首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

2.
Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS.  相似文献   

3.
A biotype of Avena sterilis ssp. ludoviciana is highly resistantto a range of herbicides which inhibit a key enzyme in fattyacid synthesis, acetyl-CoA carboxylase (ACCase). Possible mechanismsof herbicide resistance were investigated in this biotype. Acetyl-CoAcarboxylase from the resistant biotype is less sensitive toinhibition by herbicides to which resistance is expressed. I50values for herbicide inhibition of ACCase were 52 to 6 timesgreater in the resistant biotype than in the susceptible biotype.This was the only major difference found between the resistantand susceptible biotypes. The amount of ACCase in the meristemsof the resistant and susceptible is similar during ontogenyand no difference was found in distribution of ACCase betweenthe two biotypes. Uptake, translocation and metabolism of [14C]diclofop-methylwere not different between the two biotypes. In vivo, ACCaseactivity in the meristems of the susceptible biotype was greatlyinhibited by herbicide application whereas only 25% inhibitionoccurred in the resistant biotype. Depolarisation of plasmamembrane potential by 50 µM diclofop acid was observedin both biotypes and neither biotype showed recovery of themembrane potential following removal of the herbicide. Hence,a modified form of ACCase appears to be the major determinantof resistance in this resistant wild oat biotype. (Received February 10, 1994; Accepted March 11, 1994)  相似文献   

4.
Richter J  Powles SB 《Plant physiology》1993,102(3):1037-1041
Herbicide resistance can occur either through target-site insensitivity or by nontarget site-based mechanisms. Two herbicide-resistant biotypes of Lolium rigidum Gaud., one resistant to acetolactate synthase (ALS)-inhibiting herbicides (biotype WLR1) and the other resistant to acetyl CoA carboxylase (ACCase)-inhibiting herbicides (biotype WLR96) through target-site insensitivity at the whole plant and enzymic levels, were found to express this resistance in the pollen. Pollen produced by resistant biotypes grew uninhibited when challenged with herbicide, whereas that from a susceptible biotype was inhibited. A third biotype, SLR31, resistant to ACCase-inhibiting and certain ALS-inhibiting herbicides at the whole plant level through nontarget site-based mechanisms, did not exhibit this expression in the pollen. The technique described may form the basis for a rapid screen for certain nuclear-encoded, target site-based herbicide-resistance mechanisms.  相似文献   

5.
The development of herbicide multiple-resistance in weed species represents a major threat to current agricultural practices. The mechanistic basis for herbicide multiple-resistance has been investigated in a population of the annual grass weed Lolium rigidum Gaud. (annual ryegrass) resistant to herbicides affecting 6 target sites. A subset of the resistant population (R2 subset) has been isolated by germination on a medium containing the acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) inhibiting herbicide, sethoxydim ((2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one)). This 12% R2 subset of the population is 600 times more resistant to sethoxydim and between 30 to 200 times more resistant to other ACCase inhibitors than the bulk of the R population. The subset has a form of ACCase which is 6 to 55 times less sensitive to inhibition by these herbicides than the enzyme present in the bulk of the resistant or in the susceptible population. There was no difference in the uptake and metabolic degradation of [4-14C]sethoxydim between the R2 subset and the unselected R population. These results show the accumulation of different resistance mechanisms in that single population. Furthermore we propose that this accumulation of multiple resistance mechanisms is the basis for herbicide multiple-resistance in this biotype.  相似文献   

6.

Background and aims

In this study, we describe the molecular, physiological and agronomic aspects involved in the resistance to acetyl coenzyme A carboxylase inhibiting herbicides (ACCase) observed in one biotype of Phalaris paradoxa from Mexico.

Methods

Dose–response Assays: The herbicide rate inhibiting plant growth of each biotype by 50% with respect to the untreated control, ED50. Enzyme purification and ACCase assays to determine herbicide rate inhibiting the enzyme of each biotype by 50% with respect to the untreated control, I50. Absorption and Translocation Assays with [14C]diclofop-methyl. Metabolism of diclofop-methyl and its metabolites were identified by thin-layer chromatography. Study of target site resistance mechanism at enzyme and molecular levels.

Results

In this work, it has been studied the whole-plant response of Phalaris paradoxa biotypes from Mexico resistant (R) and susceptible (S) to ACCase-inhibiting herbicides: aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ), and the mechanism behind their resistance were studied. To analyse the resistance mechanism, the enzyme ACCase activity was investigated. Results from biochemical assays indicated a target-site resistance as the cause of reduced susceptibility to ACCase inhibitors. The absorption, translocation and metabolism were similar between R and S biotypes. A point mutation never described before was detected within the triplet of glycine at the amino acid position 2096 (referring to EMBL accession no. AJ310767) and resulted in the triplet of serine. This new mutation could explain the loss of affinity for the ACCase-inhibiting herbicides.

Conclusions

We found a new mutation, which had never been described before. This mutation was detected within the triplet of glycine at the amino acid position 2096. This new mutation confers cross-resistance to three different chemical groups of ACCase-inhibiting herbicides.  相似文献   

7.
Yu Q  Cairns A  Powles S 《Planta》2007,225(2):499-513
Glyphosate is the world’s most widely used herbicide. A potential substitute for glyphosate in some use patterns is the herbicide paraquat. Following many years of successful use, neither glyphosate nor paraquat could control a biotype of the widespread annual ryegrass (Lolium rigidum), and here the world’s first case of multiple resistance to glyphosate and paraquat is confirmed. Dose–response experiments established that the glyphosate rate causing 50% mortality (LD50) for the resistant (R) biotype is 14 times greater than for the susceptible (S) biotype. Similarly, the paraquat LD50 for the R biotype is 32 times greater than for the S biotype. Thus, based on the LD50 R/S ratio, this R biotype of L. rigidum is 14-fold resistant to glyphosate and 32-fold resistant to paraquat. This R biotype also has evolved resistance to the acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides. The mechanism of paraquat resistance in this biotype was determined as restricted paraquat translocation. Resistance to ACCase-inhibiting herbicides was determined as due to an insensitive ACCase. Two mechanisms endowing glyphosate resistance were established: firstly, a point mutation in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, resulting in an amino acid substitution of proline to alanine at position 106; secondly, reduced glyphosate translocation was found in this R biotype, indicating a co-occurrence of two distinct glyphosate resistance mechanisms within the R population. In total, this R biotype displays at least four co-existing resistance mechanisms, endowing multiple resistance to glyphosate, paraquat and ACCase herbicides. This alarming case in the history of herbicide resistance evolution represents a serious challenge for the sustainable use of the precious agrochemical resources such as glyphosate and paraquat.  相似文献   

8.
The appearance of biotypes of the annual grass weed black‐grass (Alopecurus myosuroides L. Huds), which are resistant to certain graminicides, is the most significant example of acquired resistance to herbicides seen so far in European agriculture. An investigation was perfomed into the basis of the specific cross‐resistance to cyclohexanedione (CHD) and aryloxyphenoxypropionoic acid (AOPP) herbicides in the ‘Notts A1’ population of A. myosuroides, which survived treatment of fields with recommended rates of AOPP herbicides. In comparison with the wild‐type ‘Rothamsted’ population, the resistant biotype showed over 100‐fold resistance to these herbicides in a hydroponic growth system. Biosynthesis of fatty acids and activity of crude extracts of acetyl‐CoA carboxylase (ACCase) were commensurately less sensitive to these herbicides in Notts A1 compared with the Rothamsted biotype. These data are consistent with the hypothesis that the highly resistant population has arisen through selection of a mutant ACCase which is much less sensitive to the AOPP and CHD graminicides. Rapidly growing cell suspension cultures established from the Notts A1 population also showed high resistance indices for CHD or AOPP herbicides compared with cultures from the Rothamsted biotype. Fatty acid biosynthesis and ACCase activity in the cell suspensions were similarly sensitive towards the graminicides to those in the foliar tissue counterparts of the resistant and sensitive populations. Moreover, purification of the main (chloroplast) isoform of acetyl‐CoA carboxylase showed that this enzyme from the Notts A1 population was over 200‐fold less sensitive towards the AOPP herbicide, quizalofop, than the equivalent isoform from the Rothamsted population. These data again fully supported the proposal that resistance in the Notts biotype is due to an insensitive acetyl‐CoA carboxylase isoform. Overall, cell suspensions were also demonstrated to be excellent tools for further investigation of the molecular basis of the high level herbicide resistance which is prone to occur in A. myosuroides.  相似文献   

9.
WLR1, a biotype of Lolium rigidum Gaud. that had been treated with the sulfonylurea herbicide chlorsulfuron in 7 consecutive years, was found to be resistant to both the wheat-selective and the nonselective sulfonylurea and imidazolinone herbicides. Biotype SLR31, which became cross-resistant to chlorsulfuron following treatment with the aryloxyphenoxypropionate herbicide diclofop-methyl, was resistant to the wheat-selective, but not the nonselective, sulfonylurea and imidazolinone herbicides. The concentrations of herbicide required to reduce in vitro acetolactate synthase (ALs) activity 50% with respect to control assays minus herbicide for biotype WLR1 was greater than those for susceptible biotype VLR1 by a factor of >30, >30, 7,4, and 2 for the herbicides chlorsulfuron, sulfometuron-methyl, imazapyr, imazathapyr, and imazamethabenz, respectively. ALS activity from biotype SLR31 responded in a similar manner to that of the susceptible biotype VLR1. The resistant biotypes metabolized chlorsulfuron more rapidly than the susceptible biotype. Metabolism of 50% of [phenyl-U-14C]chlorsulfuron in the culms of two-leaf seedlings required 3.7 h in biotype SLR31, 5.1 h in biotype WLR1, and 7.1 h in biotype VLR1. In all biotypes the metabolism of chlorsulfuron in the culms was more rapid than that in the leaf lamina. Resistance to ALS inhibitors in L. rigidum may involve at least two mechanisms, increased metabolism of the herbicide and/or a herbicide-insensitive ALS.  相似文献   

10.
Many biotypes of Lolium rigidum Gaud, (annual ryegrass) have developed resistance to herbicides; however, few have developed resistance to phenylurea herbicides. Two biotypes with different histories of herbicide selection pressure were six to eight times less sensitive to the phenylurea herbicide, chlorotoluron, than a susceptible biotype. Resistance was not due to differences in the herbicide target site as oxygen evolution by thylakoids isolated from resistant and susceptible biotypes was similarly inhibited by diuron and chlorotoluron. There was no difference in the uptake and distribution of chlorotoluron into resistant and susceptible plants. There was a twofold greater rate of chlorotoluron detoxification in resistant plants with N-demethylation being a major detoxification reaction. Resistant plants treated with a 3-h pulse of 120 M chlorotoluron recovered net carbon fixation after 42 h, half the time taken by susceptible plants. The mixed-function oxidase inhibitor 1-aminobenzotriazole (70 M) intensified the effects of chlorotoluron in resistant plants when applied in combination with the herbicide for 7 d. 1-Aminobenzotriazole also inhibited the metabolism of chlorotoluron in both resistant and susceptible plants. The cytochrome P-450 inhibitor, piperonyl butoxide piperonyl butoxide, interacted with chlorotoluron when applied to plants growing in soil. Chlorotoluron applied with reduced plant dry weight to a greater extent than chlorotoluron alone. It appears, therefore, that enhanced detoxification is the major mechanism of resistance to chlorotoluron in the resistant biotypes studied.Abbreviations ABT 1-aminobenzotriazole - VLR1 Victorian L. rigidum biotype 1 — herbicide susceptible - VLR69 Victorian L. rigidum biotype 69 — herbicide resistant - WLR2 Western Australian L. rigidum biotype 2 — herbicide resistant M.W.M.B, was supported by an Australian Postgraduate Research Award and a supplementary scholarship from the Grains Research and Development Corporation. We are very grateful to Dr. E. Ebert, Ciba Geigy, Basal, Switzerland for providing [14C]chlorotoluron and standards of chlorotoluron metabolites. We express our gratitude to Dr. John Huppatz of the CSIRO Division of Plant Industry for providing ABT. We also thank Ciba Geigy Australia for providing technical-grade chlorotoluron and formulated phenylurea herbicides.  相似文献   

11.
The mechanism of resistance to diquat and paraquat was investigated in a bipyridyl-herbicide-resistant biotype of Arctotheca calendula (L.) Levyns. No differences were observed in the interactions of these herbicides with Photo-system I, the active site, in thylakoids isolated from resistant and susceptible biotypes. Likewise, absorption of herbicide through the cuticle and gross translocation were identical in plants of the two biotypes. Foliar application of either 25 g ha−1 diquat or 200 g ha−1 paraquat rapidly inhibited CO2-dependent O2 evolution of leaf segments of the susceptible biotype. O2 evolution of leaf segments of the resistant biotype was less affected by these treatments. Fluorescence imaging was used to observe visually, as fluorescence quenching, the penetration of herbicide to the active site. These experiments demonstrated that diquat appears at the active site more slowly in the resistant biotype compared to the susceptible biotype. HCO3-dependent O2 evolution of thin leaf slices was less inhibited by diquat in the resistant biotype than in the susceptible biotype. The mechanism of resistance to the bipyridyl herbicides in this biotype of A. calendula is not a result of changes at the active site, decreased herbicide absorption or decreased translocation, but appears to be due to reduced herbicide penetration to the active site.  相似文献   

12.
Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-injection electrospray mass spectrometry was used for high-throughput metabolic fingerprinting for finding significant differences among biotypes in response to herbicide application. A Mexican biotype of wild oat (Avena fatua) that displays multiple resistances to ACCase- and ALS-inhibiting herbicides was characterized. The dose–response test showed that the double-resistant biotype had a resistance index of 3.58 for pinoxaden and 3.53 for mesosulfuron-methyl. Resistance was accompanied by characteristic mutations at the site of action: an I-1781-L substitution occurred in the ACCase enzyme and an S-653-N mutation was identified within the ALS enzyme. Other mutations were also detected in the genes of the Mexican biotypes. The ionomic fingerprint showed that the multiple-resistant biotype had a markedly different metabolic pattern under control conditions and that this difference was accentuated after herbicide treatment. This demonstrates that single changes of amino acid sequences can produce several holistic modifications in the metabolism of resistant plants compared to susceptible plants. We conclude that in addition to genetic resistance, additional mechanisms of metabolic adaptation and detoxification can occur in multiple-resistant weed plants.  相似文献   

13.
Lolium rigidum Gaud. biotype SLR31 is resistant to the herbicide diclofop-methyl and cross-resistant to several sulfonylurea herbicides. Wheat and the cross-resistant ryegrass exhibit similar patterns of resistance to sulfonylurea herbicides, suggesting that the mechanism of resistance may be similar. Cross-resistant ryegrass is also resistant to the wheat-selective imidazolinone herbicide imazamethabenz. The cross-resistant biotype SLR31 metabolized [phenyl-U-14C]chlorsulfuron at a faster rate than a biotype which is susceptible to both diclofop-methyl and chlorsulfuron. A third biotype which is resistant to diclofop-methyl but not to chlorsulfuron metabolized chlorsulfuron at the same rate as the susceptible biotype. The increased metabolism of chlorsulfuron observed in the cross-resistant biotype is, therefore, correlated with the patterns of resistance observed in these L. rigidum biotypes. During high performance liquid chromatography analysis the major metabolite of chlorsulfuron in both susceptible and cross-resistant ryegrass coeluted with the major metabolite produced in wheat. The major product is clearly different from the major product in the tolerant dicot species, flax (Linium usitatissimum). The elution pattern of metabolites of chlorsulfuron was the same for both the susceptible and cross-resistant ryegrass but the cross-resistant ryegrass metabolized chlorsulfuron more rapidly. The investigation of the dose response to sulfonylurea herbicides at the whole plant level and the study of the metabolism of chlorsulfuron provide two independent sets of data which both suggest that the resistance to chlorsulfuron in cross-resistant ryegrass biotype SLR31 involves a wheat-like detoxification system.  相似文献   

14.
Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistant kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I50 to susceptible I50) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [14C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The Km values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mm, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme.  相似文献   

15.
The herbicidally active aryloxyphenoxypropionates diclofop acid, haloxyfop acid, and fluazifop acid and the cyclohexanedione sethoxydim depolarized membranes in coleoptiles of eight biotypes of herbicide-susceptible and herbicide-resistant annual ryegrass (Lolium rigidum). Membrane polarity was reduced from −100 millivolts to −30 to −50 millivolts. Membranes repolarized after removal of the compounds only in biotypes with resistance to the compound added. Repolarization was not observed in herbicide-susceptible L. rigidum, nor was it observed in biotypes resistant to triazine, triazole, triazinone, phenylurea, or sulfonylurea herbicides but not resistant to aryloxyphenoxypropionates and cyclohexanediones. Chlorsulfuron, a sulfonylurea herbicide, at a saturating concentration of 1 micromolar, reduced membrane polarity in all biotypes studied by only 15 millivolts. The recovery of membrane potential following the removal of chlorsulfuron was restricted to chlorsulfuron-susceptible and -resistant biotypes that did not exhibit diclofop resistance. These differences in membrane responses are correlated with resistance to dicloflop rather than with resistance to chlorsulfuron. It is suggested that the differences may reflect altered membrane properties of diclofop-resistant biotypes. Further circumstantial evidence for dissimilarity of properties of membranes from diclofop-resistant and diclofop-susceptible ryegrass is provided by observations that K+/Na+ ratios were significantly higher in coleoptiles from diclofop-resistant biotypes than in coleoptiles from susceptible plants. Intact and excised roots from susceptible biotypes were capable of acidifying the external medium, whereas roots from resistant biotypes were unable to do so. The ineluctable conclusion is that in L. rigidum the phenomena of membrane repolarization and resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides are correlated.  相似文献   

16.
This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [14C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.  相似文献   

17.
Wild oat (Avena fatua L.) populations resistant to herbicides that inhibit acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) represent an increasingly important weed control problem. The objective of this study was to determine the ACCase mutation responsible for herbicide resistance in a well-studied wild oat biotype (UMI). A 2039-bp region encompassing the carboxybiotin and acetyl-CoA binding domains of multifunctional plastidic ACCase was analyzed. DNA sequences representing three plastidic ACCase gene loci were isolated from both the resistant UMI and a herbicide-susceptible biotype, consistent with the hexaploid nature of wild oat. Only one nonsynonymous point mutation was found among the resistant wild oat sequences, inferring an isoleucine to leucine substitution. The position of this substitution corresponds to residue 1769 of wheat (Triticum aestivum L.) plastidic ACCase (GenBank accession No. AF029895). Analysis of an F2 population derived from a cross between a herbicide-resistant and a susceptible biotype confirmed co-segregation of herbicide resistance with the mutated ACCase. We conclude that the isoleucine to leucine mutation is responsible for herbicide resistance in UMI wild oat based on a comparison of the substitution site across species and ACCase types. While isoleucine is conserved among plastidic ACCases of herbicide-susceptible grasses, leucine is found in plastidic and cytosolic forms of multifunctional herbicide-resistant ACCase.  相似文献   

18.
Acetyl-coenzyme A carboxylase (ACCase) was purified >100-fold (specific activity 3.5 units mg-1) from leaf tissue of diclofopresistant and -susceptible biotypes of Lolium multiflorum. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified fractions from both biotypes contained a single 206-kD biotinylated polypeptide. The molecular mass of the native enzyme from both biotypes was approximately 520 kD. In some cases the native dimer from both biotypes dissociated during gel filtration to form a subunit of approximately 224 kD. The inclusion of 5% (w/v) polyethylene glycol 3350 (PEG) in the elution buffer prevented this dissociation. Steady-state substrate kinetics were analyzed in both the presence and absence of 5% PEG. For ACCase from both biotypes, addition of PEG increased the velocity 22% and decreased the apparent Km values for acetyl-coenzyme A (acetyl-CoA), but increased the Km values for bicarbonate and ATP. In the presence of PEG, the Km values for bicarbonate and ATP were approximately 35% higher for the enzyme from the susceptible biotype compared with the resistant enzyme. In the absence of PEG, no differences in apparent Km values were observed for the enzymes from the two biotypes. Inhibition constants (Ki app) were determined for CoA, malonyl-CoA, and diclofop. CoA was an S-hyperbolic (slope replots)-I-hyperbolic (intercept replots) noncompetitive inhibitor with respect to acetyl-CoA, with Ki app values of 711 and 795 [mu]M for enzymes from the resistant and susceptible biotypes, respectively. Malonyl-CoA competitively inhibited both enzymes (versus acetyl-CoA) with Ki app values of 140 and 104 [mu]M for ACCase from resistant and susceptible biotypes, respectively. Diclofop was a linear noncompetitive inhibitor of ACCase from the susceptible biotype and a nonlinear, or S-hyperbolic-I-hyperbolic, noncompetitive inhibitor of ACCase from the resistant biotype. For ACCase from the susceptible biotype the slope (Kis) and intercept (Kii) inhibition constants for diclofop versus acetyl-CoA were 0.08 and 0.44 [mu]M, respectively. ACCase from the resistant biotype had a Ki app value of 6.5 [mu]M. At a subsaturating acetyl-CoA concentration of 50 [mu]M, the Hill coefficients for diclofop binding were 0.61 and 1.2 for ACCase from the resistant and susceptible biotypes, respectively. The Hill coefficients for diclofop binding and the inhibitor replots suggest that the resistant form of ACCase exhibits negative cooperativity in binding diclofop. However, the possibility that the nonlinear inhibition of ACCase activity by diclofop in the enzyme fraction isolated from the resistant biotype is due to the presence of both resistant and susceptible forms of ACCase cannot be excluded.  相似文献   

19.
`Black Mexican Sweet' (BMS) maize (Zea mays L.) tissue cultures were selected for tolerance to sethoxydim. Sethoxydim, a cyclohexanedione, and haloxyfop, an aryloxyphenoxypropionate, exert herbicidal activity on most monocots including maize by inhibiting acetyl-coenzyme A carboxylase (ACCase). Selected line B10S grew on medium containing 10 micromolar sethoxydim. Lines B50S and B100S were subsequent selections from B10S that grew on medium containing 50 and 100 micromolar sethoxydim, respectively. Growth rates of BMS, B10S, B50S, and B100S were similar in the absence of herbicide. Herbicide concentrations reducing growth by 50% were 0.6, 4.5, 35, and 26 micromolar sethoxydim and 0.06, 0.5, 5.4, and 1.8 micromolar haloxyfop for BMS, B10S, B50S, and B100S, respectively. Sethoxydim and haloxyfop concentrations that inhibited ACCase by 50% were similar for BMS, B10S, B50S, and B100S. However, ACCase activities were 6.01, 10.7, 16.1, and 11.4 nmol HCO3 incorporated per milligram of protein per minute in extracts of BMS, B10S, B50S, and B100S, respectively, suggesting that increased wild-type ACCase activity conferred herbicide tolerance. Incorporation of [14C]acetate into the nonpolar lipid fraction was higher for B50S than for BMS in the absence of sethoxydim providing further evidence for an increase in ACCase activity in the selected line. In the presence of 5 micromolar sethoxydim, [14C]acetate incorporation by B50S was similar to that for untreated BMS. The levels of a biotin-containing polypeptide (about 220,000 molecular weight), presumably the ACCase subunit, were increased in the tissue cultures that exhibited elevated ACCase activity indicating overproduction of the ACCase enzyme.  相似文献   

20.
There has been much debate regarding the potential for reduced rates of herbicide application to accelerate evolution of herbicide resistance. We report a series of experiments that demonstrate the potential for reduced rates of the acetyl-co enzyme A carboxylase (ACCase)-inhibiting herbicide diclofop-methyl to rapidly select for resistance in a susceptible biotype of Lolium rigidum. Thirty-six percent of individuals from the original VLR1 population survived application of 37.5 g diclofop-methyl ha–1 (10% of the recommended field application rate). These individuals were grown to maturity and bulk-crossed to produce the VLR1 low dose-selected line VLR1 (0.1). Subsequent comparisons of the dose-response characteristics of the original and low dose-selected VLR1 lines demonstrated increased tolerance of diclofop-methyl in the selected line. Two further rounds of selection produced VLR1 lines that were resistant to field-applied rates of diclofop-methyl. The LD50 (diclofop-methyl dose required to cause 50% mortality) of the most resistant line was 56-fold greater than that of the original unselected VLR1 population, indicating very large increases in mean population survival after three cycles of selection. In vitro ACCase inhibition by diclofop acid confirmed that resistance was not due to an insensitive herbicide target-site. Cross-resistance studies showed increases in resistance to four herbicides: fluazifop-P-butyl, haloxyfop-R-methyl, clethodim and imazethapyr. The potential genetic basis of the observed response and implications of reduced herbicide application rates for management of herbicide resistance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号