首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Peptide bond formation and peptidyl-tRNA hydrolysis are the two elementary chemical reactions of protein synthesis catalyzed by the ribosomal peptidyl transferase ribozyme. Due to the combined effort of structural and biochemical studies, details of the peptidyl transfer reaction have become increasingly clearer. However, significantly less is known about the molecular events that lead to peptidyl-tRNA hydrolysis at the termination phase of translation. Here we have applied a recently introduced experimental system, which allows the ribosomal peptidyl transferase center (PTC) to be chemically engineered by the introduction of non-natural nucleoside analogs. By this approach single functional group modifications are incorporated, thus allowing their functional contributions in the PTC to be unravelled with improved precision. We show that an intact ribose sugar at the 23S rRNA residue A2602 is crucial for efficient peptidyl-tRNA hydrolysis, while having no apparent functional relevance for transpeptidation. Despite the fact that all investigated active site residues are universally conserved, the removal of the complete nucleobase or the ribose 2′-hydroxyl at A2602, U2585, U2506, A2451 or C2063 has no or only marginal inhibitory effects on the overall rate of peptidyl-tRNA hydrolysis. These findings underscore the exceptional functional importance of the ribose moiety at A2602 for triggering peptide release.  相似文献   

2.
Polacek N  Swaney S  Shinabarger D  Mankin AS 《Biochemistry》2002,41(39):11602-11610
The key enzymatic activity of the ribosome is catalysis of peptide bond formation. This reaction is a target for many clinically important antibiotics. However, the molecular mechanisms of the peptidyl transfer reaction, the catalytic contribution of the ribosome, and the mechanisms of antibiotic action are still poorly understood. Here we describe a novel, simple, convenient, and sensitive method for monitoring peptidyl transferase activity (SPARK). In this method, the ribosomal peptidyl transferase forms a peptide bond between two ligands, one of which is tritiated whereas the other is biotin-tagged. Transpeptidation results in covalent attachment of the biotin moiety to a tritiated compound. The amount of the reaction product is then directly quantified using the scintillation proximity assay technology: binding of the tritiated radioligand to the commercially available streptavidin-coated beads causes excitation of the bead-embedded scintillant, resulting in detection of radioactivity. The reaction is readily inhibited by known antibiotics, inhibitors of peptide bond formation. The method we developed is amenable to simple automation which makes it useful for screening for new antibiotics. The method is useful for different types of ribosomal research. Using this method, we investigated the effect of mutations at a universally conserved nucleotide of the active site of 23S rRNA, A2602 (Escherichia coli numbering), on the peptidyl transferase activity of the ribosome. The activities of the in vitro reconstituted mutant subunits, though somewhat reduced, were comparable with those of the subunits assembled with the wild-type 23S rRNA, indicating that A2602 mutations do not abolish the ability of the ribosome to catalyze peptide bond formation. Similar results were obtained with double mutants carrying mutations at A2602 and another universally conserved nucleotide in the peptidyl transferase center, A2451. The obtained results agree with our previous conclusion that the ribosome accelerates peptide bond formation primarily through entropic rather than chemical catalysis.  相似文献   

3.
The main enzymatic reaction of the large ribosomal subunit is peptide bond formation. Ribosome crystallography showed that A2451 of 23S rRNA makes the closest approach to the attacking amino group of aminoacyl-tRNA. Mutations of A2451 had relatively small effects on transpeptidation and failed to unequivocally identify the crucial functional group(s). Here, we employed an in vitro reconstitution system for chemical engineering the peptidyl transferase center by introducing non-natural nucleosides at position A2451. This allowed us to investigate the peptidyl transfer reaction performed by a ribosome that contained a modified nucleoside at the active site. The main finding is that ribosomes carrying a 2′-deoxyribose at A2451 showed a compromised peptidyl transferase activity. In variance, adenine base modifications and even the removal of the entire nucleobase at A2451 had only little impact on peptide bond formation, as long as the 2′-hydroxyl was present. This implicates a functional or structural role of the 2′-hydroxyl group at A2451 for transpeptidation.  相似文献   

4.
Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA.  相似文献   

5.
Deciphering translation is of paramount importance for the understanding of many diseases, and antibiotics played a pivotal role in this endeavour. Blasticidin S (BlaS) targets translation by binding to the peptidyl transferase center of the large ribosomal subunit. Using biochemical, structural and cellular approaches, we show here that BlaS inhibits both translation elongation and termination in Mammalia. Bound to mammalian terminating ribosomes, BlaS distorts the 3′CCA tail of the P-site tRNA to a larger extent than previously reported for bacterial ribosomes, thus delaying both, peptide bond formation and peptidyl-tRNA hydrolysis. While BlaS does not inhibit stop codon recognition by the eukaryotic release factor 1 (eRF1), it interferes with eRF1’s accommodation into the peptidyl transferase center and subsequent peptide release. In human cells, BlaS inhibits nonsense-mediated mRNA decay and, at subinhibitory concentrations, modulates translation dynamics at premature termination codons leading to enhanced protein production.  相似文献   

6.
Youngman EM  Brunelle JL  Kochaniak AB  Green R 《Cell》2004,117(5):589-599
Peptide bond formation and peptide release are catalyzed in the active site of the large subunit of the ribosome where universally conserved nucleotides surround the CCA ends of the peptidyl- and aminoacyl-tRNA substrates. Here, we describe the use of an affinity-tagging system for the purification of mutant ribosomes and analysis of four universally conserved nucleotides in the innermost layer of the active site: A2451, U2506, U2585, and A2602. While pre-steady-state kinetic analysis of the peptidyl transferase activity of the mutant ribosomes reveals substantially reduced rates of peptide bond formation using the minimal substrate puromycin, their rates of peptide bond formation are unaffected when the substrates are intact aminoacyl-tRNAs. These mutant ribosomes do, however, display substantial defects in peptide release. These results reveal a view of the catalytic center in which an inner shell of conserved nucleotides is pivotal for peptide release, while an outer shell is responsible for promoting peptide bond formation.  相似文献   

7.
The peptidyl transferase (PT) center of the ribosome catalyzes two nucleophilic reactions, peptide bond formation between aminoacylated tRNA substrates and, together with release factor, peptide release. Structure and function of the PT center are modulated by binding of aminoacyl-tRNA or release factor, thus providing the basis for the specificity of catalysis. Another way by which the function of the PT center is controlled is signaling from the peptide exit tunnel. The SecM nascent peptide induces ribosome stalling, presumably by inhibition of peptide bond formation. Similarly, the release factor-induced hydrolytic activity of the PT center can be suppressed by the TnaC nascent peptide contained in the exit tunnel. Thus, local and long-range conformational rearrangements can lead to changes in the reaction specificity and catalytic activity of the PT center.  相似文献   

8.
Chemical modification of ribosomes with the histidine specific reagents, 1-fluoro-2,4-dinitrobenzene (FDNB) and diethylpyrocarbonate (DEP), result in a loss of activities in vitro of codon-dependent termination and peptide bond formation. The binding of release factor (RF) to the ribosome is unaffected but the hydrolysis of peptidyl-tRNA is inhibited. On reversal of the modification activity can be restored. Partial protection is provided by chloramphenicol indicating that one or more of the affected residues is at the peptidyl transferase centre. Codon-dependent termination on ribosomes lacking L11, which have a greater affinity for RF-2, is significantly less affected by the modification than on control ribosomes. Peptide bond formation is affected similarly on L11 lacking and normal ribosomes.  相似文献   

9.
The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring ribozymes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.  相似文献   

10.
ABSTRACT

The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring riboyzmes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.  相似文献   

11.
The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome.  相似文献   

12.
Catalysis of peptide bond formation in the peptidyl transferase center is a major enzymatic activity of the ribosome. Mutations limiting peptidyl transferase activity are mostly lethal. However, cellular processes triggered by peptidyl transferase deficiency in the bacterial cell are largely unknown. Here we report a study of the lethal G2061C mutant of Escherichia coli 23S ribosomal RNA (rRNA). The G2061C mutation completely impaired the puromycin reaction and abolished formation of the active firefly luciferase in an in vitro translation system, while poly(U)- and short synthetic mRNA-directed peptidyl transferase reaction with aminoacylated tRNAs in vitro was seemingly unaffected. Study of the cellular proteome upon expression of the 23S rRNA gene carrying the G2061C mutation compared to cells expressing wild-type 23S rRNA gene revealed substantial differences. Most of the observed effects in the mutant were associated with reduced expression of stress response proteins and particularly proteins associated with the ppGpp-mediated stringent response.  相似文献   

13.
The 3' terminus of tRNAs has the universally conserved bases C74C75A76 that interact with the ribosomal large subunit. In the ribosomal P site, bases C74 and C75 of tRNA, form Watson-Crick base-pairs with G2252 and G2251, respectively, present in the conserved P-loop of 23 S rRNA. Previous studies have suggested that the G2252-C74 base-pair is important for peptide bond formation. Using a pure population of mutant ribosomes, we analyzed the precise role of this base-pair in peptide bond formation, elongation factor G-dependent translocation, and peptide release by release factor 1. Surprisingly, our results show that the G2252-C74 base-pair is not essential for peptide bond formation with intact aminoacyl tRNAs as substrates and for EF-G catalyzed translocation. Interestingly, however, peptide release was reduced substantially when base-pair formation between G2252 and C74 of P site tRNA was disrupted, indicating that this conserved base-pair plays an important role in ester bond hydrolysis during translation termination.  相似文献   

14.
The peptidyl transfer reaction catalyzed by the ribosome is a sophisticated product of evolution. The molecular mechanism of peptide bond formation has not been fully elucidated although the essential involvement of 23S rRNA has been established. The universal CCA sequence at the 3'-end of tRNA plays an important role in this process, by interacting with specific nucleotides in 23S rRNA. However, reconstitution of peptidyl transferase activity by a naked 23S rRNA (without the help of any of the ribosomal proteins) has not been reported. To investigate the possible evolutionary development of the peptidyl transfer reaction, we tried to obtain peptide bond formation using a piece of tRNA--an aminoacyl-minihelix--mixed with sequence-specific oligonucleotides that contained puromycin. This system reproduced conceptually the equivalent interactions between the CCA trinucleotide of tRNA and 23S rRNA. Peptide bond formation was detected by gel electrophoresis, TLC and mass spectrometry. These results have implications for the evolution of the peptidyl transfer reaction in biological system.  相似文献   

15.
O W Odom  W D Picking  B Hardesty 《Biochemistry》1990,29(48):10734-10744
The results from experiments involving nonradiative energy transfer indicate that a fluorescent probe on the 5'-end of tRNA(Phe) moves more than 20 A towards probes on ribosomal protein L1 as a peptide bond is formed during the peptidyl transferase reaction on Escherichia coli ribosomes. The peptide itself moves no more than a few angstroms during peptide bond formation, as judged by the movement of fluorescent probes attached to the phenylalanine amino group of phenylalanyl-tRNA. Other results demonstrate that an analogue of peptidyl-tRNA, deacylated tRNA, and puromycin can be bound simultaneously to the same ribosome, indicating that there are three physically distinct sites to which tRNA is bound during the reaction steps by which peptides are elongated. The results appear to be consistent with the displacement model of peptide elongation.  相似文献   

16.
An analog of the peptidyl transferase inhibitor sparsomycin was a competitive inhibitor (Ki = 1.8 microM) of peptidyl-puromycin synthesis on E. coli polysomes. Preincubation of polysomes with the compound enhanced the degree of inhibition of peptide bond formation. A model for the involvement of a histidine residue in peptidyl transferase activity is presented as a result of our observations which include direct association of [3H] labelled analog with 70S ribosomes. The correct oxidation state of sulfur in the compound was necessary for the "preincubation effect" and entry of the compound into bacterial cells.  相似文献   

17.
The antibiotic lincomycin and twelve of its analogs were analyzed for their effects on three peptidyl transferase reactions, peptide bond formation, esterification, and hydrolysis of formylmethionyl-tRNA. Only lincomycin stimulated hydrolysis while having inhibitory effects on the other two reactions. The effects of the analogs were variable. Modifications at the carbon-7 position or loss of the carbonyl group caused dramatic alterations in lincomycin activity. Most of the analogs inhibited all three reactions indicating that interaction with the ribosome is not sufficient to elicit the unique specificity of action observed with lincomycin.  相似文献   

18.
Peptide bond formation is the main catalytic function of the ribosome. The mechanism of catalysis is presumed to be highly conserved in all organisms. We tested the conservation by comparing mechanistic features of the peptidyl transfer reaction on ribosomes from Escherichia coli and the Gram-positive bacterium Mycobacterium smegmatis. In both cases, the major contribution to catalysis was the lowering of the activation entropy. The rate of peptide bond formation was pH independent with the natural substrate, amino-acyl-tRNA, but was slowed down 200-fold with decreasing pH when puromycin was used as a substrate analog. Mutation of the conserved base A2451 of 23 S rRNA to U did not abolish the pH dependence of the reaction with puromycin in M. smegmatis, suggesting that A2451 did not confer the pH dependence. However, the A2451U mutation alters the structure of the peptidyl transferase center and changes the pattern of pH-dependent rearrangements, as probed by chemical modification of 23 S rRNA. A2451 seems to function as a pivot point in ordering the structure of the peptidyl transferase center rather than taking part in chemical catalysis.  相似文献   

19.
When bound to Escherichia coli ribosomes and irradiated with near-UV light, various derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at the 3' terminus form cross-links to 23 S rRNA and 50 S subunit proteins in a site-dependent manner. A and P site-bound tRNAs, whose 3' termini reside in the peptidyl transferase center, label primarily nucleotides U2506 and U2585 and protein L27. In contrast, E site-bound tRNA labels nucleotide C2422 and protein L33. The cross-linking patterns confirm the topographical separation of the peptidyl transferase center from the E site domain. The relative amounts of label incorporated into the universally conserved residues U2506 and U2585 depend on the occupancy of the A and P sites by different tRNA ligands and indicates that these nucleotides play a pivotal role in peptide transfer. In particular, the 3'-adenosine of the peptidyl-tRNA analogue, AcPhe-tRNA(Phe), remains in close contact with U2506 regardless of whether its anticodon is located in the A site or P site. Our findings, therefore, modify and extend the hybrid state model of tRNA-ribosome interaction. We show that the 3'-end of the deacylated tRNA that is formed after transpeptidation does not immediately progress to the E site but remains temporarily in the peptidyl transferase center. In addition, we demonstrate that the E site, defined by the labeling of nucleotide C2422 and protein L33, represents an intermediate state of binding that precedes the entry of deacylated tRNA into the F (final) site from which it dissociates into the cytoplasm.  相似文献   

20.
Yonath A 《Biological chemistry》2003,384(10-11):1411-1419
In the ribosome, the decoding and peptide bond formation sites are composed entirely of ribosomal RNA, thus confirming that the ribosome is a ribozyme. Precise alignment of the aminoacylated and peptidyl tRNA 3'-ends, which is the major enzymatic contribution of the ribosome, is dominated by remote interactions of the tRNA double helical acceptor stem with the distant rims of the peptidyl transferase center. An elaborate architecture and a sizable symmetry-related region within the otherwise asymmetric ribosome guide the A --> P passage of the tRNA 3'-end by a spiral rotatory motion, and ensures its outcome: stereochemistry suitable for peptide bond formation and geometry facilitating the entrance of newly formed proteins into their exit tunnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号