首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frankia sp. strain CpI1 has two glutamine synthetases designated GSI and GSII. Biosynthetic activities of both GSI and GSII were strongly inhibited by ADP and AMP. Alanine, aspartate, glycine and serine inhibited both GSI and GSII activities, whereas asparagine and lysine inhibited only slightly. Glutamine inhibited GSII but did not affect GSI. Since GSII is more heat labile than GSI, their relative heat stabilities can be used to determine their contribution to total GS activity. In cells grown on ammonia and on glutamine as sole combined-nitrogen sources most GS activity detected in crude extracts was due to GSI. In cells transferred to glutamate, GSI accounted for all GS activity in the first 15 h and then heat labile GSII was induced and increased to account for 40% of total GS activity within 50 h. Transfer of N2-fixing cells to ammonia-containing medium led to a rapid decrease of GSII and a slow increase of GSI activity within 24 h. Conversely, when ammonia-grown cells were transferred to combined nitrogen-free medium, GSI activity gradually decreased and GSII increased before total activity leveled off in 50 h. GSII appears to be an ammonia-assimilating enzyme specifically synthesized during perceived N-starvation of Frankia cells.  相似文献   

2.
The relationship between ammonium assimilation and ammonium export has been studied in free-living, N2-fixing Rhizobium sp. 32H1. After 55 to 67 h of microaerobic growth under a gas phase of 0.2% O2 – 1.0% CO2 – 98.8% Ar high levels of nitrogenase were observed concomitant with a slightly adenylylated glutamine synthetase (GSI) and some glutamine synthetase (GSII) activity. However, after growth of 89 h, or longer, GSI became adenylylated and the level of GSII had decreased. When the gas phase was shifted to 0.2% O2 – 1.0% CO2 – 98.8% N2, a lag was observed before ammonium export could be detected in the 55 to 67 h cultures. No lag in ammonium export was observed in the cultures previously grown for 89 h. The onset of ammonium export in the 55 to 67 h cultures was found to correlate with the adenylylation state of GSI. There appeared to be no correlation between the level of GSII and the export of ammonium. Neither an increase in the adenylylation level of GSI nor ammonium export was observed when the 55 to 67 h cultures were maintained under the Ar gas mixture.Abbreviations GOGAT Glutamate synthase - GS glutamine synthetase - BES [N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid] - CTAB cetyltrimethylammonium bromide - MES [2-(N-morpholino)-ethane sulfonic acid]  相似文献   

3.
The intracellular ratio of 2-oxoglutarate to glutamine has been analyzed under nutritional conditions leading to different activity levels of nitrate-assimilating enzymes in Phormidium laminosum (Agardh) Gom. This non-N2-fixing cyanobacterium adapted to the available nitrogen source by modifying its nitrate reductase (NR; EC 1.7.7.2), nitrite reductase (NiR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) activities. The 2-oxoglutarate/glutamine ratio was similar in cells adapted to grow with nitrate or ammonium. However, metabolic conditions that increased this ratio [i.e., nitrogen starvation or l-methionine-d,l-sulfoximine (MSX) treatment] corresponded to high activity levels of NR, NiR, GS (except in MSX-treated cells) and glutamate synthase (GOGAT; EC 1.4.7.1). By contrast, metabolic conditions that diminished this ratio (i.e., addition of ammonium to nitrate-growing cells or addition of nitrate or ammonium to nitrogen-starved cells) resulted in low activity levels. The variation in the 2-oxoglutarate/glutamine ratio preceded the changes in enzyme activities. These results suggest that changes in the 2-oxoglutarate/glutamine ratio could be the signal that triggers the adaptation of P. laminosum cells to variations in the available nitrogen source, as occurs in enterobacteria.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) - MSX l-methionine-d,l-sulfoximine - NiR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.7.7.2) - TP total protein This work has been partially supported by grants from the Spanish Ministry of Education and Science (DGICYT PB88-0300 and PB92-0464) and the University of the Basque Country (042.310-EC203/94). M.I.T. was the recipient of a fellowship from the Basque Government.  相似文献   

4.
Glutamine metabolism and cycling in Neurospora crassa.   总被引:4,自引:0,他引:4  
Evidence for the existence of a glutamine cycle in Neurospora crassa is reviewed. Through this cycle glutamine is converted into glutamate by glutamate synthase and catabolized by the glutamine transaminase-omega-amidase pathway, the products of which (2-oxoglutarate and ammonium) are the substrates for glutamate dehydrogenase-NADPH, which synthesizes glutamate. In the final step ammonium is assimilated into glutamine by the action of a glutamine synthetase (GS), which is formed by two distinct polypeptides, one catalytically very active (GS beta), and the other (GS alpha) less active but endowed with the capacity to modulate the activity of GS alpha. Glutamate synthase uses the amide nitrogen of glutamine to synthesize glutamate; glutamate dehydrogenase uses ammonium, and both are required to maintain the level of glutamate. The energy expended in the synthesis of glutamine drives the cycle. The glutamine cycle is not futile, because it is necessary to drive an effective carbon flow to support growth; in addition, it facilitates the allocation of nitrogen or carbon according to cellular demands. The glutamine cycle which dissipates energy links catabolism and anabolism and, in doing so, buffers variations in the nutrient supply and drives energy generation and carbon flow for optimal cell function.  相似文献   

5.
Rhizobium phaseoli lacks glutamate dehydrogenase (GDH) and assimilates ammonium by the glutamine synthetase-glutamate synthase pathway. A strain of R. phaseoli harboring the Escherichia coli GDH structural gene (gdhA) was constructed. GDH activity was expressed in R. phaseoli in the free-living state and in symbiosis. Nodules with bacteroids that expressed GDH activity had severe impairment of nitrogen fixation. Also, R. phaseoli cells that lost GDH activity and assimilated ammonium by the glutamine synthetase-glutamate synthase pathway preferentially nodulated Phaseolus vulgaris.  相似文献   

6.
Ammonium assimilation in cyanobacteria   总被引:7,自引:0,他引:7  
  相似文献   

7.
The glutamine synthetase (GS)-glutamate synthase pathway is the primary route used by members of the family Rhizobiaceae to assimilate ammonia. Two forms of glutamine synthetase, GSI and GSII, are found in Rhizobium and Bradyrhizobium species. These are encoded by the glnA and glnII genes, respectively. Starting with a Rhizobium meliloti glnA mutant as the parent strain, we isolated mutants unable to grow on minimal medium with ammonia as the sole nitrogen source. For two auxotrophs that lacked any detectable GS activity, R. meliloti DNA of the mutated region was cloned and partially characterized. Lack of cross-hybridization indicated that the cloned regions were not closely linked to each other or to glnA; they therefore contain two independent genes needed for GSII synthesis or activity. One of the cloned regions was identified as glnII. An R. meliloti glnII mutant and an R. meliloti glnA glnII double mutant were constructed. Both formed effective nodules on alfalfa. This is unlike the B. japonicum-soybean symbiosis, in which at least one of these GS enzymes must be present for nitrogen-fixing nodules to develop. However, the R. meliloti double mutant was not a strict glutamine auxotroph, since it could grow on media that contained glutamate and ammonia, an observation that suggests that a third GS may be active in this species.  相似文献   

8.
Activities and properties of the ammonium assimilation enzymes NADP+-dependent glutamate dehydrogenase (GDH), glutamate synthase (GOGAT) and glutamine synthetase (GS) were determined in batch and continuous cultures of Candida albicans. NADP+-dependent GDH activity showed allosteric kinetics, with an S0.5 for 2-oxoglutarate of 7.5 mM and an apparent Km for ammonium of 5.0 mM. GOGAT activity was affected by the buffer used for extraction and assay, but in phosphate buffer, kinetics were hyperbolic, yielding Km values for glutamine of 750 microM and for 2-oxoglutarate of 65 microM. The enzymes GOGAT and NADP+-dependent GDH were also assayed in batch cultures of Saccharomyces cerevisiae and three other pathogenic Candida spp.: Candida tropicalis, Candida pseudotropicalis and Candida parapsilosis. Evidence is presented that GS/GOGAT is a major pathway for ammonium assimilation in Candida albicans and that this pathway is also significant in other Candida species.  相似文献   

9.

Background  

Glutamine synthetase (GS) is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII) are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from γ-Proteobacteria (Eubacteria) to the Chloroplastida.  相似文献   

10.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

11.
We have cloned and characterized three distinct Rhizobium meliloti loci involved in glutamine biosynthesis (glnA, glnII, and glnT). The glnA locus shares DNA homology with the glnA gene of Klebsiella pneumoniae, encodes a 55,000-dalton monomer subunit of the heat-stable glutamine synthetase (GS) protein (GSI), and complemented an Escherichia coli glnA mutation. The glnII locus shares DNA homology with the glnII gene of Bradyrhizobium japonicum and encodes a 36,000-dalton monomer subunit of the heat-labile GS protein (GSII). The glnT locus shares no DNA homology with either the glnA or glnII gene and complemented a glnA E. coli strain. The glnT locus codes for an operon encoding polypeptides of 57,000, 48,000, 35,000, 29,000, and 28,000 daltons. glnA and glnII insertion mutants were glutamine prototrophs, lacked the respective GS form (GSI or GSII), grew normally on different nitrogen sources (Asm+), and induced normal, nitrogen-fixing nodules on Medicago sativa plants (Nod+ Fix+). A glnA glnII double mutant was a glutamine auxotroph (Gln-), lacked both GSI and GSII forms, but nevertheless induced normal Fix+ nodules. glnT insertion mutants were prototrophs, contained both GSI and GSII forms, grew normally on different N sources, and induced normal Fix+ nodules. glnII and glnT, but not glnA, expression in R. meliloti was regulated by the nitrogen-regulatory genes ntrA and ntrC and was repressed by rich N sources such as ammonium and glutamine.  相似文献   

12.
Glutamine synthetase (GS), which catalyzes the formation of glutamine from ammonium and glutamate in the presence of ATP, is encoded by three distinct gene families: GSI, GSII, and GSIII. Genes encoding GSI are found in the Bacteria and Archaea, whereas GSII genes are found in eukaryotes and a few species of Bacteria. Members of the third family, GSIII, have been described from a limited number of bacteria; however, recent biochemical and molecular data suggest that this type of enzyme is broadly distributed among the algae. Peptide fragments obtained from GS purified from the marine diatom Skeletonema costatum (Greville) Cleve are 77% identical to a partial sequence of GSIII from Chaetoceros compressum Lauder, which permits the unambiguous assignment of the biochemically characterized enzyme to the GSIII gene family. The N-terminal sequence was 43% identical to the GSIII-like enzyme purified from the haptophyte Emiliania huxleyi (Lohm.) Hay et Miller and several residues were conserved among bacterial and eukaryotic GSIII enzymes. The presence of genes encoding GSIII in diatoms and haptophytes indicates that this enzyme family is more broadly distributed in eukaryotes than previously suspected.  相似文献   

13.
14.
Frankia spp. are filamentous actinomycetes that fix N2 in culture and in actinorhizal root nodules. In combined nitrogen-depleted aerobic environments, nitrogenase is restricted to thick-walled spherical structures, Frankia vesicles, that are formed on short stalks along the vegetative hyphae. The activities of the NH4(+)-assimilating enzymes (glutamine synthetase [GS], glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase) were determined in cells grown on NH4+ and N2 and in vesicles and hyphae from N2-fixing cultures separated on sucrose gradients. The two frankial GSs, GSI and GSII, were present in vesicles at levels similar to those detected in vegetative hyphae from N2-fixing cultures as shown by enzyme assay and two-dimensional polyacrylamide gel electrophoresis. Glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase activities were restricted to the vegetative hyphae. Vesicles apparently lack a complete pathway for assimilating ammonia beyond the glutamine stage.  相似文献   

15.
Glutamine-synthetase (GS; EC 6.3.1.2) activity and protein levels were measured in crude extracts from Monoraphidium braunii Näegeli, strain 202-7d, cultures grown under different nitrogen sources. Only ammonium and l-glutamine promoted a partial enzyme inactivation, which, in the case of l-glutamine, was accompanied by a significant repression of GS. Methionine sulfoximine (MSX), a strong inhibitor of GS, produced a drastic inactivation of GS which was concomitant with a marked increase in GS protein as measured by rocket immunoelectrophoresis. Such an increase was prevented in the presence of cycloheximide. The effect of the l-glutamine analog on GS activity and protein was partially inhibited if l-glutamine was also added to cell cultures, possibly indicating competition in the transport of these two substances. In addition, the effects of MSX were reversed after longer times when cultures were treated with smaller concentrations of inhibitor. Treatment of cell cultures with azaserine, a specific inhibitor of glutamate synthase, the second enzyme acting in the ammonium assimilation pathway, promoted a strong GS inactivation and a partial repression of this enzyme, which paralleled a specific increase in the intracellular pools of glutamine High-performance liquid chromatography measurements of intracellular amino-acid concentrations showed that glutamine levels correlated negatively with GS concentration. A role for glutamine as a negative effector of GS synthesis is proposed.Abbreviations GS l-glutamine synthetase - GOGAT l-glu-tamine:2-oxoglutarate amidotransferase - MSX methionine sulfoximine During the course of this work, J.A. was supported by a fellowship from Junta de Andalucía, and J.M. G-F. by a fellowship from the Spanish Ministerio de Educatión y Ciencia. This work was supported by the Junta de Andalucía.  相似文献   

16.
17.
Abstract. Under stress conditions (darkness, nitrogen starvation, high ammonium concentrations, glutamine synthetase and glutamate synthase inhibition) glutamate dehydrogenase animating activity levels of Chlamydomonas cells varied inversely to those of glutamine synthetase. Nitrogen and carbon sources also influenced glutamate dehydrogenase levels in Chlamydomonas , the highest values being found in cells cultured mixotrophically with ammonium, under which conditions glutamate dehydrogenase and glutamine synthetase levels were likewise inversely related. These facts, together with the analysis of internal fluctuations of ammonium, 2-oxoglutarate, and the amino acid pool as well as the variations of certain enzymes involved in carbon metabolism indicate that glutamate dehydrogenase animating activity is adaptative, being involved in the maintenance of intracellular levels of L-glutamate when they cannot be maintained by the GS-GOGAT cycle, and probably more connected with carbon than nitrogen metabolism.  相似文献   

18.
Some properties of glutamine synthetase I (GSI) and GSII are described for a fast-growing Rhizobium sp. (Rhizobium trifolii T1), a slow-growing Rhizobium sp. (Rhizobium japonicum USDA 83), and Agrobacterium tumefaciens C58. GSII of the fast-growing Rhizobium sp. and GSII of the Agrobacterium sp. were considerably more heat labile than GSII of the slow-growing Rhizobium sp. As previously shown in R. japonicum 61A76, GSI became adenylylated rapidly in all species tested in response to ammonium. GSII activity disappeared within one generation of growth in two of the strains, but the disappearance of GSII activity required two generations in another. Isoactivity points for transferase assay, which were derived from the pH curves of adenylylated GSI and deadenylylated GSI, were approximately pH 7.8 for both R. trifolii and A. tumefaciens. No isoactivity point was found for R. japonicum under the standard assay conditions used. When the feedback inhibitor glycine was used to inhibit differentially the adenylylated GSI and deadenylylated GSI of R. japonicum, an isoactivity point was observed at pH 7.3. Thus, the transferase activity of GSI could be determined independent of the state of adenylation. A survey of 23 strains of bacteria representing 11 genera indicated that only Rhizobium spp. and Agrobacterium spp. contained GSII. Thus, this enzyme appears to be unique for the Rhizobiaceae.  相似文献   

19.
Physiology of ammonium assimilation in Neurospora crassa.   总被引:12,自引:6,他引:6       下载免费PDF全文
In Neurospora crassa the assimilation of high and low concentrations of ammonium occurs by two different pathways. When the fungi are growing exponentially on ammonium excess, this compound is fixed by a glutamic dehydrogenase and an octameric glutamine synthetase (GS). The synthesis of this GS polypeptide (beta) is regulated by the nitrogen source present in excess; being higher on glutamate, intermediate on ammonium, and lower on glutamine. When N. crassa is growing in fed-batch ammonium-limited cultures a different polypeptide of GS (alpha), arranged as a tetramer, is synthesized. In both conditions synthesis in vivo correlates with the data obtained with an in vitro translation system primed with N. crassa RNA. This different expression of alpha and beta GS polypeptides was also observed when the cultures were shifted from excess to low nitrogen, and vice versa. By agarose gel electrophoresis in the presence of methylmercury hydroxide, some separation of different mRNAs that direct the in vitro synthesis of alpha and beta GS polypeptides has been accomplished. Data are presented that establish the operation of the tetrameric alpha GS and of glutamate synthase in the assimilation of ammonium in low concentration.  相似文献   

20.
Streptomycetes have two distinct glutamine synthetases (GS): a heat-stable dodecameric GSI and a heat-labile octameric GSII. A heat-inactivated GS activity was detected in crude extracts ofStreptomyces cinnamonensis cells grown with nitrate or glutamate as the nitrogen source. The purified enzyme obtained from crude extracts of the nitrate-grown cells after affinity and anion-exchange chromatography was also heat-labile; it was inactivated by 80 % when incubated at 50 °C for 1 h. However, the enzyme has properties typical of GSI and similar with those of the heat-stable GSI purified fromS. aureofaciens: It is composed of twelve subunits, each ofM 55 kDa, and has a native molar mass of 625 kDa and an isoelectric point at pH 4.2. In addition, its activity is regulated by reversible adenylylation. Mg2+ and NaCl but not Mn2+ protected the purified enzyme from thermal inactivation, and both NaCl and Mn2+ or Mg2+ stabilized its activity at 4–8 °C. As compared with GSI fromS. aureofaciens, theS. cinnamonensis enzyme was cleaved more extensively during SDS-PAGE, was less sensitive to feedback inhibitors, and similarly affected by divalent cations. TheK m values were 12.5 mmol/L forl-glutamate, 0.1 for NH 4 + , 1.25 for ATP, 18.5 forl-glutamine, 3.3 for hydroxylamine and 0.087 for ADP. To our best knowledge, this is the first report of a heatlabile GSI from any source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号