bind SLV-VI but does bind three 5′ untranslated region (UTR)- and one 3′ UTR-located cis-replication SLs. Notably, nsp1 specifically binds SLIII and its flanking sequences in the 5′ UTR with ∼2.5 μM affinity. Additionally, under conditions enabling expression of nsp1 from DI RNA-encoded subgenomic mRNA, DI RNA levels were greatly reduced, but there was only a slight transient reduction in viral RNA levels. These results together indicate that nsp1 is an RNA-binding protein that may function to regulate viral genome translation or replication but not by binding SLV-VI within its own coding region.Coronaviruses (CoVs) (59) cause primarily respiratory and gastroenteric diseases in birds and mammals (35, 71). In humans, they most commonly cause mild upper respiratory disease, but the recently discovered human CoVs (HCoVs), HCoV-NL63 (65), HCoV-HKU1 (73), and severe acute respiratory syndrome (SARS)-CoV (40) cause serious diseases in the upper and lower respiratory tracts. The SARS-CoV causes pneumonia with an accompanying high (∼10%) mortality rate (69). The ∼30-kb positive-strand CoV genome, the largest known among RNA viruses, is 5′ capped and 3′ polyadenylated and replicates in the cytoplasm (41). As with other characterized cytoplasmically replicating positive-strand RNA viruses (3), translation of the CoV genome is an early step in replication, and terminally located cis-acting RNA signals regulate translation and direct genome replication (41). How these happen mechanistically in CoVs is only beginning to be understood.In the highly studied group 2 mouse hepatitis coronavirus model (MHV A59 strain) and its close relative the bovine CoV (BCoV Mebus strain), five higher-order cis-replication signals have been identified in the 5′ and 3′ untranslated regions (UTRs). These include two in the 5′ UTR required for BCoV defective interfering (DI) RNA replication (Fig. (Fig.1A)1A) described as stem-loop III (SLIII) (50) and SLIV (51). Recently, the SLI region in BCoV (15) has been reanalyzed along with the homologous region in MHV and is now described as comprising SL1 and SL2 (Fig. (Fig.1A),1A), of which SL2 has been shown to be a cis-replication structure in the context of the MHV genome (38). In the 3′ UTR, two higher-order cis-replication structures have been identified that function in both DI RNA and the MHV genome. These are a 5′-proximal bulged SL and adjacent pseudoknot that potentially act together as a unit (23, 27, 28, 72) and a 3′-proximal octamer-associated bulged SL (39, 76) (Fig. (Fig.1A).1A). In addition, the 5′-terminal 65-nucleotide (nt) leader and the 3′-terminal poly(A) tail have been shown to be cis-replication signals for BCoV DI RNA (15, 60).Open in a separate windowFIG. 1.RNA structures in the BCoV genome tested for nsp1 binding. (A) BCoV 5′-terminal and 3′-terminal cis-acting RNA SL structures and flanking sequences identified for BCoV DI RNA replication. Regions of the genome are identified and SL cis-replication elements are identified schematically. Open boxes at nt 100 and 211 identify AUG start codons for the short upstream ORF and ORF 1, respectively. A closed box at nt 124 identifies the UAG stop codon for the short upstream ORF. Shown below the SL structures are the RNA segments used as 32P-labeled probes in the gel shift assays. BSL-PK, bulged SL-pseudoknot; 8mer-BSL, octamer-associated bulged SL. (B) Gel shift assays for probes when used with purified nsp1. Protein-RNA complexes identifying a shifted probe are labeled C.In CoVs, the 5′-proximal open reading frame (ORF) of ∼20 kb (called ORF 1) comprising the 5′ two-thirds of the genome is translated to overlapping polyproteins of ∼500 and ∼700 kDa, named pp1a and pp1ab (41). pp1ab is formed by a −1 ribosomal frameshift event at the ORF1a-ORF1b junction during translation (41). pp1a and pp1ab are proteolytically processed into potentially 16 nonstructural protein (nsp) end products or partial end products that are proposed to function together as the replicase (24). ORF 1a encodes nsps 1 to 11 which include papain-like proteases (nsp3), a 3C-like main protease (nsp5), membrane-anchoring proteins (nsps 4 and 6), a potential primase (nsp8), and RNA-binding proteins (nsp 7/nsp 8 complex and nsps 9 and 10) of imprecisely understood function (19, 20, 24, 25, 29, 43, 49, 77). ORF 1b encodes nsps 12 to 16 which function as an RNA-dependent RNA polymerase, a helicase, an exonuclease, an endonuclease, and a 2′-O-methyltransferase, respectively (6, 17, 24, 44). 3′ Proximal genomic ORFs encoding structural and accessory proteins are translated from a 3′-nested set of subgenomic mRNAs (sgmRNAs) (41).The N-terminal ORF 1a protein, nsp1, in the case of BCoV and MHV is also named p28 to identify the cleaved 28-kDa product (18). The precise role of nsp1 in virus replication has not been determined, but it is known that a sequence encoding an N-proximal nsp1 region in MHV (nt 255 to 369 in the 738-nt coding sequence) cannot be deleted from the genome without loss of productive infection (10). nsp1 also directly binds nsp7 and nsp10 (11) and by confocal microscopy is found associated with the membranous replication complex (10, 66) and virus assembly sites (11). The amino acid sequence of nsp1 is poorly conserved among CoVs, indicating that it may be a protein that interacts with cellular components (1, 58). In the absence of other viral proteins, MHV nsp1 induces general host mRNA degradation (79) and cell cycle arrest (16). The SARS-CoV nsp1 homolog, a 20-kDa protein, has been reported to cause mRNA degradation (30, 45), inhibition of host protein synthesis (30, 45, 70), inhibition of interferon signaling (70, 79), and cytokine dysregulation in lung cells (36).In this study, we examine the RNA-binding properties of BCoV nsp1 with the hypothesis that it is a potential regulator of translation or replication through its binding of SLVI mapping within its coding region. The rationale for this hypothesis stems from five observations. (i) In the BCoV DI RNA, the 5′-terminal one-third (approximately) of the nsp1 cistron and the entire nucleocapsid (N) protein cistron together comprise the single contiguous ORF in the DI RNA, and most of both coding regions appear required for DI RNA replication (15). (ii) The partial nsp1 cistron in the DI RNA must be translated in cis for DI RNA replication in helper virus-infected cells (12, 14). (iii) A similar part of the nsp1 cistron is found in the genome of all characterized naturally occurring group 1 and 2 CoV DI RNAs described to date (7, 8). (iv) A cis-acting SL named SLVI is found within the partial nsp1 cistron in the BCoV DI RNA (12). (v) Translation, which involves a 5′→3′ transit of ribosomes, and negative-strand synthesis, which involves a 3′→5′ transit of the RNA-dependent RNA polymerase, cannot simultaneously occur on the same molecule with a single ORF (4, 31). Thus, to enable genome replication an inhibition of translation at least early in infection for cytoplasmically replicating positive-strand RNA viruses is required (4, 5, 22, 32). Mechanisms of translation inhibition have been described for the Qβ viral genome, wherein the viral replicase autoregulates translation by binding an intracistronic cis-replication element (32), and for the polio virus genome, wherein genome circularization inhibits the early translation step (5, 22). Therefore, since nsp1 is synthesized early and also contains an intracistronic cis-replication element, we postulated that it is autoregulatory with RNA binding properties.Here, we do the following: (i) demonstrate by mutagenesis analysis that the 72-nt SLV, mapping immediately upstream of SLVI and within the partial nsp1 cistron, is also a cis-acting DI RNA replication element; (ii) show by gel shift and UV cross-linking analyses that there is likely no binding of an intracellular viral protein to SLV and SLVI (SLV-VI), but there is binding of unidentified cellular proteins of ∼60 and 100 kDa; and (iii) show by gel shift analysis that recombinant nsp1 purified from Escherichia coli does not bind SLV-VI but does bind SLs I to IV in the 5′ UTR and also the 3′-terminal bulged SL in the 3′ UTR, suggesting a possible regulatory role at these sites. Notably, specific binding with ∼2.5 μM affinity of nsp1 to SLIII and its flanking regions in the 5′ UTR was observed. Additionally, we show that, under conditions that would express nsp1 from a DI RNA-encoded sgmRNA, DI RNA levels are greatly reduced; viral RNA species levels, however, are reduced only slightly, and this reduction is transient. These results together indicate that nsp1 is an RNA-binding protein that may function as a regulator of viral translation or replication but not through its binding of cis-acting SLs V and VI within its own cistron.  相似文献   

15.
16.
A novel type II nucleoside 2′-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT) has been cloned and overexpressed in Escherichia coli. The recombinant LrNDT has been structural and functionally characterized. Sedimentation equilibrium analysis revealed a homohexameric molecule of 114 kDa. Circular dichroism studies have showed a secondary structure containing 55% α-helix, 10% β-strand, 16% β-sheet, and 19% random coil. LrNDT was thermostable with a melting temperature (Tm) of 64°C determined by fluorescence, circular dichroism, and differential scanning calorimetric studies. The enzyme showed high activity in a broad pH range (4.6 to 7.9) and was also very stable between pH 4 and 7.9. The optimal temperature for activity was 40°C. The recombinant LrNDT was able to synthesize natural and nonnatural nucleoside analogues, improving activities described in the literature, and remarkably, exhibited unexpected new arabinosyltransferase activity, which had not been described so far in this kind of enzyme. Furthermore, synthesis of new arabinonucleosides and 2′-fluorodeoxyribonucleosides was carried out.Nucleoside 2′-deoxyribosyltransferases (NDTs) (EC 2.4.2.6) catalyze the exchange between the purine or pyrimidine base of 2′-deoxyribonucleosides and free pyrimidine or purine bases (10, 25). These enzymes are specific for 2′-deoxyribonucleosides, regioselective (N-1 glycosylation in pyrimidine and N-9 in purine), and stereoselective (β-anomers are exclusively formed) (26) (Fig. (Fig.11).Open in a separate windowFIG. 1.2′-Deoxyribosyltransferase reaction catalyzed by NDTs. E, enzyme; B1 and B2, purine or pyrimidine.Deoxyribosyltransferases are classified into two classes depending on their substrate specificity: type I (NDT I), specific for purines (Pur ↔ Pur), and type II (NDT II), which catalyzes the transfer between purines and/or pyrimidines (Pur ↔ Pur, Pur ↔ Pyr, Pyr ↔ Pyr) (10, 25). These enzymes were initially described for lactobacilli (27, 28), and they are involved in the nucleoside salvage pathway for DNA synthesis (23), although this remains unclear in Lactococcus lactis subsp. lactis (36). NDTs have been also found in some species of Streptococcus (11), in parasitic unicellular eukaryotic organisms such as Crithidia luciliae (49, 50), in Trypanosoma brucei (6), and in Borrelia burgdorferi (33). NDTs from Lactobacillus helveticus and Lactobacillus leichmannii have been well studied (2, 25, 26, 28, 29), and their kinetic mechanisms as well as their catalytic and substrate binding sites have been characterized. The transferase reaction proceeds via a ping-pong bi-bi mechanism by formation of a covalent deoxyribosyl enzyme intermediate (3, 15, 16). Likewise, a glutamyl residue (Glu98) has been proven essential for activity (40, 41, 46).Enzymatic natural and nonnatural nucleoside synthesis in a one-pot reaction by NDTs provides an interesting alternative to traditional multistep chemical methods (13, 34). Indeed, chemical glycosylation includes several protection-deprotection steps and the use of chemical reagents and organic solvents that are expensive and environmentally harmful. Whereas previously described NDTs accept different nucleosides from azole derivatives (5, 39) to expanded-size purines (37, 45), they are highly specific for 2′-deoxyribose and do not accept ribonucleosides as donors, because the nucleophilic oxygen atom of the catalytic glutamic hydrogen bonds to the O-2′ atom of ribonucleosides and is, thus, inactive (1).Since several nonnatural nucleosides acting as antiviral or anticancer agents have modifications on their sugar moiety, research on new biocatalysts able to synthesize them as alternatives to chemical synthesis is still relevant.Here we report the cloning and expression of a putative ndt gene encoding a putative nucleoside 2′-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT), and we show that LrNDT is a type II NDT. Moreover, we have characterized the purified LrNDT structurally and functionally. Remarkably, LrNDT synthesizes natural and nonnatural nucleosides and bases with higher activities than those described in the literature. More interestingly, LrNDT is able to synthesize new nonnatural nucleosides: 2′-fluorodeoxyribonucleosides and arabinonucleosides. It is important to note that arabinosyltransferase activity has not been described in this kind of enzyme before, this being the first time that an NDT enzyme has shown arabinosyltransferase activity. These results are very interesting since LrNDTs, inactive for ribonucleosides, can recognize arabinonucleosides and 2′-fluorodeoxyribonucleosides as substrates.  相似文献   

17.
18.
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein targets HIV-1 precursor Gag (PrGag) proteins to assembly sites at plasma membrane (PM) sites that are enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. MA is myristoylated, which enhances membrane binding, and specifically binds PI(4,5)P2 through headgroup and 2′ acyl chain contacts. MA also binds nucleic acids, although the significance of this association with regard to the viral life cycle is unclear. We have devised a novel MA binding assay and used it to examine MA interactions with membranes and nucleic acids. Our results indicate that cholesterol increases the selectivity of MA for PI(4,5)P2-containing membranes, that PI(4,5)P2 binding tolerates 2′ acyl chain variation, and that the MA myristate enhances membrane binding efficiency but not selectivity. We also observed that soluble PI(4,5)P2 analogues do not compete effectively with PI(4,5)P2-containing liposomes for MA binding but surprisingly do increase nonspecific binding to liposomes. Finally, we have demonstrated that PI(4,5)P2-containing liposomes successfully outcompete nucleic acids for MA binding, whereas other liposomes do not. These results support a model in which RNA binding protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to PM assembly sites.The matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein serves several functions in the viral replication cycle. One essential function is to target PrGag proteins to their assembly sites at the plasma membranes (PMs) of infected cells (4, 5, 11, 16, 25, 29, 30, 33, 35, 39, 43-45, 47, 50, 54, 56, 57). A second function is the recruitment of the viral surface/transmembrane (SU/TM; also referred to as gp120/gp41) envelope (Env) protein complex into virions (14, 15, 18, 19, 27, 51-53). In addition to these activities, numerous reports have attributed nucleic acid binding properties to retroviral MAs (24, 38, 47), and with some viruses MA appears to serve in an encapsidation capacity (24). While no encapsidation role has been assigned for HIV-1 MA, experiments have shown that MA can substitute for the HIV-1 nucleocapsid (NC) protein assembly function (38) under some circumstances, presumably by virtue of its facility to concentrate PrGag proteins by binding them to RNAs (38).A number of structural studies have been conducted on HIV-1 MA (1, 22, 41, 42, 49). The protein is N terminally myristoylated and composed of six α helices, capped by a three-strand β sheet (7, 22, 41, 42, 49). The protein trimerizes in solution and in crystals (22, 28, 49) and recently has been shown to organize as hexamers of trimers on lipid membranes (1). The membrane binding face of HIV-1 MA is basic, fostering its ability to associate with negatively charged phospholipid headgroups (1, 22, 30, 41, 42, 49). The importance of such an interaction has been underscored in molecular genetic experiments which demonstrated that depletion of PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] reduced the assembly efficiency of HIV-1 (9, 36). Consistent with these observations, HIV-1 MA preferentially binds to soluble PI(4,5)P2 mimics through contacts with the headgroup and 2′ acyl chain, and binding promotes exposure of the MA myristate group and protein oligomerization (17, 21, 40-43, 46). However, PI(4,5)P2 is not the only lipid to demonstrate an association with HIV-1. In particular, HIV-1 appears to assemble at cholesterol-rich PM sites, cholesterol is highly enriched in HIV-1 virions, and cholesterol depletion reduces viral infectivity (2, 6, 8, 20, 23, 26, 31, 34, 37). The HIV-1 lipidome shows additional differences from the PM lipids of infected cells (2, 5, 8), suggesting that other lipids could affect PrGag-membrane binding or virus assembly site selection.To gain a better understanding of the functions and interactions of HIV-1 MA, we have examined the liposome and nucleic acid binding properties of purified myristoylated MA. Using liposome flotation assays and a novel liposome bead binding assay, we have demonstrated that the PI(4,5)P2 binding specificity of MA is enhanced by cholesterol, that protein myristoylation increases membrane binding efficiency but not specificity, and that 2′ acyl chain variation is compatible with PI(4,5)P2 binding. We also examined whether soluble PI(4,5)P2 mimics could compete with liposomes for MA binding. Surprisingly, we found that soluble mimics not only failed to compete with PI(4,5)P2 liposomes but also increased MA binding to membranes that do not contain acidic phospholipids. Finally, we have observed that while MA does bind nucleic acids, nucleic acid binding is outcompeted by PI(4,5)P2-containing liposomes. Our results suggest models for PrGag-membrane and RNA association and the HIV-1 assembly pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号