首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the 1H NMR spectra obtained at 360 MHz after digital resolution enhancement, the multiplet resonances of the methyl groups in the basic pancreatic trypsin inhibitor (BPTI) were resolved. With suitable double irradiation techniques the individual methyl resonances were assigned to the different types of aliphatic amino acid residues. Furthermore, from pH titration and comparison of the native protein with chemically modified BPTI, the resonance lines of Ala 16 in the active site and Ala 58 at the C-terminus were identified. Potential applications of the resolved methyl resonances as natural NMR probes for studies of the molecular conformation are discussed.  相似文献   

2.
In earlier work the resonances of the 20 methyl groups in the basic pancreatic trypsin inhibitor (BPTI) had been identified in the 360-MHz 1H nuclear magnetic resonance (NMR) spectra and most of the methyl lines had from spin-decoupling experiments been assigned to the different types of amino acid residues. The assignments to the different amino acid types were now completed by studies of the saturation transfer between the denatured and the globular forms of the inhibitor and by spin-decoupling experiments in nuclear Overhauser enhancement (NOE) difference spectra. These distinguished between the methyl resonances of Ala and Thr. Furthermore, for most of the methyl resonances, individual assignments to specific residues in the amino acid sequence were obtained from measurements of intramolecular proton-proton NOE's, use of lanthanide NMR shift and relaxation probes, and comparative studies of various chemically modified forms of BPTI. These data provide the basis for individual assignments of the methyl 13C NMR lines in BPTI and for detailed investigations of the relations between the spatial structure of the protein and the chemical shifts of the methyl groups. The methyl groups in BPTI are of particular interest since they are located almost exclusively on the surface of the protein and thus represent potential natural NMR probes for studies of the protein-protein interactions in the complexes formed between BPTI and a variety of proteases.  相似文献   

3.
Summary Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the hydroxyl NMR lines is indispensable as a reference for studies of protein hydration in solution. In this paper, solvent suppression schemes recently developed for observation of hydration water resonances were used to observe hydroxyl protons of serine, threonine and tyrosine in aqueous solutions of small model peptides and the protein basic pancreatic trypsin inhibitor (BPTI). The chemical shifts of the hydroxyl protons of serine and threonine were found to be between 5.4 and 6.2 ppm, with random-coil shifts at 4°C of 5.92 ppm and 5.88 ppm, respectively, and those of tyrosine between 9.6 and 10.1 ppm, with a random-coil shift of 9.78 ppm. Since these spectral regions are virtually free of other polypeptide1H NMR signals, cross peaks with the hydroxyl protons are usually well separated even in homonuclear two-dimensional1H NMR spectra. To illustrate the practical use of hydroxyl proton NMR in polypeptides, the conformations of the side-chain hydroxyl groups in BPTI were characterized by measurements of nuclear Overhauser effects and scalar coupling constants involving the hydroxyl protons. In addition, hydroxyl proton exchange rates were measured as a function of pH, where simple first-order rate processes were observed for both acid- and base-catalysed exchange of all but one of the hydroxyl-bearing residues in BPTI. For the conformations of the individual Ser, Thr and Tyr side chains characterized in the solution structure with the use of hydroxyl proton NMR, both exact coincidence and significant differences relative to the corresponding BPTI crystal structure data were observed.[/p]  相似文献   

4.
NMR study of the modified base resonances of tRNA tyr- coli   总被引:1,自引:0,他引:1  
220MHz NMR spectra at 28° show several resolved resonances in the high field region for D2O solutions of tyrosine specific tRNA from E. coli. These resonances are tentatively identified as arising from protons of the modified nucleoside, 2-methylthio-N6-(Δ2-isopentenyl)-adenosine and from the modified guanosine of unknown structure in the “wobble position” of the anti codon loop. Assignment of resonances was aided by comparison with spectra of tRNAsu+IIItyr, Form II, whose sequence is closely homologous to tRNAcolityr, except for changes in some modified bases. Line widths of resolved resonances indicate that, at 28°, the methyl groups of modified nucleosides are not completely restricted in their motion relative to the overall motion of the macromolecule.  相似文献   

5.
The basic pancreatic trypsin inhibitor (BPTI) was investigated by high resolution 1H NMR techniques at 360 MHz. Observation of the amide proton resonances of the polypeptide backbone showed that the globular conformation of BPTI determined by X-ray studies in single crystals is maintained in aqueous solution over the temperature range from 4 degrees to 87 degrees. NMR studies over this temperature range of the aromatic amino acid residues of BPTI. i.e. 4 tyrosines and 4 phenylalanines, led to complete assignments of all the aromatic spin systems in the protein. From this, information was obtained on the rotational motions about the C beta--Cv bond axis of the aromatic rings in the globular form of PBTI. At 25 degrees, two tyrosine rings and one phenylalanine ring are rotating rapidly on the NMR time scale. For the other rings the transitions from slow to rapid rotational motions were investigated at variable temperatures and energy barriers for these intramolecular rate processes determined. The studies of the tyrosine resonances had been described in detail in a previous publication. The present paper describes the identification of the phenylalanine resonances and comments on some technical aspects which might be of quite general interest for the analysis of highly resolved 1H NMR spectra of proteins. Data for the tyrosines and the phenylalanines are compiled in three tables, i.e. the pK alpha-values for the tyrosines, the NMR parameters for all eight aromatics, and the parameters delta G not equal to, and, where available, delta H not equal to and delta S not equal to for the rotational motions of the rings.  相似文献   

6.
Four N-terminal extended species of the wild-type bovine pancreatic trypsin inhibitor (WT-BPTI), Arg-BPTI (1-BPTI), Met-Glu-Ala-Glu-BPTI (4-BPTI), Ser-Ile-Glu-Gly-Arg-BPTI (5-BPTI) and Gly-Ser-Ile-Glu-Gly-Arg-BPTI (6-BPTI) have been studied by 1H n.m.r. The overall structure of the protein is largely unaffected by the addition of extension peptides. pH titration effects on the C-terminal Ala 58 H beta chemical shift indicate that the structure of 1-BPTI at neutral pH is very similar to that of the WT protein, with a salt bridge between the main chain terminal charges. A salt bridge interaction is prevented by addition of the longer extension peptides. Temperature stabilities are measured by high temperature hydrogen isotope exchange and by microcalorimetry. The stability of 1-BPTI is equal to that of WT-BPTI. A slight decrease in stability is observed for longer extensions, following the order WT-BPTI = 1-BPTI < 5-BPTI = 6-BPTI < 4-BPTI. Small changes in chemical shift are observed for 30 invariant resonances in 4-, 5- and 6-BPTI and for a subset of this group in 1-BPTI. These protons are distributed over about half of the BPTI molecule. The size of the chemical shift changes for many resonances follow the same ranking as the temperature stability. The chemical shift effects are attributed to charge and dielectric effects from extension peptides that probably share a common orientation on the surface of BPTI.  相似文献   

7.
Summary 1H-NMR spectra of bovine pancreatic trypsin inhibitor (BPTI) both native and oxidized by chloramine T, are reported. The spectrum of the oxidized form is characterized by the appearance of two singlets for methyl group shifted 0.60 and 0.46 ppm downfield with respect to the native form.  相似文献   

8.
The surface dynamics of bacteriorhodopsin was examined by measurements of site-specific 13C–1H dipolar couplings in [3-13C]Ala-labeled bacteriorhodopsin. Motions of slow or intermediate frequency (correlation time <50 µs) scale down 13C–1H dipolar couplings according to the motional amplitude. The two-dimensional dipolar and chemical shift (DIPSHIFT) correlation technique was utilized to obtain the dipolar coupling strength for each resolved peak in the 13C MAS solid-state NMR spectrum, providing the molecular order parameter of the respective site. In addition to the rotation of the Ala methyl group, which scales the dipolar coupling to 1/3 of the rigid limit value, fluctuations of the C–C vector result in additional motional averaging. Typical order parameters measured for mobile sites in bacteriorhodopsin are between 0.25 and 0.29. These can be assigned to Ala103 of the C–D loop and Ala235 at the C-terminal -helix protruded from the membrane surface, and Ala196 of the F–G loop, as well as to Ala228 and Ala233 of the C-terminal -helix and Ala51 from the transmembrane -helix. Such order parameters departing significantly from the value of 0.33 for rotating methyl groups are obviously direct evidence for the presence of fluctuation motions of the Ala C–C vectors of intact preparations of fully hydrated, wild-type bacteriorhodopsin at ambient temperature. The order parameter for Ala160 from the expectantly more flexible E–F loop, however, is unavailable under highest-field NMR conditions, probably because increased chemical shift anisotropy together with intrinsic fluctuation motions result in an unresolved 13C NMR signal.  相似文献   

9.
Summary Biosynthetically directed fractional incorporation of13C into proteins results in nonrandom13C-labeling patterns that can be investigated by analysis of the13C–13C scalar coupling fine structures in heteronuclear13C–1H or homonuclear13C–13C correlation experiments. Previously this approach was used for obtaining stereospecific1H and13C assignments of the diastereotopic methyl groups of valine and leucine. In the present paper we investigate to what extent the labeling patterns are characteristic for other individual amino acids or groups of amino acids, and can thus be used to support the1H spin-system identifications. Studies of the hydrolysates of fractionally13C-labeled proteins showed that the 59 aliphatic carbon positions in the 20 proteinogenic amino acids exhibit 16 different types of13C–13C coupling fine structures. These provide support for the assignment of the resonances of all methyl groups in a protein, which are otherwise often poorly resolved in homonuclear1H NMR spectra. In particular, besides the individual methyl assignments in Val and Leu, unambiguous distinctions are obtained between the methyl groups of Ala and Thr, and between the - and -methyl groups of Ile. In addition to the methyl resonances, the CH2 groups of Glu and Gln can be uniquely assigned because of the large coupling constant with the -carbon, and the identification of most of the other spin systems can be supported on the basis of coupling patterns that are common to small groups of amino acid residues.Abbreviations NOE nuclear Overhauser effect - fractional13C labeling biosynthetically directed fractional13C-labeling - TOCSY total correlation spectroscopy - ROESY rotating frame Overhauser enhancement spectroscopy - [13C,1H]-COSY two-dimensional13C–1H correlation spectroscopy - isotopomer isotope isomer - P22 c2 repressor c2 repressor of the salmonella phage P22 consisting of a polypeptide chain with 216 residues - P22 c2(1-76) N-terminal domain of the P22 c2 repressor with residues 1–76  相似文献   

10.
We demonstrate that high-resolution multidimensional solid state NMR methods can be used to correlate many backbone and side chain chemical shifts for hydrated micro-crystalline U-13C,15N Basic Pancreatic Trypsin Inhibitor (BPTI), using a field strength of 800 MHz for protons, magic angle sample spinning rates of 20 kHz and proton decoupling field strengths of 140 kHz. Results from two homonuclear transfer methods, radio frequency driven dipolar recoupling and spin diffusion, were compared. Typical 13C peak line widths are 0.5 ppm, resulting in C-C and C-CO regions that exhibit many resolved peaks. Two-dimensional carbon–carbon correlation spectra of BPTI have sufficient resolution to identify and correlate many of the spin systems associated with the amino acids. As a result, we have been able to assign a large number of the spin systems in this protein. The agreement between shifts measured in the solid state and those in solution is typically very good, although some shifts near the ion binding sites differ by at least 1.5 ppm. These studies were conducted with approximately 0.2 to 0.4 mol of enriched material; the sensitivity of this method is apparently adequate for other biological systems as well.  相似文献   

11.
Summary An approach to produce 13C-and 15N-enriched proteins is described. The concept is based on intracellular production of the recombinant proteins in Escherichia coli as fusions to an IgG-binding domain, Z, derived from staphylococcal protein A. The production method provides yields of 40–200 mg/l of isotope-enriched fusion proteins in defined minimal media. In addition, the Z fusion partner facilitates the first purification step by IgG affinity chromatography. The production system is applied to isotope enrichment of human insulin-like growth factor II (IGF-II), bovine pancreatic trypsin inhibitor (BPTI), and Z itself. High levels of protein production are achieved in shaker flasks using totally defined minimal medium supplemented with 13C6-glucose and (15NH4)2SO4 as the only carbon and nitrogen sources. Growth conditions were optimized to obtain high protein production levels and high levels of isotope incorporation, while minimizing 13C6-glucose usage. Incorporation levels of 13C and/or 15N isotopes in purified IGF-II, BPTI, and Z were confirmed using mass spectrometry and NMR spectroscopy. More than 99% of total isotope enrichment was obtained using a defined isotope-enriched minimal medium. The optimized systems provide reliable, high-level production of isotope-enriched fusion proteins. They can be used to produce 20–40 mg/l of properly folded Z and BPTI proteins. The production system of recombinant BPTI is state-of-the-art and provides the highest known yield of native refolded BPTI.Abbreviations BPTI bovine pancreatic trypsin inhibitor - DTT dithiothreitol - Gdn-HCl guanidinium hydrochloride - IAA -indole acrylic acid - IGF-II insulin-like growth factor II - PBS phosphate-buffered saline - PDMS plasma desorption mass spectrometry - PFPA pentafluoro propionic acid - RP-HPLC reversed-phase high performance liquid chromatography - Z IgG-binding protein domain derived from staphylococcal protein A.  相似文献   

12.
The binding of the fluorescent probes 1-anilino-8-naphthalene sulfonate and dansyl cadaverine to the sodium salts of cholic, deoxycholic and dehydrocholic acids has been investigated. Enhanced probe solubilisation accompanies aggregation. Monitoring of fluorescence intensities as a function of bile salt concentration permits the detection of primary micelle formation, as well as secondary association. The transition concentrations obtained by fluorescence are in good agreement with values determined for the critical micelle concentrations, by other methods. Differences in the behaviour of cholate and deoxycholate have been noted. Fluorescence polarisation studies of 1,6-diphenyl-1,3,5-hexatriene solubilised in bile salt micelles suggest a higher microviscosity for the interior of the deoxycholate micelle as compared to cholate. 1H NMR studies of deoxycholate over the range 1–100 mg/ml suggest that micelle formation leads to a greater immobilisation of the C18 and C19 methyl groups as compared to the C21 methyl group. Well resolved 13C resonances are observed for all three steroids even at high concentration. Both fluorescence and NMR studies confirm that dehydrocholate does not aggregate.  相似文献   

13.
Certain precursor proteins (APP751 and APP770) of the amyloid beta-protein (AP) present in Alzheimer's disease contain a Kunitz-type serine protease inhibitor domain (APPI). In this study, the domain is obtained as a functional inhibitor through both recombinant (APPIr) and synthetic (APPIs) methodologies, and the solution structure of APPI is determined by 1H 2D NMR techniques. Complete sequence-specific resonance assignments (except for P13 and G37 NH) for both APPIr and APPIs are achieved using standard procedures. Ambiguities arising from degeneracies in the NMR resonances are resolved by varying sample conditions. Qualitative interpretation of short- and long-range NOEs reveals secondary structural features similar to those extensively documented by NMR for bovine pancreatic trypsin inhibitor (BPTI). A more rigorous interpretation of the NOESY spectra yields NOE-derived interresidue distance restraints which are used in conjunction with dynamic simulated annealing to generate a family of APPI structures. Within this family, the beta-sheet and helical regions are in good agreement with the crystal structure of BPTI, whereas portions of the protease-binding loops deviate from those in BPTI. These deviations are consistent with those recently described in the crystal structure of APPI (Hynes et al., 1990). Also supported in the NMR study is the hydrophobic patch in the protease-binding domain created by side chain-side chain NOE contacts between M17 and F34. In addition, the NMR spectra indicate that the rotation of the W21 ring in APPI is hindered, unlike Y21 in BPTI, showing a greater than 90% preference for one orientation in the hydrophobic groove.  相似文献   

14.
Determination of the high resolution solution structure of a protein using nuclear magnetic resonance (NMR) spectroscopy requires that resonances observed in the NMR spectra be unequivocally assigned to individual nuclei of the protein. With the advent of modern, two-dimensional NMR techniques arose methodologies for assigning the1H resonances based on 2D, homonuclear1H NMR experiments. These include the sequential assignment strategy and the main chain directed strategy. These basic strategies have been extended to include newer 3D homonuclear experiments and 2D and 3D heteronuclear resolved and edited methods. Most recently a novel, conceptually new approach to the problem has been introduced that relies on heteronuclear, multidimensional so-called triple resonance experiments for both backbone and sidechain resonance assignments in proteins. This article reviews the evolution of strategies for the assignment of resonances of proteins.  相似文献   

15.
The two histidines of the insulin monomer play a vital role in the organization of insulin into insulin hexamers. The B10 histidines bind to zinc to form two-zinc insulin hexamer, and both the B5 and B10 histidines are implicated in the formation of four-zinc insulin hexamer. These two histidines are both accessible to solvent in the dimeric form of insulin, the predominant species present at pH 2–3. In the present work we report the first 500-MHz1H NMR studies of insulin. At this frequency all four proton resonances from the two histidines of each equivalent monomer are resolved. The resonances are assigned to the C(2)- and C(4)-imidazole protons of B5 His and B10 His employing Carr-Purcell pulse sequences to detect singlets and to observe approximateT 2 relaxation times. Zinc-free bovine insulin at pH 2.9 was examined at temperatures up to 60°C in acetate buffer and in urea of varying concentrations. The environments of B5 His in molecule I and molecule II of the dimer must be the same, with the same being true for B10 His, since a total of only four sharp resonances are seen. Our assignments for the two C(2) protons are consistent with those determined from recent studies of human (B5 Ala) insulin.  相似文献   

16.
Summary The molecular conformation of the basic pancreatic trypsin inhibitor (BPTI) is known in considerable detail from both X-ray studies in single crystals and NMR studies in solution. The NMR experiments showed that the aromatic rings of the phenylalanyl and tyrosyl residues can undergo rapid rotational motions about the C-C bond. The present paper describes a model investigation of the mechanistic aspects of these intramolecular rotational motions. From calculations of the conformational energies for molecular species derived from the X-ray structure by rotations of individual aromatic rings, it was apparent that the rotational motions of the aromatics could only be understood in a flexible structure. Flexibility was simulated by allowing the protein to relax to an energetically favorable conformation for each of the different rotation states of the aromatic rings. It was then of particular interest to investigate how the perturbations caused by different rotation states of the aromatic rings were propagated in the protein structure. It was found that the rotation axes C-C were only slightly affected ( 120°). The most sizeable perturbations are caused by through space interactions with nearby atoms, which move away from the ring center and thus release the steric hindrance opposing the rotational motions. The values for the energy barriers obtained from the energy minimization are of the same order of magnitude as those measured by NMR.  相似文献   

17.
The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (K d, 16.5 nM) and BPTI (K d, 1,490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (K d, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (K d, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (K d, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (K d, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (K d, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand–ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface. In contrast, there is no detectable binding interaction between DTX-I on the inside and tetraethylammonium or charybdotoxin on the outside of the maxi-KCa channel.  相似文献   

18.
G H Snyder  R Rowan  S Karplus  B D Sykes 《Biochemistry》1975,14(17):3765-3777
The low-field portions of the 250-MHz 1H nuclear magnetic resonance (NMR) specra of native and chemically modified bovine basic pancreatic trypsin inhibitor (BPTI) have been studied as a function of pH over the range pH 5-13. Resonances associated with the 16 protons of the aromatic rings of the four BPTI tyrosines have been located and assigned to specific tyrosyl residues. Titrations of pH yielded pK's for tyrosines-10, -21, -23, and -35 of 10.4, 11.0, 11.7, and 11.1, respectively. The resonances associated with the nitrotyrosine-10 protons of mononitrated BPTI and the nitrotyrosine-10 and -21 protons of dinitrated BPTI have been similarly located, assigned and titrated yielding pK's for nitrotyrosine-10 and -21 of 6.6 and 6.4, respectively. The high-field NMR spectrum indicates that the aromatic ring of tyrosine-35 rotates less than 160 times per second at 25 degrees for pH's in the range 5-9.  相似文献   

19.
A methyl-detected ‘out-and-back’ NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ileδ1, Leuδ and Valγ (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of 13Cα, 13Cβ and 13CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.  相似文献   

20.
The structural problem posed by ill-defined segments in protein structures is similar to those encountered in the study of most peptide hormones, with terminal tracts resembling linear peptides and loops resembling cyclic peptides. The conformational preferences of short linear peptides in solution can be influenced by the use of solvent mixtures of viscosity higher than that of pure water but comparable to that of cytoplasm. In order to check whether it is possible to use these media in the structural study of proteins, we undertook an exploratory study on BPTI in a mixture of dimethylsulfoxide and water. The complete assignment of BPTI in an 80:20 (by volume) DMSO-d 6/water cryomixture at two temperatures showed that all resonances parallel those in water, hinting at the persistence of the correct protein architecture, which is also confirmed by NOESY experiments. In addition to the NOEs present in the aqueous solution it was possible to detect numerous new cross peaks, in particular from residues belonging to the less-defined regions. The new cross peaks do not originate from spin diffusion and are consistent with the best NMR structure and with the X-ray structures of BPTI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号