首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The nucleotide sequence of the gene (tnpA) which codes for the transposase of transposon Tn501 has been determined. It contains an open reading frame for a polypeptide of Mr = 111,500, which terminates within the inverted repeat sequence of the transposon. The reading frame would be transcribed in the same direction as the mercury-resistance genes and the tnpR gene. The amino acid sequence predicted from this reading frame shows 32% identity with that of the transposase of the related transposon Tn3. The C-terminal regions of these two polypeptides show slightly greater homology than the N-terminal regions when conservative amino acid substitutions are considered. With this sequence determination, the nucleotide sequence of Tn501 is fully defined. The main features of the sequence are briefly presented.  相似文献   

2.
3.
4.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus dorsi muscle and backfat tissues from Chinese Meishan and Russian Large White pigs. One novel gene that was differentially expressed was identified through semi-quantitative RT-PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The cDNA sequence of this gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 402 amino acids that contains the putative conserved transposase DDE domain and further Blast analysis revealed that this protein has 100% homology with the Tn10 transposase from Oryza sativa, Serratia marcescens, and Salmonella, and therefore, this gene can be defined as the swine Tn10 transposase gene. This novel porcine gene was finally assigned to Gene ID: 100049649. The RT-PCR analysis of the tissue expression profile was carried out using the tissue cDNAs of one Meishan pig as the templates, and the result indicated that this novel swine gene is moderately expressed in fat, and weakly expressed in small intestine, liver, kidney, and spleen but almost not expressed in heart, ovary, muscle, and lung. Our experiment established the primary foundation for further research into the biological significance of swine Tn10 transposase gene.  相似文献   

5.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus dorsi muscle and backfat tissues from Chinese Meishan and Russian Large White pigs. One novel gene that was differentially expressed was identified through semiquantitative RT-PCR, and the cDNA complete sequence was then obtained using the rapid amplification of the cDNA ends (RACE) method. The cDNA sequence of this gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 402 amino acids that contains the putative conserved transposase DDE domain, and further Blast analysis revealed that this protein has 100% homology with the Tn10 transposase from Oryza sativa, Serratia marcescens, and Salmonella, and, therefore, this gene can be defined as the swine Tn10 transposase gene. This novel porcine gene was finally assigned to Gene ID: 100049649. The RT-PCR analysis of the tissue expression profile was carried out using the tissue cDNAs of one Meishan pig as the templates, and the result indicated that this novel swine gene is moderately expressed in fat and weakly expressed in small intestine, liver, kidney, and spleen but almost not expressed in heart, ovary, muscle, and lung. Our experiment established the primary foundation for further research into the biological significance of swine Tn10 transposase gene.  相似文献   

6.
A 3.5-kb region of plasmid pTF-FC2, which contains a transposon-like element designated Tn5467, has been sequenced, and its biological activity has been investigated. The transposon is bordered by two 38-bp inverted repeat sequences which have sequence identity in 37 of 38 and in 38 of 39 bp to the tnpA distal and tnpA proximal inverted repeats of Tn21, respectively. Within these borders, open reading frames with amino acid similarity to a glutaredoxin-like protein, a MerR regulatory protein, and a multidrug-resistant-membrane transport-like protein were found. The gene for the glutaredoxin-like protein was expressed in Escherichia coli and enabled growth of a glutathione-requiring E. coli trxA gshA mutant on minimal medium and the reduction of methionine sulfoxide to methionine. In addition, there were two regions which, when translated, had homology to 85% of the N-terminal region of the Tn21 resolvase (tnpR) and to 15% of the C terminus of the Tn21 transposase (tnpA). A region containing res-like sites was located immediately upstream of the partial tnpR gene. Neither the partial transposase nor the resolvase genes of Tn5467 were biologically active, but Tn5467 was transposed and resolved when the Tn21 transposase and resolvase were provided in trans. Tn5467 appears to be a defective transposon which belongs to the Tn21 subgroup of the Tn3 family.  相似文献   

7.
F Heffron  B J McCarthy  H Ohtsubo  E Ohtsubo 《Cell》1979,18(4):1153-1163
The complete nucleotide sequence of the transposon Tn3 and of 20 mutations which affect its transposition are reported. The mutations, generated in vitro by random insertion of synthetic restriction sites, proved to contain small duplications or deletions immediately adjacent to the new restriction site. By determining the phenotype and DNA sequence of these mutations we were able to generate an overlapping phenotypic and nucleotide map. This 4957 bp transposon encodes three polypeptides which account for all but 350 bp of its total coding capacity. These proteins are the transposase, a high molecular weight polypeptide (1015 amino acids) encoded by the tnpA gene; the Tn3-specific repressor, a low molecular weight polypeptide (185 amino acids) encoded by the tnpR gene; and the 286 amino acid beta-lactamase. The 38 bp inverted repeats flanking Tn3 appear to be absolutely required in cis for Tn3 to transpose. Genetic data suggest that Tn3 contains a third site (Gill et al., 1978), designated IRS (internal resolution site), whose absence results in the insertion of two complete copies of Tn3 as direct repeats into the recipient DNA. We suggest that these direct repeats of complete copies of Tn3 are intermediates in transposition, and that the IRS site is required for recombination and subsequent segregation of the direct repeats to leave a single copy of Tn3 (Gill et al., 1978). A 23 nucleotide sequence within the amino terminus of the transposase which shares strong sequence homology with the inverted repeat may be the internal resolution site.  相似文献   

8.
F Y An  D B Clewell 《Plasmid》1991,25(2):121-124
A nucleotide sequence correction on the Enterococcus faecalis transposon Tn917 indicates that what was formerly thought to be two open reading frames (ORF5 and ORF6) is actually one reading frame (ORF5). The latter exhibits homology with the Tn3-family transposase determinants known as tnpA.  相似文献   

9.
A transposon, designated Tn5469, was isolated from mutant strain FdR1 of the filamentous cyanobacterium Fremyella diplosiphon following its insertion into the rcaC gene. Tn5469 is a 4,904-bp noncomposite transposon with 25-bp near-perfect terminal inverted repeats and has three tandemly arranged, slightly overlapping potential open reading frames (ORFs) encoding proteins of 104.6 kDa (909 residues), 42.5 kDa (375 residues), and 31.9 kDa (272 residues). Insertion of Tn5469 into the rcaC gene in strain FdR1 generated a duplicate 5-bp target sequence. On the basis of amino acid sequence identifies, the largest ORF, designated tnpA, is predicted to encode a composite transposase protein. A 230-residue domain near the amino terminus of the TnpA protein has 15.4% amino acid sequence identity with a corresponding domain for the putative transposase encoded by Lactococcus lactis insertion sequence S1 (ISS1). In addition, the sequence for the carboxyl-terminal 600 residues of the TnpA protein is 20.0% identical to that for the TniA transposase encoded by Tn5090 on Klebsiella aerogenes plasmid R751. The TnpA and TniA proteins contain the D,D(35)E motif characteristic of a recently defined superfamily consisting of bacterial transposases and integrase proteins of eukaryotic retroelements and retrotransposons. The two remaining ORFs on Tn5469 encode proteins of unknown function. Southern blot analysis showed that wild-type F. diplosiphon harbors five genomic copies of Tn5469. In comparison, mutant strain FdR1 harbors an extra genomic copy of Tn5469 which was localized to the inactivated rcaC gene. Among five morphologically distinct cyanobacterial strains examined, none was found to contain genomic sequences homologous to Tn5469.  相似文献   

10.
The effects of DNA methyltransferases on Tn3 transposition were investigated. The E. coli dam (deoxyadenosine methylase) gene was found to have no effect on Tn3 transposition. In contrast, Tn3 was found to transpose more frequently in dcm+ (deoxycytosine methylase) cells than in dcm- mutants. When the EcoRII methylase gene was introduced into dcm- cells (E. coli strain GM208), the frequency of Tn3 transposition in GM208 was dramatically increased. The EcoRII methylase recognizes and methylates the same sequence as does the dcm methylase. These results suggest that deoxycytosine methylase modified DNA may be a preferred target for Tn3 transposition. Experiments were also performed to determine whether the Tn3 transposase was involved in DNA modification. Plasmid DNA isolated from dcm- E. coli containing the Tn3 transposase gene was susceptible to ApyI digestion but resistant to EcoRI digestion, suggesting that Tn3 transposase modified the dcm recognition sequence. In addition, restriction enzymes TaqI, AvaII, BglI and HpaII did not digest this DNA completely, suggesting that the recognition sequences of TaqI, AvaII, BglI and HpaII were modified by Tn3 transposase to a certain degree. The type(s), the extent and mechanism(s) of this modification remain to be investigated.  相似文献   

11.
In order to study the transposase enzymes of Class II prokaryotic transposable elements, we have constructed genes encoding hybrid transposase proteins. This was done by recombination in vivo between the tnpA genes of transposons Tn501 and Tn21. These hybrid genes can complement in trans a transposition-defective mutant of Tn501. The structures of the products of this complementation indicate whether the specificity of the hybrid transposase in recognising the 38 bp terminal inverted repeats is that of Tn501 or that of Tn21. The determinant of this specificity is in the N-terminal region of the transposase protein, between amino acids 28 and 216. The predicted amino acid sequences so far determined of transposases from the Class II family reveal an area of homology in this region.  相似文献   

12.
Amino-terminal sequence of the Tn3 transposase protein   总被引:2,自引:0,他引:2       下载免费PDF全文
The amino-terminal sequence of the Tn3 transposase protein was determined to be Pro-Val-Asp-Phe-Leu-Thr-Thr-Glu-Gln-Val-Glu-Ser.... This was determined both from an active transposase protein purified from a transposase overproducing mutant strain and from a hybrid transposase-beta-galactosidase fusion protein. The amino acid sequence corresponded to the DNA sequence of the transposase gene beginning at an ATG initiation codon, as previously predicted from the analysis of transposase-beta-galactosidase gene fusions.  相似文献   

13.
H Allmeier  B Cresnar  M Greck  R Schmitt 《Gene》1992,111(1):11-20
The complete 11,139-nucleotide sequence of transposon Tn1721 has been determined. It contains three 38-bp inverted repeats, and (in this order) a new orfI, a resolution site (res), genes encoding resolvase (tnpR), transposase (tnpA), tetracycline-resistance (TcR) repressor (tetR), TcR (tetA) and a truncated transposase gene (tnpA'). The modulator origin of Tn1721 from at least three separate sources is supported by the distinctive codon usages of orfI, tnpR/tnpA and tetR/tetA, and by sequence similarities with Tn501 (tnpR/tnpA) and RP1 (tetR/tetA). The ORFI-encoded 56-kDa polypeptide exhibits features of a methyl-accepting chemotaxis protein (MCP) with a conserved signal domain and a potential transmembrane domain; this polypeptide cross-reacts with anti-MCP antiserum. Like chemotaxis genes, orfI is transcribed from a sigma 28-like promoter. The overexpressed orfI gene product interferes with MCP-dependent chemotaxis suggesting that it completes for soluble transducer protein(s) in the cell. The potential selective advantage of this novel transposon-borne gene is discussed.  相似文献   

14.
Trimethoprim resistance mediated by the Staphylococcus aureus multi-resistance plasmid pSK1 is encoded by a structure with characteristics of a composite transposon which we have designated Tn4003. Nucleotide sequence analysis of Tn4003 revealed it to be 4717 bp in length and to contain three copies of the insertion element IS257 (789-790 bp), the outside two of which are flanked by directly repeated 8-bp target sequences. IS257 has imperfect terminal inverted repeats of 27-28 bp and encodes for a putative transposase with two potential alpha-helix-turn-alpha-helix DNA recognition motifs. IS257 shares sequence similarities with members of the IS15 family of insertion sequences from Gram-negative bacteria and with ISS1 from Streptococcus lactis. The central region of the transposon contains the dfrA gene that specifies the S1 dihydrofolate reductase (DHFR) responsible for trimethoprim resistance. The S1 enzyme shows sequence homology with type I and V trimethoprim-resistant DHFRs from Gram-negative bacteria and with chromosomally encoded DHFRs from Gram-positive and Gram-negative bacteria. 5' to dfrA is a thymidylate synthetase gene, designated thyE.  相似文献   

15.
16.
The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.  相似文献   

17.
M C Lett  P M Bennett  D J Vidon 《Gene》1985,40(1):79-91
A new transposon coding for mercury resistance (HgR), Tn3926, has been found in a strain of Yersinia enterocolitica, YE138A14. The element has a size of 7.8 kb and transposes to conjugative plasmids belonging to different incompatibility groups. A restriction map has been established. DNA-DNA hybridization indicates that Tn3926 displays homology with both Tn501 and Tn21; the greatest homology is shown with the regions of these transposons that encode HgR. Weaker homology is observed between Tn3926 sequences and those regions of Tn501 and Tn21 that encode transposition functions. Complementation experiments indicate that the Tn3926 transposase mediates transposition of Tn21, albeit somewhat inefficiently, but not of Tn501, while the resolvase mediates resolution of transposition cointegrates formed via Tn21, Tn501, or Tn1721.  相似文献   

18.
A series of intragenic DNA probes, encoding the major part of the transposase resolvase and inverted repeats of transposons Tn3, Tn21, and Tn2501, were used in hybridization assays for homologous DNA sequences in 18 transposons studied. The tnpA and tnpR probes detected extensive homology with Tn3-like and Tn21-like elements for 11 transposons. This high degree of homology was confirmed with the 38- and 48-base-pair inverted-repeat oligonucleotide probes of Tn3, Tn21, and Tn2501. The Southern-type gel hybridization experiments localized the tnpA-homologous sequences on the physical DNA maps constructed. The genetic and physical maps of the transposons were compared, as were their nucleic acid sequence homologies. These comparisons suggested a subfamily of mobile elements distinct from but related to the Tn21 group. Based on these results, an evolutionary model is proposed and a pedigree is presented for the genesis of multiresistance beta-lactamase transposons.  相似文献   

19.
20.
T T Nguyen  K Postle  K P Bertrand 《Gene》1983,25(1):83-92
The Tn10 tetracycline resistance gene, tetA, encodes a tetracycline-inducible protein with an apparent Mr of 36 X 10(3). We have determined the nucleotide sequence of the Tn10 tetA gene. The extent of the tetA gene was determined by analysis of amino-terminal and carboxy-terminal deletion mutants. We conclude that a single Tn10 gene, the tetA gene, is sufficient to confer tetracycline resistance. The predicted Mr of the tetA protein is 43.2 X 10(3). The sequence homology between the Tn10 tetA gene and the pBR322 tetracycline resistance determinant (49% nucleotide homology, 44% amino acid homology) indicates that these phenotypically distinct tetracycline-resistance determinants must have evolved from a common ancestral sequence. The markedly hydrophobic character of the predicted amino acid sequences of the Tn10 tetA and pBR322 tet-coded proteins suggests that a substantial portion of these proteins may be embedded within the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号