首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
放牧时,动物采食及其排泄物会影响植物的生长,但动物彩食及其排泄物的空间异质性可能会影响这咱效应.在位于我国北方典型农牧交错区的内蒙古多伦县,我们研究了模拟入牧斑块和施氧肥对植物生长的影响,实验采用模拟放牧采食斑块(观割半径分别0、10、20、40和8cm)和土壤施氮(分别为0、5、20Gn\m2)两种处理,植物地上部收获后分为绿体和立柯两部分,并分析其含氮量.结果表明,刈割降低了植物的生物量(40.5%),而施氮可增加生物量(57.8%)刈割交通规则植物生长的抑制作用在面积最水又施肥的斑块上表现更明显.土壤施氮可以促进杜物生长并且影响刈割效应.同时植物的绿-枯比阻碍施氮水平的增回而增回,因此氮会延迟植物的衰老.以上结果表明,刈割(模拟动物采食)斑块的大小会影响草原植物的生长,土壤施氮(模拟动物尿氮)可以提高草原生态系统的初级生产力,并影响刈割效应.  相似文献   

2.
放牧时,动物采食及其排泄物会影响植物的生长,但动物采食及其排泄物的空间异质性可能会影响这种效应。在位于我国北方典型农牧交错区的内蒙古多伦县,我们研究了模拟放牧斑块和施氮肥对植物生长的影响,实验采用模拟放牧采食斑块(刈割半径分别为0、10、20、40和80 cm)和土壤施氮(分别为0、5、10、20 g N/m2)两种处理,植物地上部收获后分为绿体和立枯两部分,并分析其含氮量。结果表明,刈割降低了植物的生物量(41.5%),而施氮可增加生物量(57.8%)。刈割对植物生长的抑制作用在面积最小又施肥的斑块上表现更明显。土壤施氮可以促进植物生长并且影响刈割效应。同时植物的绿-枯比随施氮水平的增加而增加,因此氮会延迟植物的衰老。以上结果表明,刈割(模拟动物采食)斑块的大小会影响草原植物的生长,土壤施氮(模拟动物尿氮)可以提高草原生态系统的初级生产力,并且影响刈割效应。  相似文献   

3.
Forage nitrogen concentrations, nitrogen yields, and in vitro digestibilities were assessed in shortgrass steppe that had been ungrazed, lightly, or heavily grazed for 50 years. Caged plots were defoliated in amounts based upon removals observed in naturallygrazed reference plots or not defoliated. This was done in a year of average precipitation and with a supplemental water treatment to simulate a wet year. In general, current-year defoliation had positive effects, and longterm grazing and supplemental water had negative effects, on forage nitrogen concentrations and digestibilities. However, defoliation interacted with long-term grazing in determning forage nitrogen concentrations, and with grazing and with watering in determining digestibilities. Nitrogen concentration and digestibility increased with defoliation in lightly, but not in heavily, grazed treatments. The dilution effect of supplemental water an digestibilities through increased plant growth was offset by defoliation. The negative effects of long-term grazing on forage quality were small, equally or more than compensated for by defoliation in a year of average precipitation, but more pronounced in the simulated wet year. Nitrogen yields and digestible forage production were usually increased by defoliation, but this depended upon grazing and watering treatments. Increased nitrogen and digestible forage yields and concentrations in response to defoliation were greater than the biomass response in lightly grazed grassland. For both nitrogen and digestibility, yields were greater in grazed than ungrazed treatments in the year of average precipitation, but less in the simulated wet year. Optimizing quantity and year-to-year stability of nitrogen and digestible forage yield may best be achieved with light grazing rather than no or heavy grazing. Clipping was conducted in a manner closely resembling the natural pattern and intensity of defoliation by the cattle, and confirms the potential for a positive feedback of increased forage quality with defoliation observed in pot experiments. Long-term heavy grazing can diminish this response. Quantily (aboveground primary production, ANPP), quantity of quality (digestible and N yields), and quality (concentrations) do not necessarily respond similarly in interactions between current-year defoliation, long-term grazing history, and level of water resource.  相似文献   

4.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

5.
In the Serengeti National Park, Tanzania, precipitation and soil nitrogen vary greatly between northwestern tallgrass areas and southeastern shortgrass areas, with the tallgrass having higher total precipitation and lower soil fertility. We used a model of grassland productivity, carbon/nitrogen cycling, and abiotic factors to test the hypothesis that tallgrass productivity is limited primarily by nitrogen availability while shortgrass productivity is limited by water. Under observed grazing intensities and ungrazed conditions, precipitation exerted primary control over grassland productivity for both regions, with differences in soil texture mediating soil water availability to the grasses. Mineral nitrogen availability interacted with water availability to influence productivity at precipitation levels 130% of the mean. Nitrogen mineralization and precipitation were positively related for each grassland type, however, nitrification varied both between grassland types and between grazed and ungrazed conditions. Combined mineralization and nitrification could not maintain soil mineral nitrogen levels in the face of plant nitrogen uptake stimulated by increased precipitation, thus providing the mechanism by which nitrogen becomes a secondary limiting factor for both grasslands. Model experiments indicated that the pattern of primary limitation by precipitation and secondary limitation by nitrogen was robust to model assumptions concerning ungulate deposition of urine and dung nitrogen to the soil.  相似文献   

6.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

7.
Abstract. The first objective of this paper was to assess the effects of grazing on seedling establishment of two species whose relative abundance at the adult stage is affected by grazing in a contrasting fashion. Second, we evaluated the relative importance of seed versus safe-site availability in explaining the effect of grazing on seedling establishment. We monitored seedling establishment on a grazed area, on two areas which had not been grazed for two and seven years, and on plots which had been experimentally defoliated. The species compared were Dan-thonia montevidensis, a native perennial grass which dominates both grazed and ungrazed communities, and Leontodón taraxacoides, an invading exotic rosette species from the Compositae family. Continuous grazing enhanced seedling establishment of both species through its effect on the availability of safe sites. Seed availability accounted for only one, but very important, grazing effect: the lack of response by L. taraxacoides to the defoliation in the seven-year old exclosure. Its seed supply was depleted by exclusion of grazing and, consequently, its short-term regeneration capacity after disturbance was lost.  相似文献   

8.
Herbivores influence spatial heterogeneity in soil resources and vegetation in ecosystems. Despite increasing recognition that spatial heterogeneity can drive species richness at different spatial scales, few studies have quantified the effect of grazing on spatial heterogeneity and species richness simultaneously. Here we document both these variables in a rabbit-grazed grassland. We measured mean values and spatial patterns of grazing intensity, rabbit droppings, plant height, plant biomass, soil water content, ammonia and nitrate in sites grazed by rabbits and in matched, ungrazed exclosures in a grassland in southern England. Plant species richness was recorded at spatial scales ranging between 0.0001 and 150 m(2). Grazing reduced plant height and plant biomass but increased levels of ammonia and nitrate in the soil. Spatial statistics revealed that rabbit-grazed sites consisted of a mixture of heavily grazed patches with low vegetation and nutrient-rich soils (lawns) surrounded by patches of high vegetation with nutrient-poor soils (tussocks). The mean patch size (range) in the grazed controls was 2.1 +/- 0.3 m for vegetation height, 3.8 +/- 1.8 m for soil water content and 2.8 +/- 0.9 m for ammonia. This is in line with the patch sizes of grazing (2.4 +/- 0.5 m) and dropping deposition (3.7 +/- 0.6 m) by rabbits. In contrast, patchiness in the ungrazed exclosures had a larger patch size and was not present for all variables. Rabbit grazing increased plant species richness at all spatial scales. Species richness was negatively correlated with plant height, but positively correlated to the coefficient of variation of plant height at all plot sizes. Species richness in large plots (<25 m(2)) was also correlated to patch size. This study indicates that the abundance of strong competitors and the nutrient availability in the soil, as well as the heterogeneity and spatial pattern of these factors may influence species richness, but the importance of these factors can differ across spatial scales.  相似文献   

9.
Bakker C  Blair JM  Knapp AK 《Oecologia》2003,137(3):385-391
Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in grazed grasslands were evaluated: (1) bison grazing enhances levels of resource (light and N) availability, enabling species that depend on higher resource availability to co-occur; (2) spatial heterogeneity in resource availability is enhanced by bison, enabling coexistence of a greater number of plant species; (3) increased species turnover (i.e. increased species colonization and establishment) in grazed grassland is associated with enhanced plant species richness. We measured availability and spatial heterogeneity in light, water and N, and calculated species turnover from long-term data in grazed and ungrazed sites in a North American tallgrass prairie. Both regression and path analyses were performed to evaluate the potential of the three hypothesized mechanisms to explain observed patterns of plant species richness under field conditions. Experimental grazing by bison increased plant species richness by 25% over an 8-year period. Neither heterogeneity nor absolute levels of soil water or available N were related to patterns of species richness in grazed and ungrazed sites. However, high spatial heterogeneity in light and higher rates of species turnover were both strongly related to increases in plant species richness in grazed areas. This suggests that creation of a mosaic of patches with high and low biomass (the primary determinant of light availability in mesic grasslands) and promotion of a dynamic species pool are the most important mechanisms by which grazers affect species richness in high productivity grasslands.  相似文献   

10.
Herbivory is one of the key drivers shaping plant community dynamics. Herbivores can strongly influence plant productivity directly through defoliation and the return of nutrients in the form of dung and urine, but also indirectly by reducing the abundance of neighbouring plants and inducing changes in soil processes. However, the relative importance of these processes is poorly understood. We, therefore, established a common garden experiment to study plant responses to defoliation, dung addition, moss cover, and the soil legacy of reindeer grazing. We used an arctic tundra grazed by reindeer as our study system, and Festuca ovina, a common grazing‐tolerant grass species as the model species. The soil legacy of reindeer grazing had the strongest effect on plants, and resulted in higher growth in soils originating from previously heavily‐grazed sites. Defoliation also had a strong effect and reduced shoot and root growth and nutrient uptake. Plants did not fully compensate for the tissue lost due to defoliation, even when nutrient availability was high. In contrast, defoliation enhanced plant nitrogen concentrations. Dung addition increased plant production, nitrogen concentrations and nutrient uptake, although the effect was fairly small. Mosses also had a positive effect on aboveground plant production as long as the plants were not defoliated. The presence of a thick moss layer reduced plant growth following defoliation. This study demonstrates that grasses, even though they suffer from defoliation, can tolerate high densities of herbivores when all aspects of herbivores on ecosystems are taken into account. Our results further show that the positive effect of herbivores on plant growth via changes in soil properties is essential for plants to cope with a high grazing pressure. The strong effect of the soil legacy of reindeer grazing reveals that herbivores can have long‐lasting effects on plant productivity and ecosystem functioning after grazing has ceased.  相似文献   

11.
PETER MAYHEW  DAVID HOUSTON 《Ibis》1999,141(1):80-84
Wigeon Anas penelope selectively grazed small patches of grassland near water. Their grazing activity affected the vegetation on which they fed, resulting in a 52% increase in leaf production over the winter and, at the end of winter, 4.75% higher protein levels compared with plants which were ungrazed. These responses of the plants were caused by defoliation, which stimulated growth, and not a fertiliser effect from the birds' droppings. We suggest that repeated feeding on the same areas is a deliberate strategy used by Wigeon which causes an improvement in their dietary quality in late winter and early spring.  相似文献   

12.
Abstract. Question: What are the grazing effects in the spatial organization and the internal structure of high and low cover patches from a two‐phase vegetation mosaic? Location: Patagonian steppe, Argentina. Methods: We mapped vegetation under three different grazing conditions: ungrazed, lightly grazed and heavily grazed. We analysed the spatial patterns of the dominant life forms. Also, in each patch type, we determined density, species composition, richness, diversity, size structure and dead biomass of grasses under different grazing conditions. Results: The vegetation was spatially organized in a two‐phase mosaic. High cover patches resulted from the association of grasses and shrubs and low cover patches were represented by scattered tussock grasses on bare ground. This spatial organization was not affected by grazing, but heavy grazing changed the grass species involved in high cover patches and reduced the density and cover of grasses in both patch types. Species richness and diversity in high cover patches decreased under grazing conditions, whereas in low cover patches it remained unchanged. Also, the decrease of palatable grasses was steeper in high cover patches than in low cover patches under grazing conditions. Conclusions: We suggest that although grazing promotes or inhibits particular species, it does not modify the mosaic structure of Patagonian steppe. The fact that the mosaic remained unchanged after 100 years of grazing suggests that grazing does not compromize population processes involved in maintaining patch structure, including seed dispersal, establishment or biotic interactions among life forms.  相似文献   

13.
Abstract. Grassland in the semiarid shortgrass steppe, subjected to 50 years of heavy, light, and no grazing intensity, was clipped to simulate the natural pattern and intensities of defoliation by cattle or not clipped. A level of water resource treatment was superimposed upon the grazing and clipping treatments. Half of the plots were supplemented with additional water to simulate a wet year and half were not supplemented in a year of average precipitation. All three treatments interactively determined above-ground production. Water treatment had the largest overall effect on above-ground production. Current-year defoliation had no direct significant effect on production, but mediated differences between both longterm grazing and watering treatments. Long-term ungrazed compared to grazed grassland was capable of responding to high amounts of precipitation, but was also most affected by low amounts of precipitation and, therefore, displayed greater variability in above-ground production and rain use efficiency. Only in the year of average precipitation, defoliation increased rain use efficiency in long-term lightly, but not heavily, grazed treatment. This suggests a water conservation mechanism of defoliation that is reduced with heavy grazing.  相似文献   

14.
Summary We studied factors which may shape giving-up decisions of wapiti grazing grassland patches (area where a wapiti initiates and terminates a feeding sequence) and feeding stations (area within a patch that a wapiti can reach without moving its forelegs). In grassland patches, cropping rate decreased after a critical period, whereas at feeding stations cropping rate increased with cumulative bites consumed. The number of feeding stations grazed, number of bites taken and grazing time did not dictate the termination of grazing in a patch. Wapiti gave up a patch only after the cropping rate at a feeding station dropped below the seasonal expectation during trials on lush pasture in May, but gave up after the cropping rate dropped below the seasonal expectation at two consecutive feeding stations in March/April and August when foraging conditions were less favourable. This confirmed a prediction of the marginal value theorem. Wapiti did not give up a feeding station according to bites taken, grazing time or cropping rate, but they left feeding stations when their lateral neck angle reached a critical point suggesting a biokinetic explanation. Leaving feeding stations when ungrazed forage can no longer be reached and patches when intake rate drops both appeared to be rules used by wapiti grazing grasslands of the boreal mixed wood forest.  相似文献   

15.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

16.
Grazing impacts the structure and functional properties of vegetation through floristic changes (i.e., long-term effect) and current defoliation (i.e., short-term effect). The aim of this study was to assess the relative importance of these two grazing effects on productivity (ANPP) and plant quality (C/N ratio) among plant patches submitted to a variety of grazing intensity for several years. Long-term grazing effect was measured by comparing ANPP and C/N ratio among plant patches with contrasting floristic composition. Short-term impact of grazing was measured by comparing ANPP and C/N in plant patches, with and without defoliation. Floristic contrasts led to a lower ANPP in highly grazed patches than in lightly grazed ones. This result may be related to the increasing proportion of grazing-tolerant and grazing-avoiding species with increasing grazing intensity. Vegetation C/N contrasts were recorded among grazed patches but did not linearly relate to grazing intensity. Short-term effect of current-year defoliation on ANPP was limited as vegetation compensated for biomass removal. No evidence for grazing-enhancement of ANPP was found even at moderate grazing intensity. Long-term floristic changes with grazing thus appeared to be the main driving factor of variations in ANPP. In contrast, C/N ratio showed no general and consistent variation along the grazing gradient but varied consistently depending on the community investigated, thus suggesting an effect of the species pool available.  相似文献   

17.
Two abundant tallgrass prairie forb species, Ambrosia psilostachya and Vernonia baldwinii, are commonly found intact in patches where the grasses have been selectively grazed by bison. Microclimatic patterns and physiological responses of these forbs were measured in grazed and ungrazed patches. These experiments demonstrated that bison herbivory indirectly enhanced water availability and productivity of forbs growing in grazed patches. This was due primarily to the reduction in transpiring grass leaf area in grazed patches and an increase in light availability. In grazed patches, incident light at forb mid-canopy height was 53% greater than ungrazed sites at midseason and soil temperatures were always warmer (e.g., 10°C at 5 cm), perhaps enabling forbs to initiate growth earlier in the spring. Enhanced leaf xylem pressure potential and stomatal conductance in plants in grazed areas were most evident when water availability was low (i.e., late in the growing season and over short-term dry periods characteristic of the tallgrass prairie environment). Relative to individuals in ungrazed areas, end-of-season biomass of A. psilostachya was 40% greater and reproductive biomass and head number of V. baldwinii was 45% and 40% greater, respectively, in plants in grazed patches. A favorable growing environment maintained in grazed patches during periods of water limitation enhances carbon gain in forbs leading to increased biomass and potential fitness.  相似文献   

18.
Summary When grassland is grazed by livestock, the structure of the sward changes in a patchy manner. With continuous selective grazing there is a mosaic of short and tall patches but as grazing intensifies the area of short‐grazed patch increases until the paddock has a lawn‐like appearance. This mosaic of patch structures can be stable, as short patches tend to attract repeated grazing and tall patches tend to be avoided. Because heavy grazing can detrimentally affect soil and water functions in grassland (ultimately resulting in erosion), we aimed to assess how well the physical structure of the sward reflects soil surface condition. We described four grassland patch structures that were assumed to reflect different levels of present grazing, and to some extent, past grazing pressure. We assessed patch structure and two other grass‐related variables (basal area of a ‘large tussock’ functional group and basal area of all perennial grass) as possible indicators of soil surface condition. Three indices of condition were measured in the field. The infiltration and nutrient cycling index declined progressively across patch structures, consistent with increasing grazing pressure. The stability index was found to be reduced only for the most heavily grazed grass structure (short patches). We found the ‘large tussock’ grass functional group to be a more sensitive indicator of soil surface condition than the group consisting of all perennial grasses. We found no evidence of sudden soil surface condition decline beyond a certain level of grass basal area, that is, there was no evidence of thresholds, rather, incremental loss of condition accompanied grass decline. We are thus not able to further refine an earlier proposed management recommendation ‘Graze conservatively to maintain dominance of large and medium tussock grasses over 60–70% of the native pastures’, except to suggest the use of short patches as a more practical indicator, rephrasing the recommendation as ‘Graze conservatively to allow a maximum of 30% short‐grazed patches in native pastures’.  相似文献   

19.
Large herbivores may alter carbon and nutrient cycling in soil by changing above- and below-ground litter decomposition dynamics. Grazing effects may reflect changes in plant allocation patterns, and thus litter quality, or the site conditions for decomposition, but the relative roles of these broad mechanisms have rarely been tested. We examined plant and soil mediated effects of grazing history on litter mass loss and nutrient release in two grazing-tolerant grasses, Lolium multiflorum and Paspalum dilatatum, in a humid pampa grassland, Argentina. Shoot and root litters produced in a common garden by conspecific plants collected from grazed and ungrazed sites were incubated under both grazing conditions. We found that grazing history effects on litter decomposition were stronger for shoot than for root material. Root mass loss was neither affected by litter origin nor incubation site, although roots from the grazed origin immobilised more nutrients. Plants from the grazed site produced shoots with higher cell soluble contents and lower lignin:N ratios. Grazing effects mediated by shoot litter origin depended on the species, and were less apparent than incubation site effects. Lolium shoots from the grazed site decomposed and released nutrients faster, whereas Paspalum shoots from the grazed site retained more nutrient than their respective counterparts from the ungrazed site. Such divergent, species-specific dynamics did not translate into consistent differences in soil mineral N beneath decomposing litters. Indeed, shoot mass loss and nutrient release were generally faster in the grazed grassland, where soil N availability was higher. Our results show that grazing influenced nutrient cycling by modifying litter breakdown within species as well as the soil environment for decomposition. They also indicate that grazing effects on decomposition are likely to involve aerial litter pools rather than the more recalcitrant root compartment.  相似文献   

20.
Abstract. The response of geophyte species diversity and frequency of individual geophyte species to cattle grazing was measured at 68 site pairs along fences separating ungrazed from grazed grassland and woodland on different geological formations in northern Israel. Over all site pairs, geophyte species density per 4 m2 was significantly greater in grazed (2.37) than in protected (1.96) sites of the same site pair. There was considerable variation between site pairs in the magnitude and in the direction of the grazing effect. Part of this variation could be explained by differences in site altitude and in geological formation. The positive effect of grazing on geophyte diversity was lower in sites with low productivity. Of 22 geophyte taxa for which sufficient data were available, nine indicated greater frequency in grazed sites compared to only two in ungrazed sites. In 11 other taxa the response was not consistent. A positive response to grazing was most common in geophytes with narrow leaves of the Iridaceae, Liliaceae and allied families. Conservation of the entire geophyte flora in Mediterranean vegetation requires livestock grazing at moderate to high intensities in parts of the area of each community, and light or no grazing in other parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号