首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
1. The polyprenylphenol and quinone complements of the non-photosynthetic Gram-negative bacteria, Pseudomonas ovalis Chester, Proteus mirabilis and `Vibrio O1'' (Moraxella sp.), were investigated. 2. Ps. ovalis Chester and Prot. mirabilis were shown to contain 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols, 6-methoxy-2-polyprenyl-1,4-benzoquinones, 5-demethoxyubiquinones, ubiquinones, an unidentified 1,4-benzoquinone [2-polyprenyl-1,4-benzoquinone (?)] and `epoxyubiquinones''. `Vibrio O1'' was shown to contain only 5-demethoxyubiquinones, ubiquinones and `epoxyubiquinones''. 3. It was established that in Ps. ovalis Chester 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols, 6-methoxy-2-polyprenyl-1,4-benzoquinones, 5-demethoxyubiquinones and 2-polyprenyl-1,4-benzoquinones (?) are precursors of ubiquinones. 4. Intracellular distribution studies showed that in Ps. ovalis Chester ubiquinone and its prenylated precursors are localized entirely on the protoplast membrane. 5. Investigations into the oxygen requirements for ubiquinone biosynthesis by Ps. ovalis Chester showed that the organism could not convert p-hydroxybenzoic acid into ubiquinone in the absence of oxygen, although it could convert a limited amount into 2-polyprenylphenols. 6. Attempts were made to prepare cell-free preparations capable of synthesizing ubiquinone. Purified protoplast membranes of Ps. ovalis Chester were found to be incapable of carrying out this synthesis, even when supplemented with cytoplasm. With crushed-cell preparations of Ps. ovalis Chester, organism PC4 (Achromobacter sp.) and Escherichia coli, synthesis was observed, although this was attributable in part to a small number of intact cells present in the preparations.  相似文献   

2.
1. Ten moulds and two yeasts were analysed for the presence of 2-polyprenylphenols, 2-polyprenyl(H(2))phenols, 6-methoxy-2-polyprenylphenols, 6-methoxy-2-polyprenyl(H(2))phenols, 6-methoxy-2-polyprenyl-1,4-benzoquinones, 6-methoxy-2-polyprenyl(H(2))-1,4-benzoquinones, 5-demethoxyubiquinones, 5-demethoxyubiquinones(H(2)), ubiquinones and ubiquinones(H(2)). 2. The organisms were found to be of three types: (a) those that contained only ubiquinones (Aspergillus fumigatus and Penicillium brevi-compactum) or ubiquinones(H(2)) (Alternaria solani, Claviceps purpurae and Penicillium stipitatum); (b) those that contained 5-demethoxyubiquinones and ubiquinones (Agaricus campestris, Aspergillus niger, Phycomyces blakesleeanus, Rhodotorula glutinis and Saccharomyces cerevisiae) or 5-demethoxyubiquinones(H(2)) and ubiquinones(H(2)) (Aspergillus quadrilineatus and Neurospora crassa); (c) one that contained 2-decaprenyl(H(2))phenol, 6-methoxy-2-decaprenyl(H(2))phenol, 6-methoxy-2-decaprenyl(X-H(2))-1,4-benzoquinone, 5-demethoxyubiquinone-10(X-H(2)) and ubiquinones(H(2)) (Aspergillus flavus). 3. Studies were made on the biosynthesis of ubiquinones and ubiquinones(H(2)) by Asp. flavus, Phyc. blakesleeanus and S. cerevisiae. These provided evidence that in Phyc. blakesleeanus 5-demethoxyubiquinone-9 is a precursor of ubiquinone-9 and that in S. cerevisiae 5-demethoxyubiquinone-6 is a precursor of ubiquinone-6. In addition they yielded results that may be interpreted as providing evidence that in Asp. flavus 6-methoxy-2-decaprenyl(X-H(2))-1,4-benzoquinone and 5-demethoxyubiquinone-10(X-H(2)) are precursors of ubiquinone-10(X-H(2)).  相似文献   

3.
Several azido-ubiquinones have been synthesized for the study of protein-ubiquinone interaction in succinate-cytochrome c reductase. In the absence of light, azido-ubiquinones are partially effective in restoring enzymatic activity to ubiquinone- and phospholipid-depleted reductase and the binding of azido-ubiquinones can be partially reversed by 5-(10-bromodecyl)-ubiquinone. When 2-azido-3-methoxy-5-geranyl-6-methyl-1,4-benzoquinone reactivated reductase is illuminated with long wavelength UV light, a complete and irreversible inhibition is observed. This specific photo-inactivation, exerted only by 2-azido-3-methoxy-5-geranyl-6-methyl-1,4-benzoquinone, and not by other azido-ubiquinone derivatives, is evidence for the existence of a specific benzoquinone ring binding site in the enzyme.  相似文献   

4.
The ubiquinone precursors, 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone, were isolated from ubiquinone-deficient mutants of Escherichia coli and identified by nuclear magnetic resonance and mass spectrometry. Mutants accumulating 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone were shown to carry mutations in genes designated ubiE and ubiF, respectively. The ubiE gene was shown to be cotransducible with metE (minute 75) and close to two other genes concerned with ubiquinone biosynthesis. The ubiF gene was located close to minute 16 by cotransduction with the lip, gltA, and entA genes.  相似文献   

5.
S Rea 《FEBS letters》2001,509(3):389-394
Strains of Caenorhabditis elegans mutant for clk-1 exhibit a 20-40% increase in mean lifespan. clk-1 encodes a mitochondrial protein thought to be either an enzyme or regulatory molecule acting within the ubiquinone biosynthesis pathway. Here CLK-1 is shown to be related to the ubiquinol oxidase, alternative oxidase, and belong to the functionally diverse di-iron-carboxylate protein family which includes bacterioferritin and methane mono-oxygenase. Construction and analysis of a homology model indicates CLK-1 is a 2-polyprenyl-3-methyl-6-methoxy-1,4-benzoquinone mono-oxygenase as originally predicted. Analysis of known CLK-1/Coq7p mutations also supports this notion. These findings raise the possibility of developing CLK-1-specific inhibitors to test for lifespan extension in higher organisms.  相似文献   

6.
Radioactive [3H]5-demethoxyubiquinone-9 (3-methyl-2-nonaprenyl-6-methoxy-1,4-benzo-quione), an intermediate in the biosynthesis of ubiquione-9 by selected microorganisms and by the rat, has been synthesized. 4-Methyl-3-nitrophenol was converted to the corresponding anisole with [3H]methyl iodide and the anisole was then reduced to the corresponding aniline. Oxidation of 6-methyl-3-methoxy [3H]aniline with chromic acid gave the corresponding 1,4-benzo-quinone which was reduced and alkylated with solanesol in the presence of boron trifluorideetherate. Oxidation with ferric chloride gave two isomers, 5-demethoxyubiquinone-9 and 6-methyl-2-nonaprenyl-3-methoxy-1,4-benzoquinone which were separated by thin layer chromatography. The [3H]methoxyl-5-demethoxyubiquinone-9 prepared had a specific radioactivity of 100 mCi/mmole.  相似文献   

7.
Penicillic acid-negative mutants were obtained from a color mutant derived from Penicillium cyclopium NRRL 1888 through N-methyl-N'-nitro-N-nitrosoguanidine treatment. One mutant (SK2N6) accumulated 6-methyl-1,2,4-benzenetriol, which was not previously known to be a metabolite of P. cyclopium, in addition to orsellinic acid and orcinol. The radioactivity of [1-14C]acetic acid was rapidly incorporated into 6-methyl-1,2,4-benzenetriol in a culture of P. cyclopium SK2N6. Moreover, the radioactivity of [14C]6-methyl-1,2,4-benzenetriol was efficiently incorporated into penicillic acid in a culture of P. cyclopium NRRL 1888. These data indicate that 6-methyl-1,2,4-benzenetriol is a precursor for penicillic acid biosynthesis. The results on the addition of 1,4-dihydroxy-6-methoxy-2-methylbenzene, 6-methoxy-2-methylbenzoquinone(1,4), and 1-O-methylorcinol to a culture of P. cyclopium SK2N6 indicated that only the former two compounds are converted to penicillic acid. Thus, a new portion of the penicillic acid biosynthetic pathway is proposed.  相似文献   

8.
Penicillic acid-negative mutants were obtained from a color mutant derived from Penicillium cyclopium NRRL 1888 through N-methyl-N'-nitro-N-nitrosoguanidine treatment. One mutant (SK2N6) accumulated 6-methyl-1,2,4-benzenetriol, which was not previously known to be a metabolite of P. cyclopium, in addition to orsellinic acid and orcinol. The radioactivity of [1-14C]acetic acid was rapidly incorporated into 6-methyl-1,2,4-benzenetriol in a culture of P. cyclopium SK2N6. Moreover, the radioactivity of [14C]6-methyl-1,2,4-benzenetriol was efficiently incorporated into penicillic acid in a culture of P. cyclopium NRRL 1888. These data indicate that 6-methyl-1,2,4-benzenetriol is a precursor for penicillic acid biosynthesis. The results on the addition of 1,4-dihydroxy-6-methoxy-2-methylbenzene, 6-methoxy-2-methylbenzoquinone(1,4), and 1-O-methylorcinol to a culture of P. cyclopium SK2N6 indicated that only the former two compounds are converted to penicillic acid. Thus, a new portion of the penicillic acid biosynthetic pathway is proposed.  相似文献   

9.
Abstract A new quinone was isolated from the thermophilic methane-oxidizing bacterium strain H-2; was eluted after ubiquinone-8 on reversed-phase high-performance liquid chromatography (HPLC). Proton-magnetic resonance spectroscopy revealed that one of the isoprene units of a side chain was changed to 4-methyl-3-isopentene. The position of the substituted isoprene unit was localized by MS/MS spectrometry. The new quinone was identified as 2,3-dimethoxy-5-methyl-6-geranylgeranyl- [4-methyl-3-isopentenyl]-farnesyl-1,4-benzoquinone.  相似文献   

10.
1. The l-malate dehydrogenase of Pseudomonas ovalis Chester, which is independent of nicotinamide nucleotides and which is structurally and functionally bound to the cell-wall membrane, has been prepared in a soluble form and partially purified. 2. The purified dehydrogenase exhibits a triple cofactor requirement for FAD, quinone and phospholipid, and in the presence of these cofactors can utilize 2,6-dichlorophenol-indophenol as hydrogen acceptor. 3. The formation of reduced forms of FAD was not detected, but in the presence of both FAD and phospholipid the enzyme catalysed the reduction of quinone by l-malate at rates equivalent to those obtained with 2,6-dichlorophenol-indophenol as terminal acceptor. The l-malate dehydrogenase of Ps. ovalis Chester is therefore an l-malate-quinone oxidoreductase. 4. The quinone and the phospholipids present in the fragments of the cell-wall membrane from which the soluble dehydrogenase was prepared have been extracted and purified. The quinone was identified as coenzyme Q(9). At least eight phospholipids were detected, and the major component is an unsaturated phosphatidylethanolamine. 5. The nature of the phospholipid required to activate the enzyme depends on the nature of the quinone used in the assay system. When 2-methyl-1,4-naphthaquinone is used, a wide variety of phospholipids, including all those isolated from the organism, will activate the enzyme, but when coenzyme Q(9) is used the phospholipid specificity of the enzyme is much more restricted, and the most effective activator is the unsaturated phosphatidylethanolamine isolated from the organism. 6. Evidence is presented to support the view that the restricted phospholipid specificity exhibited by the enzyme in the presence of coenzyme Q(9), as opposed to the broad specificity exhibited when 2-methyl-1,4-naphthaquinone is used, is due to the fact that coenzyme Q(9) has a large substituent on position 3.  相似文献   

11.
The reduction of the following exogenous quinones by succinate and NADH was studied in mitochondria isolated from both wild type and ubiquinone (Q)-deficient strains of yeast: ubiquinone-0 (Q0), ubiquinone-1 (Q1), ubiquinone-2 (Q2), and its decyl analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), duroquinone (DQ), menadione (MQ), vitamin K1 (2-methyl-3-phytyl-1,4-naphthoquinone), the plastoquinone analogue 2,3,6-trimethyl-1,4-benzoquinone (PQOc1), plastoquinone-2 (PQ2), and its decyl analogue (2,3-dimethyl-6-decyl-1,4-benzoquinone). Reduction of the small quinones DQ, Q0, Q1, and PQOc1 by NADH occurred in both wild type and Q-deficient mitochondria in a reaction inhibited more than 50% by myxothiazol and less than 20% by antimycin. The reduction of these small quinones by succinate also occurred in wild type mitochondria in a reaction inhibited more than 50% by antimycin but did not occur in Q-deficient mitochondria suggesting that endogenous Q6 is involved in their reduction. In addition, the inhibitory effects of antimycin and myxothiazol, specific inhibitors of the cytochrome b-c1 complex, on the reduction of these small quinones suggest the involvement of this complex in the electron transfer reaction. By contrast, the reduction of Q2 and DB by succinate was insensitive to inhibitors and by NADH was 20-30% inhibited by myxothiazol suggesting that these analogues are directly reduced by the primary dehydrogenases. The dependence of the sensitivity to the inhibitors on the substrate used suggests that succinate-ubiquinone oxidoreductase interacts specifically with center i (the antimycin-sensitive site) and NADH ubiquinone oxidoreductase preferentially with center o (the myxothiazol-sensitive site) of the cytochrome b-c1 complex. The NADH dehydrogenase involved in the myxothiazol-sensitive quinone reduction faces the matrix side of the inner membrane suggesting that center o may be localized within the membrane at a similar depth as center i.  相似文献   

12.
The ability of three naturally occurring analogues of ubiquinone to function in aerobic respiration in Escherichia coli has been studied. The compounds, which differ from ubiquinone in terms of the substituents on the quinone ring, accumulate in the cytoplasmic membranes of ubiE-, ubiF- and ubiG- mutants. One of the analogues (2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone, NMQ), which lacks the 5-methoxyl group of the benzoquinone ring of ubiquinone promoted the oxidation of NADH, D-lactate and alpha-glycerophosphate but not succinate. Electron transport supported by MMQ was found to be coupled to phosphorylation. In contrast, 2-octaprenyl-6-methoxy-1,4-benzoquinone, which lacks both the 3-methyl and 5-methoxyl groups of ubiquinone, and 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone, in which the 5-methoxyl group of ubiquinone is replaced by an hydroxyl group, were virtually inactive in the oxidases tested. The ability of MMQ to function in respiration in isolated membranes is consistent with the findings that the growth rate and yield of a ubiF- strain, unlike other ubi- strains, were only slightly lower than those of a ubiF+ strain. The fact that MMQ is active in some but not all oxidases provides further support for the concept that the quinones link the individual dehydrogenases to the respiratory chain and that each dehydrogenase has specific structural requirements for quinone acceptors.  相似文献   

13.
To investigate the protein-ubiquinone interaction in the bovine heart mitochondrial succinate-cytochrome c reductase region of the respiratory chain, three fluorine substituted ubiquinone derivatives, 2,3-dimethoxy-6-(9'-fluorodecyl)-1,4-benzoquinone (9FQ), 2-methoxy-5-trifluoromethyl-6-decyl-1,4-benzoquinone (TFQ), and 2-methoxy-5-trifluoromethyl-6-(9'-fluorodecyl)-1,4-benzoquinone (9FTFQ), were synthesized. 9FQ was synthesized by radical coupling of Q0 and bis(10-fluoroundecanoyl)peroxide. The latter was prepared by fluorination of undecylenic acid followed by thionylchloride treatment and peroxidation. TFQ was synthesized from 2,2,2-trifluoro-p-cresol by methylation, nitration, reduction, acetylation, nitration, reduction, oxidation, and radical alkylation. 9FTFQ was prepared by the radical alkylation of 2-methoxy-5-trifluoromethyl-1,4-benzoquinone with bis(10-fluoroundecanoyl)peroxide. All three fluoro-Q derivatives are active (greater than 50% the activity of 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone) when used as electron acceptors for succinate-ubiquinone reductase. However, only 9FQ is active when used as an electron donor for ubiquinol-cytochrome c reductase or as an electron mediator for succinate-cytochrome c reductase. Both TFQ and 9FTFQ are competitive inhibitors for ubiquinol-cytochrome c reductase. A 19FNMR peak-broadening effect was observed for 9FQ when it was reconstituted with ubiquinone-depleted ubiquinol-cytochrome c reductase. A drastic up-field chemical shift was observed for TFQ when it was reconstituted with ubiquinone-depleted reductase. These results indicate that the binding environments of the benzoquinone ring and the alkyl side chain of the Q molecule are different. The strong up-field chemical shift for TFQ, and lack of significant chemical shift for 9FQ, suggest that the benzoquinone ring is bound near the paramagnetic cytochrome b heme.  相似文献   

14.
Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.  相似文献   

15.
An azido-ubiquinone derivative, 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyloctyl)-1,4-benzoquinone, was used to study the ubiquinone-protein interaction and to identify the ubiquinone-binding proteins in yeast mitochondrial ubiquinone-cytochrome c reductase. The phospholipids and Q6 in purified reductase were removed by repeated ammonium sulfate precipitation in the presence of 0.5% sodium cholate. The resulting phospholipid- and ubiquinone-depleted reductase shows no enzymatic activity; activity can be completely restored by the addition of phospholipids and Q6 or Q2. The ubiquinone- and phospholipid-replenished ubiquinonol-cytochrome c reductase is also fully active upon reconstituting with bovine succinate-ubiquinone reductase to form succinate-cytochrome c reductase. When an azido-ubiquinone derivative was added to the ubiquinone and phospholipid-depleted reductase in the dark, followed by the addition of phospholipids, partial reconstitutive activity was restored, while full ubiquinol-cytochrome c reductase activity was observed when Q2H2 was used as substrate in the assay mixture. Apparently, the large amount of Q2H2 present in the assay mixture displaces the azido-ubiquinone in the system. Photolysis of the azido-Q-treated reductase with long-wavelength ultraviolet light abolishes about 70% of both the restored reconstitutive activity and Q2H2-cytochrome c reductase activity. The activity loss is directly proportional to the covalent binding of [3H]azido-ubiquinone to the reductase protein. When the photolyzed, [3H]azido-ubiquinone-treated sample was subjected to SDS-polyacrylamide gel electrophoresis followed by analysis of the distribution of radioactivity among the subunits, the cytochrome b protein and a protein with an apparent molecular weight of 14 000 were heavily labeled. The amount of radioactive labeling in both these proteins was affected by the presence of phospholipids.  相似文献   

16.
Cytochrome bd is a heterodimeric terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. For understanding the unique catalytic mechanism of the quinol oxidation, mass spectrometry was used to identify amino acid residue(s) that can be labeled with a reduced form of 2-azido-3-methoxy-5-methyl-6-geranyl-1,4-benzoquinone or 2-methoxy-3-azido-5-methyl-6-geranyl-1,4-benzoquinone. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry demonstrated that the photo inactivation of ubiquinol-1 oxidase activity was accompanied by the labeling of subunit I with both azidoquinols. The cross-linked domain was identified by reverse-phase high performance liquid chromatography of subunit I peptides produced by in-gel double digestion with lysyl endopeptidase and endoproteinase Asp-N. Electrospray ionization quadrupole time-of-flight mass spectrometry determined the amino acid sequence of the peptide (m/z 1047.5) to be Glu(278)-Lys(283), where a photoproduct of azido-Q(2) was linked to the carboxylic side chain of I-Glu(280). This study demonstrated directly that the N-terminal region of periplasmic loop VI/VII (Q-loop) is a part of the quinol oxidation site and indicates that the 2- and 3-methoxy groups of the quinone ring are in the close vicinity of I-Glu(280).  相似文献   

17.
The orientation of a methoxy substituent is known to substantially influence the electron affinity and vibrational spectroscopy of benzoquinones, and has been suggested to be important in determining the function of ubiquinone as a redox cofactor in bioenergetics. Ubiquinone functions as both the primary (Q(A)) and secondary (Q(B)) quinone in the reaction centers of many purple photosynthetic bacteria, and is almost unique in its ability to establish the necessary redox free energy gap for 1-electron transfer between them. The role of the methoxy substitution in this requirement was examined using monomethoxy analogues of ubiquinone-4 - 2-methoxy-3,5-dimethyl-6-isoprenyl-1,4-benzoquinone (2-MeO-Q) and 3-methoxy-2,5-dimethyl-6-isoprenyl-1,4-benzoquinone (3-MeO-Q). Only 2-MeO-Q was able to simultaneously act as Q(A) and Q(B) and the necessary redox potential tuning was shown to occur in the Q(B) site. In the absence of active Q(B), the IR spectrum of the monomethoxy quinones was examined in vitro and in the Q(A) site, and a novel distinction between the two methoxy groups was tentatively identified, consistent with the unique role of the 2-methoxy group in distinguishing Q(A) and Q(B) functionality.  相似文献   

18.
Anti-glycation activity of our anti-oxidant quinone library was measured and several 2,3-dimethoxy-5-methyl-1,4-benzoquinones and 2-methyl-1,4-naphthoquinones were identified as novel inhibitors of glycation, of which 2,3-dimethoxy-5-methyl-1,4-benzoquinones 13b is the most potent glycation inhibitor with around 50 microM of the IC(50) value.  相似文献   

19.
From the dichloromethane extract of the leaves and stems of Gunnera perpensa two new, simple 1,4-benzoquinones and a known benzopyran-6-ol were isolated. From the methanol extract phytol was obtained. The two benzoquinones, 2-methyl-6-(-3-methyl-2-butenyl)benzo-1,4-quinone (1) and 3-hydroxy-2-methyl-5-(3-methyl-2-butenyl)benzo-1,4-quinone (2) and the benzopyran, 6-hydroxy-8-methyl-2,2-dimethyl-2H-benzopyran (3) were examined for antimicrobial properties together with the crude stem, leaf and root extracts. Minimum inhibitory concentration (MIC) assays were used to quantify antimicrobial activity and the MIC values for the crude extracts of stems, roots and leaves ranged between 100 microg and >16 mg/ml against the eight microorganisms investigated. Compound 1 showed significant antimicrobial activity with the most sensitive organism being Staphylococcus epidermidis with an MIC of 9.8 microg/ml. For compound 2, no activity was noted. Compound 3 exhibited good activity against the yeasts Cryptococcus neoformans (75 microg/ml) and Candida albicans (37.5 microg/ml).  相似文献   

20.
B.J. Wallace  I.G. Young 《BBA》1977,461(1):75-83
The ability of three naturally occurring analogues of ubiquinone to function in aerobic respiration in Escherichia coli has been studied. The compounds, which differ from ubiquinone in terms of the substituents on the quinone ring, accumulate in the cytoplasmic membranes of ubiE?, ubiF? and ubiG? mutants. One of the analogues (2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone, MMQ), which lacks the 5-methoxyl group of the benzoquinone ring of ubiquinone promoted the oxidation of NADH, d-lactate and α-glycerophosphate but not succinate. Electron transport supported by MMQ was found to be coupled to phosphorylation. In contrast, 2-octaprenyl-6-methoxy-1,4-benzoquinone, which lacks both the 3-methyl and 5-methoxyl groups of ubiquinone, and 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone, in which the 5-methoxyl group of ubiquinone is replaced by an hydroxyl group, were virtually inactive in the oxidases tested. The ability of MMQ to function in respiration in isolated membranes is consistent with the findings that the growth rate and yield of a ubiF? strain, unlike other ubi? strains, were only slightly lower than those of a ubiF+ strain.The fact that MMQ is active in some but not all oxidases provides further support for the concept that the quinones link the individual dehydrogenases to the respiratory chain and that each dehydrogenase has specific structural requirements for quinone acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号