首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A monoclonal antibody, 7B3, specific to the alpha subunit of the mitochondrial ATPase-ATP synthase inhibited the rate of ATP hydrolysis by either soluble F1 or electron transport particles up to a maximum of 75%. However, 7B3 did not modify the rate of ITP hydrolysis. In addition, the apparent Km for MgATP extrapolated at high ATP concentrations had the same value in the absence as in the presence of 7B3. The antibody did not change the inactivation rate of F1-ATPase induced by dicyclohexylcarbodiimide or 4-chloro-7-nitro-2,1,3-benzoxadiazole. These observations indicate that 7B3 did not directly interfere with the catalytic sites of ATP or ITP hydrolysis. On the contrary, 7B3 modified the interaction between nucleotide sites and therefore the regulation of the rate of ATP hydrolysis. Indeed, 7B3 changed into a positive cooperativity the negative cooperativity observed when measuring the rate of ATP hydrolysis as a function of ATP concentration. 7B3 also increased the binding of ADP to F1. 7B3 prevented the rapid phase of inactivation of F1 by 5'-p-fluorosulfonylbenzoyladenosine. This phase has been correlated to the binding of 5'-p-fluorosulfonylbenzoyladenosine to regulatory sites (Di Pietro, A., Godinot, C., Martin, J. C., and Gautheron, D. C. (1979) Biochemistry 18, 1738-1745). The inhibition of ATP hydrolysis is concomitant with the binding of 1 mol of IgG or of 2 mol of Fab fragments per mol of F1. However, by further increasing the ratio Fab/F1, only 1 mol of Fab remained bound to F1 without change in inhibition of ATPase activity. All these experiments strongly support the suggestion that F1 conformational changes occurring upon binding of 7B3 to alpha subunit induce a modification of interactions between nucleotide sites. This modification would be consecutive to a change in the normal interaction between the alpha and beta subunits which is required to observe an active rate of ATP hydrolysis or synthesis. In conclusion, the use of this monoclonal antibody demonstrates for the first time in mammalian F1 the role of the conformation of the alpha subunit in the regulation of the ATPase activity.  相似文献   

2.
ATP hydrolysis by the isolated F(1)-ATPase drives the rotation of the central shaft, subunit gamma, which is located within a hexagon formed by subunits (alphabeta)(3). The C-terminal end of gamma forms an alpha-helix which properly fits into the "hydrophobic bearing" provided by loops of subunits alpha and beta. This "bearing" is expected to be essential for the rotary function. We checked the importance of this contact region by successive C-terminal deletions of 3, 6, 9, 12, 15, and 18 amino acid residues (Escherichia coli F(1)-ATPase). The ATP hydrolysis activity of a load-free ensemble of F(1) with 12 residues deleted decreased to 24% of the control. EF(1) with deletions of 15 or 18 residues was inactive, probably because it failed to assemble. The average torque generated by a single molecule of EF(1) when loaded by a fluorescent actin filament was, however, unaffected by deletions of up to 12 residues, as was their rotational behavior (all samples rotated during 60 +/- 19% of the observation time). Activation energy analysis with the ensemble revealed a moderate decrease from 54 kJ/mol for EF(1) (full-length gamma) to 34 kJ/mol for EF(1)(gamma-12). These observations imply that the intactness of the C terminus of subunit gamma provides structural stability and/or routing during assembly of the enzyme, but that it is not required for the rotary action under load, proper.  相似文献   

3.
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, was competent in nucleotide binding, and had normal N-terminal sequence. In F1 subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiments showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector.  相似文献   

4.
The epitope of the monoclonal antibody 20D6 was localized by N-terminal sequencing of the smallest immunoreactive peptides obtained after CNBr and trypsin cleavage of the F1 alpha subunit of the mitochondrial ATPase/ATP synthase. Immunochemical analysis of overlapping synthetic octapeptides, covering the immunoreactive peptide sequence, has defined the seven-amino-acid sequence recognized by 20D6 as 84EGDIVKR90. The binding of 20D6 was lost after substituting either I87 by K or S, or R90 by C or A as it occurs in the alpha subunit sequence of Escherichia coli or chloroplast ATPase, respectively. This explained the lack of immunoreactivity of 20D6 to these species and indicated the importance of charged as well as hydrophobic residues in the epitope. Immunochemical analysis of synthetic peptides by polyclonal anti-F1 antisera showed that this region is highly immunodominant. In a competitive ELISA, the monoclonal antibody bound with similar affinity to F1 in the presence and absence of substrate as well as to cold dissociated F1, indicating that the epitope was located on the surface of the alpha subunit and not buried between F1 subunits. The lack of binding of 20D6 when F1 is bound to the membrane showed that the epitope exposed at the surface of purified soluble F1 became masked after binding to the membrane. This suggests that it is located at the interface between F1 and the membrane.  相似文献   

5.
Trace amounts ( approximately 5%) of the chloroplast alpha subunit were found to be absolutely required for effective restoration of catalytic function to LiCl-treated chromatophores of Rhodospirillum rubrum with the chloroplast beta subunit (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072). To clarify the role of the alpha subunit in the rebinding of beta, restoration of catalytic function, and conferral of sensitivity to the chloroplast-specific inhibitor tentoxin, LiCl-treated chromatophores were analyzed by immunoblotting before and after reconstitution with mixtures of R. rubrum and chloroplast alpha and beta subunits. The treated chromatophores were found to have lost, in addition to most of their beta subunits, approximately a third of the alpha subunits, and restoration of catalytic activity required rebinding of both subunits. The hybrid reconstituted with the R. rubrum alpha and chloroplast beta subunits was active in ATP synthesis as well as hydrolysis, and both activities were completely resistant to tentoxin. In contrast, a hybrid reconstituted with both chloroplast alpha and beta subunits restored only a MgATPase activity, which was fully inhibited by tentoxin. These results indicate that all three copies of the R. rubrum alpha subunit are required for proton-coupled ATP synthesis, whereas for conferral of tentoxin sensitivity at least one copy of the chloroplast alpha subunit is required together with the chloroplast beta subunit. The hybrid system was further used to examine the effects of amino acid substitution at position 83 of the beta subunit on sensitivity to tentoxin.  相似文献   

6.
V(1)-ATPase from the thermophilic bacterium Thermus thermophilus is a molecular rotary motor with a subunit composition of A(3)B(3)DF, and its central rotor is composed of the D and F subunits. To determine the role of the F subunit, we generated an A(3)B(3)D subcomplex and compared it with A(3)B(3)DF. The ATP hydrolyzing activity of A(3)B(3)D (V(max) = 20 s(-1)) was lower than that of A(3)B(3)DF (V(max) = 31 s(-1)) and was more susceptible to MgADP inhibition during ATP hydrolysis. A(3)B(3)D was able to bind the F subunit to form A(3)B(3)DF. The C-terminally truncated F((Delta85-106)) subunit was also bound to A(3)B(3)D, but the F((Delta69-106)) subunit was not, indicating the importance of residues 69-84 of the F subunit for association with A(3)B(3)D. The ATPase activity of A(3)B(3)DF((Delta85-106)) (V(max) = 24 s(-1)) was intermediate between that of A(3)B(3)D and A(3)B(3)DF. A single molecule experiment showed the rotation of the D subunit in A(3)B(3)D, implying that the F subunit is a dispensable component for rotation itself. Thus, the F subunit binds peripherally to the D subunit, but promotes V(1)-ATPase catalysis.  相似文献   

7.
Nowak KF  Tabidze V  McCarty RE 《Biochemistry》2002,41(51):15130-15134
The epsilon subunit of the ATP synthases from chloroplasts and Escherichia coli regulates the activity of the enzyme and is required for ATP synthesis. The epsilon subunit is not required for the binding of the catalytic portion of the chloroplast ATP synthase (CF1) to the membrane-embedded part (CFo). Thylakoid membranes reconstituted with CF1 lacking its epsilon subunit (CF1-epsilon) have high ATPase activity and no ATP synthesis activity, at least in part because the membranes are very leaky to protons. Either native or recombinant epsilon subunit inhibits ATPase activity and restores low proton permeability and ATP synthesis. In this paper we show that recombinant epsilon subunit from which 45 amino acids were deleted from the C-terminus is as active as full-length epsilon subunit in restoring ATP synthesis to membranes containing CF1-epsilon. However, the truncated form of the epsilon subunit was significantly less effective as an inhibitor of the ATPase activity of CF1-epsilon, both in solution and bound to thylakoid membranes. Thus, the C-terminus of the epsilon subunit is more involved in regulation of activity, by inhibiting ATP hydrolysis, than in ATP synthesis.  相似文献   

8.
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).  相似文献   

9.
The molecular mechanism of ATP synthesis by F1F0-ATP synthase   总被引:4,自引:0,他引:4  
ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis.  相似文献   

10.
The mitochondrial F1-ATPase from bean (Vicia faba L.) was solubilized by a chloroform treatment of mitochondrial membranes and purified by centrifugation on a glycerol gradient. The active fraction contained 5 subunits: alpha (Mr = 52,000), beta (Mr = 51,000), gamma (Mr = 34,000), delta (Mr = 23,800), and epsilon (Mr = 22,900). Purified coupled mitochondria were incubated in the presence of [ 35S ]methionine and malate to allow mitochondrial translation to occur. The largest labeled polypeptide (Mr = 52,000) was present in the chloroform extract, co-sedimented with the F1-ATPase on glycerol gradient and co-migrated with the alpha subunit upon two-dimensional electrophoresis. The results indicate that the alpha subunit of bean mitochondrial ATPase is translated on mitoribosomes, in contrast to the situation in other organisms.  相似文献   

11.
The atp6 gene, encoding the ATP6 subunit of F(1)F(0)-ATP synthase, has thus far been found only as an mtDNA-encoded gene. However, atp6 is absent from mtDNAs of some species, including that of Chlamydomonas reinhardtii. Analysis of C. reinhardtii expressed sequence tags revealed three overlapping sequences that encoded a protein with similarity to ATP6 proteins. PCR and 5'- and 3'-RACE were used to obtain the complete cDNA and genomic sequences of C. reinhardtii atp6. The atp6 gene exhibited characteristics of a nucleus-encoded gene: Southern hybridization signals consistent with nuclear localization, the presence of introns, and a codon usage and a polyadenylation signal typical of nuclear genes. The corresponding ATP6 protein was confirmed as a subunit of the mitochondrial F(1)F(0)-ATP synthase from C. reinhardtii by N-terminal sequencing. The predicted ATP6 polypeptide has a 107-amino acid cleavable mitochondrial targeting sequence. The mean hydrophobicity of the protein is decreased in those transmembrane regions that are predicted not to participate directly in proton translocation or in intersubunit contacts with the multimeric ring of c subunits. This is the first example of a mitochondrial protein with more than two transmembrane stretches, directly involved in proton translocation, that is nucleus-encoded.  相似文献   

12.
S B Vik  D Lee    P A Marshall 《Journal of bacteriology》1991,173(14):4544-4548
Mutations were constructed in the a subunit of the F1F0 ATP synthase from Escherichia coli. Truncated forms of this subunit showed a temperature sensitivity phenotype. We conclude that the carboxy terminus of the a subunit is not involved directly with proton translocation but that it has an important structural role.  相似文献   

13.
The epsilon subunit in F0F1-ATPase/synthase undergoes drastic conformational rearrangement, which involves the transition of two C-terminal helices between a hairpin "down"-state and an extended "up"-state, and the enzyme with the up-fixed epsilon cannot catalyze ATP hydrolysis but can catalyze ATP synthesis (Tsunoda, S. P., Rodgers, A. J. W., Aggeler, R., Wilce, M. C. J., Yoshida, M., and Capaldi, R. A. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 6560-6564). Here, using cross-linking between introduced cysteine residues as a probe, we have investigated the causes of the transition. Our findings are as follows. (i) In the up-state, the two helices of epsilon are fully extended to insert the C terminus into a deeper position in the central cavity of F1 than was thought previously. (ii) Without a nucleotide, epsilon is in the up-state. ATP induces the transition to the down-state, and ADP counteracts the action of ATP. (iii) Conversely, the enzyme with the down-state epsilon can bind an ATP analogue, 2',3'-O-(2,4,6-trinitrophenyl)-ATP, much faster than the enzyme with the up-state epsilon. (iv) Proton motive force stabilizes the up-state. Thus, responding to the increase of proton motive force and ADP, F0F1-ATPase/synthase would transform the epsilon subunit into the up-state conformation and change gear to the mode for ATP synthesis.  相似文献   

14.
Subunit b is indispensable for the formation of a functional H(+)-translocating F(O) complex both in vivo and in vitro. Whereas the very C-terminus of subunit b interacts with F(1) and plays a crucial role in enzyme assembly, the C-terminal region is also considered to be necessary for proper reconstitution of F(O) into liposomes. Here, we show that a synthetic peptide, residues 1-34 of subunit b (b(1-34)) [Dmitriev, O., Jones, P.C., Jiang, W. & Fillingame, R.H. (1999) J. Biol. Chem.274, 15598-15604], corresponding to the membrane domain of subunit b was sufficient in forming an active F(O) complex when coreconstituted with purified ac subcomplex. H(+) translocation was shown to be sensitive to the specific inhibitor N,N'-dicyclohexylcarbodiimide, and the resulting F(O) complexes were deficient in binding of isolated F(1). This demonstrates that only the membrane part of subunit b is sufficient, as well as necessary, for H(+) translocation across the membrane, whereas the binding of F(1) to F(O) is mainly triggered by C-terminal residues beyond Glu34 in subunit b. Comparison of the data with former reconstitution experiments additionally indicated that parts of the hydrophilic portion of the subunit b dimer are not involved in the process of ion translocation itself, but might organize subunits a and c in F(O) assembly. Furthermore, the data obtained functionally support the monomeric NMR structure of the synthetic b(1-34).  相似文献   

15.
16.
The numbers of sulfhydryl residues in F1-ATPase of thermophilic bacterium PS3 and its isolated subunits were analyzed with Ellman's reagent. This F1-ATPase contained three sulfhydryl residues and no disulfide bridge. Of the five kinds of subunits of the F1-ATPase, only the α subunit contained one sulfhydryl residue. So there are three α subunits in one molecule of the F1-ATPase.  相似文献   

17.
The chloroplast-type F(1) ATPase is the key enzyme of energy conversion in chloroplasts, and is regulated by the endogenous inhibitor epsilon, tightly bound ADP, the membrane potential and the redox state of the gamma subunit. In order to understand the molecular mechanism of epsilon inhibition, we constructed an expression system for the alpha(3)beta(3)gamma subcomplex in thermophilic cyanobacteria allowing thorough investigation of epsilon inhibition. epsilon Inhibition was found to be ATP-independent, and different to that observed for bacterial F(1)-ATPase. The role of the additional region on the gamma subunit of chloroplast-type F(1)-ATPase in epsilon inhibition was also determined. By single molecule rotation analysis, we succeeded in assigning the pausing angular position of gamma in epsilon inhibition, which was found to be identical to that observed for ATP hydrolysis, product release and ADP inhibition, but distinctly different from the waiting position for ATP binding. These results suggest that the epsilon subunit of chloroplast-type ATP synthase plays an important regulator for the rotary motor enzyme, thus preventing wasteful ATP hydrolysis.  相似文献   

18.
Escherichia coli inner membrane proteins (IMPs) use different pathways for targeting and membrane integration. We have examined the biogenesis of the F1F0 ATP synthase subunit c, a small double spanning IMP, using complementary in vivo and in vitro approaches. The data suggest that F0c is targeted by the SRP to the membrane, where it inserts at YidC in a Sec-independent mechanism. F0c appears to be the first natural substrate of this novel pathway.  相似文献   

19.
The uncB, E, F, and H genes of the Escherichia coli unc operon were cloned behind the lac promoter of plasmid pUC9, generating plasmid pBP101. These unc loci code, respectively, for the chi, omega, and psi subunits of the F0 sector and the delta subunit of the F1 sector of the H+-ATP synthase complex. Induction of expression of the four unc genes by the addition of isopropyl-beta-D-thiogalactoside resulted in inhibition of growth. During isopropyl-beta-D-thiogalactoside induction, the three subunits of F0 were integrated into the cytoplasmic membrane with a resultant increase in H+ permeability. A functional F0 was formed from plasmid pBP101 in a genetic background lacking all eight of the unc structural genes coding the F1F0 complex. In the unc deletion background, a reasonable correlation was observed between the amount of F0 incorporated into the membrane and the function measured, i.e., high-affinity binding of F1 and rate of F0-mediated H+ translocation. This correlation indicates that most or all of the F0 assembled in the membrane is active. Although the F0 assembled under these conditions binds F1, only partial restoration of NADH-dependent or ATP-dependent quenching of quinacrine fluorescence was observed with these membranes. Proteolysis of a fraction of the psi subunit may account for this partial deficiency. The experiments described demonstrate that a functional F0 can be assembled in vivo in E. coli strains lacking genes for the alpha, beta, gamma, and epsilon subunits of F1.  相似文献   

20.
The antigenic determinants of mAbs against subunit c of the Escherichia coli ATP synthase were mapped by ELISA using overlapping synthetic heptapeptides. All epitopes recognized are located in the hydrophilic loop region and are as follows: 31-LGGKFLE-37, 35-FLEGAAR-41, 36-LEGAAR-41 and 36-LEGAARQ-42. Binding studies with membrane vesicles of different orientation revealed that all mAbs bind to everted membrane vesicles independent of the presence or absence of the F1 part. Although the hydrophilic region of subunit c and particularly the highly conserved residues A40, R41, Q42 and P43 are known to interact with subunits gamma and epsilon of the F1 part, the mAb molecules have no effect on the function of F0. Furthermore, it could be demonstrated that the F1 part and the mAb molecule(s) are bound simultaneously to the F0 complex suggesting that not all c subunits are involved in F1 interaction. From the results obtained, it can be concluded that this interaction is fixed, which means that subunits gamma and epsilon do not switch between the c subunits during catalysis and furthermore, a complete rotation of the subunit c oligomer modified with mAb(s) along the stator of the F1F0 complex, proposed to be composed of at least subunits b and delta, seems to be unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号