首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylase kinase was purified (110-fold) from bovine stomach smooth muscle by a procedure involving DEAE-cellulose chromatography, ammonium sulfate fractionation and glycerol density ultracentrifugation. On sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) the final enzyme preparation shows a single protein band of 43 kDa. The purified protein exhibits a close similarity with bovine aortic actin, as revealed by amino acid analysis and sequencing of a tryptic decapeptide fragment, although it differs widely from actin in several respects. In our effort to separate phosphorylase kinase activity from the 43 kDa protein we used a variety of chromatographic procedures, but in all cases the catalytic activity (when eluted) was accompanied by the 43 kDa protein band. Bovine stomach phosphorylase kinase exhibits an apparent molecular mass of 950 kDa, it shows a low Vmax value for phosphorylase b (85 nmol.min-1.mg-1), a pH 6.8/8.2 activity ratio of 0.23, it has an absolute requirement for Ca2+ and it is activated 1.8-fold by Ca2+/calmodulin. Furthermore, the protein kinase activity is neither inhibited by antibodies against rabbit skeletal muscle phosphorylase kinase nor activated by protein phosphorylation. These results suggest that bovine stomach phosphorylase kinase is tightly bound to an aggregate of actin-like molecules.  相似文献   

2.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

3.
The dephosphorylated form of phosphorylase kinase was purified 700-fold from rabbit heart extract. The purified enzyme had a pH 6.8/pH 8.2 activity ratio of 0.04-0.08 and was completely dependent on Ca2+ with an apparent Ka value for Ca2+ of 2.59 microM at pH 6.8. At free Ca2+ concentrations between 0.057 microM and 400 microM, 1.5 microM rabbit heart troponin complex had no significant effect on the reaction. However, 1.5 microM rabbit skeletal muscle troponin complex stimulated the reaction 1.5-2-fold with a concomitant decrease in the Ka value for Ca2+ to 1.40 microM. No differences in the effects of these troponin complexes were observed when heart-type and skeletal muscle-type phosphorylase b isoenzymes from either rabbit or pig were used as substrate. Similar effects of heart and skeletal muscle troponin complexes were observed on the Ca2+-dependent reaction of the dephosphorylated form of phosphorylase kinase partially purified from rabbit skeletal muscle. A saturating concentration (1.36 microM) of bovine brain calmodulin stimulated 2-5-fold the Ca2+-dependent reaction of skeletal muscle phosphorylase kinase, but not the reaction of heart phosphorylase kinase. Heart troponin complex (12 microM) suppressed 80-100% the stimulatory effect of skeletal muscle troponin complex on the reactions of phosphorylase kinase isoenzymes, but had no significant effect on the stimulation by calmodulin of skeletal muscle phosphorylase kinase reaction.  相似文献   

4.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

5.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

6.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

7.
Nonactivated rabbit skeletal muscle phosphorylase kinase is inhibited by the polymyxins A, B, D and E when assayed at pH 8.6. Polymyxin B is the most effective inhibitor, causing 50% inhibition at 0.3 mM. Following the effect of polymyxin B on the kinase activity toward troponin, no inhibition was observed. In contrast, polymyxin B was found to greatly stimulate the autophosphorylation of phosphorylase kinase. About 10 mol of phosphate per tetramer (alpha beta nu delta) were incorporated in presence of polymyxin B (full autophosphorylation). This incorporation was about 6-fold higher than that observed without polymyxin. The stimulation of autophosphorylation by polymyxin B was accompanied with enhancement of the rate of autoactivation at pH 6.8.  相似文献   

8.
Stimulation of glycogen phosphorylase kinase by phospholipids   总被引:1,自引:0,他引:1  
The acidic phospholipids phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-biphosphate (PIP2) and the neutral phospholipid lysophosphatidylcholine (LPC) were found to stimulate (3 to 8-fold) the activity of nonactivated rabbit skeletal muscle phosphorylase kinase at pH 6.8, without significantly affecting the activity at pH 8.2. In this respect, phosphatidylcholine and phosphatidylethanolamine were ineffective, while the anionic detergent sodium dodecyl sulfate (SDS) and the anionic steroid dehydroisoandrosterone sulfate (DIAS) were able to mimic the action of phospholipids. SDS was also found to be a very efficient activator of the autophosphorylation of phosphorylase kinase (20-fold activation at 200 microM). The activating effect of phospholipids largely depends on the size of lipid vesicles, which is connected with the procedure of their preparation. These results suggest that phosphorylase kinase belongs to the class of Ca2+-dependent enzymes, which are sensitive to stimulation by calmodulin, limited proteolysis and anionic amphiphiles.  相似文献   

9.
Calcium transport into sarcoplasmic reticulum fragments isolated from dog cardiac and mixed skeletal muscle (quadriceps) and from mixed fast (tibialis), pure fast (caudofemoralis) and pure slow (soleus) skeletal muscles from the cat was studied. Cyclic AMP-dependent protein kinase and phosphorylase b kinase stimulated the rate of calcium transport although some variability was observed. A specific protein kinase inhibitor prevented the effect of protein kinase but not of phosphorylase b kinase. The addition of cyclic AMP to the sarcoplasmic reticulum preparations in the absence of protein kinase had only a slight stimulatory effect despite the presence of endogenous protein kinase. Cyclic AMP-dependent protein kinase catalyzed the phosphorylation of several components present in the sarcoplasmic reticulum fragments; a 19000 to 21 000 dalton peak was phosphorylated with high specific activity in sarcoplasmic reticulum preparations isolated from heart and from slow skeletal muscle, but not from fast skeletal muscle. Phosphorylase b kinase phosphorylated a peak of molecular weight 95000 in all of the preparations. Cyclic AMP-dependent protein kinase-stimulated phosphorylation was optimum at pH 6.8; phosphorylase b kinase phosphorylation had a biphasic curve in cardiac and slow skeletal muscle with optima at pH 6.8 and 8.0. The addition of exogenous phosphorylase b kinase or protein kinase increased the endogenous level of phosphorylation 25-100%. All sarcoplasmic reticulum preparations contained varying amounts of adenylate cyclase, phosphorylase b and a (b:a = 30.1), "debrancher" enzyme and glycogen (0.3 mg/mg protein), as well as varying amounts of protein kinase and phosphorylase b kinase which were responsible for a significant endogenous phosphorylation. Thus, the two phosphorylating enzymes stimulated calcium uptake in the sarcoplasmic reticulum of a variety of muscles possessing different physiologic characteristics and different responses to drugs. In addition, the phosphorylation catalyzed by these enzymes occurred at two different protein moieties which make physiologic interpretation of the role of phosphorylation difficult. While the role phosphorylation in these mechanisms is complex, the presence of a glycogenolytic enzyme system may be an important link in this phenomenon. The sarcoplasmic reticulum represents a new substrate for phosphorylase b kinase.  相似文献   

10.
We have examined the effect of several flavonoids on the activity of phosphorylase kinase from rabbit skeletal muscle. From 14 flavonoids tested, the flavones quercetin and fisetin were found to be efficient inhibitors of nonactivated phosphorylase kinase when assayed at pH 8.2, causing 50% inhibition at a concentration of about 50 microM, while the flavanone hesperetin stimulated phosphorylase kinase activity about 2-fold when tested at 250 microM. The efficiency of quercetin in inhibiting the kinase is higher when the enzyme is stimulated either by ethanol or by alkaline pH. Both casein and troponin phosphorylation by phosphorylase kinase and the autophosphorylation of the kinase were inhibited by quercetin. In addition, quercetin was found to be a competitive inhibitor of ATP for the phosphorylation of phosphorylase b at pH 8.2. These observations suggest that the inhibitory effect of the flavone is directly on the phosphorylase kinase molecule. Trypsin-activated phosphorylase kinase was inhibited by quercetin and stimulated by hesperetin, as for the native enzyme.  相似文献   

11.
Gangliosides have profound effects on protein phosphorylation in skeletal muscle. Addition of GT1b to guinea pig muscle extract stimulated the phosphorylation of a 98-kDa protein 4-8-fold. In contrast, Ca2+ stimulated the phosphorylation of this protein and two other proteins with apparent Mr of 107,000 and 145,000, respectively. Addition of GT1b in the presence of Ca2+ further enhanced the phosphorylation of the 98-kDa protein but completely inhibited the phosphorylation of both the 107- and the 145-kDa proteins. The nature of the ganglioside-modulated 98-kDa protein has been characterized. Results on the pH activity profiles and the requirements of Ca2+ for phosphorylation suggest that this phosphoprotein may correspond to glycogen phosphorylase. Phosphorylation of purified rabbit muscle phosphorylase b by nonactivated phosphorylase kinase was stimulated by GT1b. This stimulation was in part due to an activation of the kinase activity. Autophosphorylation of highly purified phosphorylase kinase was increased 4-10-fold in the presence of GT1b. Polysialogangliosides were more potent than monosialogangliosides in stimulating the autocatalytic activity, whereas asialo-GM1, colominic acid, N-acetylneuraminic acid, and phosphatidylserine were ineffective. The effects of gangliosides were dose-dependent. At physiological pH, the concentrations of GT1b required for half-maximal stimulation of the autophosphorylation of phosphorylase kinase were 6.4 microM in the absence of Ca2+ and 1.3 microM when the divalent cation was present. These findings suggest that gangliosides may play a role as biomodulators in the regulation of glycogenolysis in muscle.  相似文献   

12.
Phosphorylase kinase isolated from rabbit skeletal muscle contains a protein whose molecular mass as determined by polyacrylamide gel electrophoresis is 571 000 Da. The protein was found to possess a higher affinity for glycogen as compared to phosphorylase kinase and phosphorylase. The protein separated from kinase by chromatography on a DEAE-cellulose column produced during SDS electrophoresis one protein band corresponding to Mr of 95 200 Da. The above properties of the protein and the glycogen synthetase activity revealed in the presence of glucose-6-phosphate suggest that phosphorylase kinase preparations contain a hexameric form of glycogen synthetase.  相似文献   

13.
Protein phosphatase-2B was purified from extracts of rabbit skeletal muscle by a procedure that involved fractionation with ammonium sulphate, chromatography on DEAE-Sepharose, fractionation with poly(ethylene glycol), gel filtration on Sephadex G-200 (Mr = 98000 +/- 4000), chromatography on Affi-Gel Blue and affinity chromatography on calmodulin-Sepharose. The enzyme was purified 3500-fold in seven days with an overall yield of 0.5%. The alpha-subunit of phosphorylase kinase, protein phosphatase inhibitor-1 and the myosin P-light chain from rabbit skeletal muscle were dephosphorylated by protein phosphatase-2B with similar kinetic constants. The alpha-subunit of phosphorylase kinase was dephosphorylated at least 100-fold more rapidly than the beta-subunit, while glycogen phosphorylase, glycogen synthase, histones H1 and H2B, ATP-citrate lyase, acetyl-CoA carboxylase, L-pyruvate kinase and protein synthesis initiation factor eIF-2 were not dephosphorylated at significant rates. Protein phosphatase-2B became activated 10-fold by calmodulin (A0.5 = 6 nM) after chromatography on DEAE-Sepharose and this degree of activation was maintained throughout the remainder of the purification. Calmodulin increased the Vmax of the reaction without altering the Km for inhibitor-1. The activity of protein phosphatase-2B was completely dependent on Ca2+ in the presence or absence of calmodulin. Half-maximal activation was observed at 1.0 microM Ca2+ in the absence, and at 0.5 microM Ca2+ in the presence, of 0.03 microM calmodulin. Protein phosphatase-2B was inhibited completely by trifluoperazine; half-maximal inhibition occurred at 45 microM in the absence and 35 microM in the presence of 0.03 microM calmodulin. The metabolic role of protein phosphatase-2B in vivo is discussed in the light of the observation that this enzyme is probably identical to a major calmodulin-binding protein of neural tissue termed calcineurin or CaM-BP80 [Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. B., and Cohen, P. (1982) FEBS Lett. 137, 80-84].  相似文献   

14.
Glycogen phosphorylase from swine adipose tissue was purified nearly 700-fold using ethanol precipitation, DEAE-cellulose adsorption, AMP-agarose affinity chromatography, and agarose gel filtration. The purified enzyme migrated as one major and several minor components during polyacrylamide gel electrophoresis. Activity was associated with the major component and at least one of the minor components. The molecular weight of the disaggregated, reduced, and alkylated enzyme, estimated by polyacrylamide gel electrophoresis performed in the presence of sodium dodecyl sulfate, was 90,000. Stability of the purified enzyme was considerably increased in the presence of AMP. The isoelectric pH of the enzyme in crude homogenates was 6.3. The sedimentation coefficient of the purified enzyme (7.9 S) and that in crude homogenates (7.3 S) was determined by sucrose density gradient sedimentation. Optimal pH for activity was between pH 6.5 and 7.1. Apparent Km values for glycogen and inorganic phosphate were 0.9 mg/ml and 6.6 mM, respectively. The Ka for AMP was 0.21 mM. Enzyme activity was increased by K2SO4, KF, KCl, and MgCl2 and decreased by NaCl, Na2SO4, D-glucose, and ATP. Inhibition by glucose was noncompetitive with the activator AMP; inhibition by ATP was partially competitive with AMP. The purified enzyme was activated by incubation with skeletal muscle phosphorylase kinase. Enzyme in crude homogenates was activated by the addition of MgCl2 and ATP; activation was not blocked by addition of protein kinase inhibitor, suggesting that phosphorylase kinase in homogenates of swine adipose tissue is present largely in an activated form. Deactivation of phosphorylase a by phosphorylase phosphatase was studied using enzyme purified approximately 200-fold from swine adipose tissue by ethanol precipitation, DEAE-cellulose chromatography, and gel filtration. The Km of the adipose tissue phosphatase for skeletal muscle phosphorylase a was 6 muM. The purified swine adipose tissue phosphorylase, labeled with 32-P, was inactivated and dephosphorylated by the adipose tissue phosphatase. Dephosphorylation of both skeletal muscle and adipose tissue substrates was inhibited by AMP and glucose reversed this inhibition. Several lines of evidence suggest that AMP inhibition was due to an action on the substrate rather than on the enzyme. We have previously reported that the system for phosphorylase activation in rat fat cells differs in some important characteristics from that in skeletal muscle. However, both swine fat phosphorylase and phosphorylase phosphatase have major properties very similar to those described for the enzymes from skeletal muscle.  相似文献   

15.
Glycogen synthase has been purified from the obliquely striated muscle of the swine parasite Ascaris suum. The muscle contains a concentration of glycogen synthase and glycogen which is 20-fold and 15-fold, respectively, greater than rabbit skeletal muscle. The enzyme could not be solubilized with salivary amylase, but partial solubilization was achieved by activation of endogenous phosphorylase. The enzyme was purified to 85-90% homogeneity (specific activity = 4.3 units/mg) by DEAE-cellulose, Sepharose 4B, and glucosamine 6-phosphate chromatography. The purified glycogen synthase was substantially similar to rabbit skeletal muscle enzyme with respect to Mr (gel electrophoresis and gel filtration), pH dependence, aggregation properties, temperature dependence, and kinetic constants for substrates and activators. Glycogen synthase I was converted to glycogen synthase D by the cyclic AMP-dependent protein kinase. The cyclic AMP-dependent protein kinase catalyzed the incorporation of 1.3 mol of phosphate into each glycogen synthase I subunit and the concomitant interconversion to glycogen synthase D. Since glycogen is the sole fuel utilized by this organism during nonfeeding periods of the host, the characterization of this enzyme provides further insight into the regulatory mechanisms which determine glycogen turnover.  相似文献   

16.
The kinetics of rabbit skeletal muscle phosphorylase kinase interaction with glycogen has been studied. At pH 6.8 the binding of phosphorylase kinase to glycogen proceeds only in the presence of Mg2+, whereas at pH 8.2 formation of the complex occurs even in the absence of Mg2+. On the other hand, the interaction of phosphorylase kinase with glycogen requires Ca2+ at both pH values. The initial rate of the complex formation is proportional to the enzyme and glycogen concentrations, suggesting the formation of the complex with stoichiometry 1:1 at the initial step of phosphorylase kinase binding by glycogen. According to the kinetic and sedimentation data, the substrate of the phosphorylase kinase reaction, glycogen phosphorylase b, favors the binding of phosphorylase kinase with glycogen. We suggest a model for the ordered binding of phosphorylase b and phosphorylase kinase to the glycogen particle that explains the increase in the tightness of phosphorylase kinase binding with glycogen in the presence of phosphorylase b.  相似文献   

17.
Three forms of phosphorylase (I, II and III), two of which (I and II) were active in the presence of AMP and one (III) was active without AMP, were isolated from human skeletal muscles. The pI values for phosphorylases b(I) and b(II) were found to be identical (5.8-5.9). During chromatofocusing a low molecular weight protein (M(r) = 20-21 kDa, pI 4.8) was separated from phosphorylase b(II). This process was accompanied by an increase of the enzyme specific activity followed by its decline. During reconstitution of the complex the activity of phosphorylase b(II) returned to the initial level. Upon phosphorylation the amount of 32P incorporated into phosphorylase b(II) was 2 times as low as compared with rabbit phosphorylase b and human phosphorylase b(I). It may be supposed that in the human phosphorylase b(II) molecule one of the two subunits undergoes phosphorylation in vivo. This form of the enzyme is characterized by a greater affinity for glycogen and a lower sensitivity to allosteric effectors (AMP, glucose-6-phosphate, caffeine) compared with phosphorylase b(I). Thus, among the three phosphorylase forms obtained in this study, form b(II) is the most unusual one, since it is partly phosphorylated by phosphorylase kinase to form a complex with a low molecular weight protein which stabilizes its activity. A partially purified preparation of phosphorylase kinase was isolated from human skeletal muscles. The enzyme activity necessitates Ca2+ (c0.5 = 0.63 microM). At pH 6.8 the enzyme is activated by calmodulin (c0.5 = 15 microM). The enzyme activity ratio at pH 6.8/8.2 is equal to 0.18.  相似文献   

18.
Comparison of glycogen phosphorylase kinases of various rat tissues   总被引:2,自引:0,他引:2  
Glycogen phosphorylase kinases in soluble fractions of various rat tissues were examined for the pH 6.8/8.5 activity ratio, Ca2+-dependency, activation by cyclic AMP-dependent protein kinase (protein kinase A), and reactivity with anti-skeletal muscle phosphorylase kinase serum. The enzymes could be divided into at least two major groups; muscle and liver types. The muscle type, that has a low value of pH 6.8/8.5 activity ratio, is highly dependent on Ca2+, markedly activated by protein kinase A, and strongly inhibited by the antiserum. Inversely, the liver type, that has a high value of pH 6.8/8.5 activity ratio, is poorly dependent on Ca2+, not activated by protein kinase A, and weakly inhibited by the antiserum. The enzymes from heart and skeletal muscle were similar and belonged to the former entity. Whereas, the enzymes from liver, kidney, spleen, lung, and testis appeared to belong to the latter entity. The enzyme from brain apparently differs from these entities, and seems to be an intermediate type or a hybrid of the two.  相似文献   

19.
A phosphoprotein phosphatase which has an apparent molecular weight of 240,000 was partially purified (500-fold) from the glycogen-protein complex of rabbit skeletal muscle. The enzyme exhibited broad substrate specificity as it dephosphorylated phosphorylase, phosphohistones, glycogen synthase, phosphorylase kinase, regulatory subunit of cAMP-dependent protein kinase, and phosphatase inhibitor 1. The phosphatase showed high specificity towards dephosphorylation of the beta-subunit of phosphorylase kinase and site 2 of glycogen synthase. With the latter substrate, the presence of phosphate in sites 1a and 1b decreased the apparent Vmax, perhaps by inhibiting the dephosphorylation of site 2. The phosphorylated form of inhibitor 1 did not significantly inhibit this high-molecular-weight phosphatase. However, an inhibitor 1-sensitive phosphatase activity could be derived from this preparation by limited trypsinization. Furthermore, greater than 70% of the phosphatase activity in skeletal muscle extracts and in the glycogen-protein complex was insensitive to inhibitor 1. Limited trypsinization of each fraction obtained from the phosphatase purification increased the total activity (1.5- to 2-fold) and converted the enzyme into a form which was inhibited by inhibitor 1. The results suggest that inhibitor 1-sensitive phosphatase may be a proteolyzed enzyme.  相似文献   

20.
During relative rest of trained rats the phosphorylase b kinase activity is increased by 24% (pH 6.8). Physical load causes an increase of the phosphorylase b kinase activity of untrained and trained rats by 44 and 33%, respectively. The degree of phosphorylase b kinase phosphorylation by a homologous soluble cAMP-dependent protein kinase from the muscles of trained rats at rest is 1.9 times that of the control group. The cAMP-dependent phosphorylation of phosphorylase b kinase of untrained and trained rats under physical load is increased 2.5-fold. The data obtained are indicative of the regulatory role of cAMP-dependent phosphorylation in biochemical adaptation of skeletal muscles when their function is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号