首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract Sugarcane borer, Diatraea saccharalis (F.), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the US mid‐south region. Resistance development in target pest populations is a major threat to the sustainable use of Bt crops. In our field trials in 2009, a significant number of live borers and plant injury from D. saccharalis were observed in an experimental SmartStax? maize line. The objective of this study was to assess the relative susceptibility of two field populations of D. saccharalis collected from non‐Bt and Bt maize plants containing SmartStax? traits to five individual Cry proteins. The five Bt proteins included two proteins (Cry1A.105 and Cry2Ab2) that were expressed in SmartStax? maize plants and three other common Bt proteins (Cry1Aa, Cry1Ab and Cry1Ac) that were not produced in SmartStax?. Larval mortality and growth inhibition on Bt diet of the fourth generation after field collections were evaluated 7 days after release of neonates on the diet surface. The laboratory bioassays showed that 50% lethal concentration (LC50) values for Cry1A.105 and Cry2Ab2 for the population originated from Bt plants were 3.55‐ and 1.34‐fold greater, respectively, than those of the population collected from non‐Bt plants. In contrast, relative to the population from non‐Bt plants, the LC50 of the population sampled from Bt plants were 3.85‐, 2.5‐ and 1.64‐fold more sensitive to Cry1Aa, Cry1Ab and Cry1Ac, respectively. The results did not provide clear evidence to conclude that the observed field survival of D. saccharalis on Bt plants was associated with increased levels of resistance.  相似文献   

2.
The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), strain (F52‐3‐R) was developed from F3 survivors of a single‐pair mating on commercial Cry1Ab Bacillus thuringiensis (Bt) corn plants in the greenhouse. The susceptibility of a Bt‐susceptible and the F52‐3‐R strain of D. saccharalis to trypsin‐activated Cry1Ab toxin was determined in a laboratory bioassay. Neonate‐stage larvae were fed a meridic diet incorporating Cry1Ab toxin at a concentration range of 0.0625 to 32 µg g?1. Larval mortality, larval weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded on the 7th day after inoculation. The F52‐3‐R strain demonstrated a significant level of resistance to the activated Cry1Ab toxin. Larval mortality of the Bt‐susceptible strain increased in response to higher concentrations of Cry1Ab toxin, exceeding 75% at 32 µg g?1, whereas mortality of the F52‐3‐R strain was below 8% across all Cry1Ab concentrations. Using a measure of practical mortality (larvae either died or gained no weight), the median lethal concentration (LC50) of the F52‐3‐R strain was 102‐fold greater than that of the Bt‐susceptible insects. Larval growth of both Bt‐susceptible and F52‐3‐R strains was inhibited on Cry1Ab‐treated diet, but the inhibition of the F52‐3‐R strain was significantly less than that of the Bt‐susceptible insects. These results confirm that the survival of the F52‐3‐R strain on commercial Bt corn plants was related to Cry1Ab protein resistance and suggest that this strain may have considerable value in studying resistance management strategies for Bt corn.  相似文献   

3.
4.
Evolution of resistance by insect pests is the greatest threat to the continued success of Bacillus thuringiensis (Bt) toxins used in insecticide formulations or expressed by transgenic crop plants such as Cry1F‐expressing maize [(Zea mays L.) (Poaceae)]. A strain of European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), obtained from field collections throughout the central US Corn Belt in 1996 was selected in the laboratory for resistance to Cry1F by exposure to the toxin incorporated into artificial diet. The selected strain developed more than 3000‐fold resistance to Cry1F after 35 generations of selection and readily consumed Cry1F expressing maize tissue; yet, it was as susceptible to Cry1Ab and Cry9C as the unselected control strain. Only a low level of cross‐resistance (seven‐fold) to Cry1Ac was observed. These lacks of cross‐resistance between Cry1F and Cry1Ab suggest that maize hybrids expressing these two toxins are likely to be compatible for resistance management of O. nubilalis.  相似文献   

5.
The sugarcane borer, Diatraea saccharalis (F.), is a major maize borer pest and a target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid‐southern region of the United States. Evolution of resistance in target pest populations is a great threat to the long‐term efficacy of Bt crops. In this study, we compared the genetic basis of resistance to Cry1Ab protein in 3 resistant colonies of sugarcane borer established from field populations in Louisiana, USA. Responses of larvae to the Cry1Ab protein for the parental and 10 other cross colonies were assayed in a diet‐incorporated bioassay. All 3 resistant colonies were highly resistant to the Cry1Ab protein with a resistance ratio of >555.6 fold. No maternal effect or sex linkage was evident for the resistance in the 3 colonies; and the resistance was functionally nonrecessive at the Cry1Ab concentrations of ≤ 3.16 μg/g, but it became recessive at ≥10 μg/g. In an interstrain complementation test for allelism, the F1 progeny from crosses between any 2 of the 3 resistant colonies exhibited the similar resistance levels as their parental colonies, indicating that the 3 colonies most likely shared a locus of Cry1Ab resistance. Results generated from this study should provide useful information in developing effective strategies for managing Bt resistance in the insect.  相似文献   

6.
Sugarcane borer, Diatraea saccharalis (F.), is a primary corn stalk borer pest targeted by transgenic corn expressing Bacillus thuringiensis (Bt) proteins in many areas of the mid-southern region of the United States. Recently, genes encoding for Cry1A.105 and Cry2Ab2 Bt proteins were transferred into corn plants (event MON 89034) for controlling lepidopteran pests. This new generation of Bt corn with stacked-genes of Cry1A.105 and Cry2Ab2 will become commercially available in 2009. Susceptibility of Cry1Ab-susceptible and -resistant strains of D. saccharalis were evaluated on four selected Bt proteins including Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2. The Cry1Ab-resistant strain is capable of completing its larval development on commercial Cry1Ab-expressing corn plants. Neonates of D. saccharalis were assayed on a meridic diet containing one of the four Cry proteins. Larval mortality, body weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded after 7 days. Cry1Aa was the most toxic protein against both insect strains, followed in decreasing potency by Cry1A.105, Cry1Ac, and Cry2Ab2. Using practical mortality (larvae either died or no significant weight gain after 7 days), the median lethal concentration (LC50) of the Cry1Ab-resistant strain was estimated to be >80-, 45-, 4.1-, and −0.5-fold greater than that of the susceptible strain to Cry1Aa, Cry1Ac, Cry1A.105 and Cry2Ab2 proteins, respectively. This information should be useful to support the commercialization of the new Bt corn event MON 89034 for managing D. saccharalis in the mid-southern region of the United States.  相似文献   

7.
Cotton‐ and maize‐producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), have been commercialized since 1996. Bt plants are subjected to environmental risk assessments for non‐target organisms, including natural enemies that suppress pest populations. Here, we used Cry1F‐resistant Spodoptera frugiperda (J.E. Smith) and Cry1Ac and Cry2Ab‐resistant Trichoplusia ni (Hübner) as prey for the assassin bug, Zelus renardii (Kolenati), a common predator in maize and cotton fields. In tritrophic studies, we assessed several fitness parameters of Z. renardii when it fed on resistant S. frugiperda that had fed on Bt maize expressing Cry1F or on resistant T. ni that had fed on Bt cotton expressing Cry1Ac and Cry2Ab. Survival, nymphal duration, adult weight, adult longevity and female fecundity of Z. renardii were not different when they were fed resistant‐prey larvae (S. frugiperda or T. ni) reared on either a Bt crop or respective non‐Bt crops. ELISA tests demonstrated that the Cry proteins were present in the plant at the highest levels, at lower levels in the prey and at the lowest levels in the predator. While Z. renardii was exposed to Cry1F and Cry1Ac and Cry2Ab when it fed on hosts that consumed Bt‐transgenic plants, the proteins did not affect important fitness parameters in this common and important predator.  相似文献   

8.
Transgenic Bacillus thuringiensis Berliner (Bt) crops receive particular attention because they carry genes encoding insecticidal proteins that might negatively affect non‐target arthropods. Here, laboratory experiments were conducted to evaluate the impact of Cry1Ab‐expressing transgenic maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] on the biological parameters of two non‐target arthropods, the aphid Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) and its predator the ladybeetle Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). In a long‐term assay (three generations), no significant differences were found between R. maidis fed Bt maize and those fed a near‐isogenic line (5422) when individual parameters were compared, including nymph development time, adult longevity, aphid spawning period, and fecundity. No negative effects were detected throughout the life cycle of Pjaponica in aphids’ feeding amount, development (nymphs, pupae, adults, and progeny eggs), fecundity, or egg hatching when they preyed on Bt maize‐fed aphids compared with non‐Bt maize treatments. A tritrophic assay revealed that Cry1Ab was highly diluted through the food chain (Bt maize leaves, R. maidis, and P. japonica), as detected by an enzyme‐linked immunosorbent assay (ELISA). In conclusion, although Cry1Ab concentrations in maize leaves increased as the plants developed, Cry1Ab levels were significantly reduced in the aphid R. maidis, and no traces of Cry1Ab were detected in P. japonica preying on Bt maize‐fed aphids. The two hybrids of Bt maize expressing Cry1Ab had no negative effects on the measured biological parameters of the aphid R. maidis or its predator, the ladybeetle P. japonica.  相似文献   

9.
To examine how resistance to Bacillus thuringiensis (Bt) toxins influences movement and survival of European corn borer (Ostrinia nubilalis [Hübner]) neonates, the responses of Cry1Ab-resistant , -susceptible, and hybrid (F1) larvae were examined using two different techniques. First, using an automated video-tracking system, aspects of O. nubilalis movement were quantified in the presence of artificial diet incorporating 50% non-Bt or insect-resistant Cry1Ab maize tissue. Second, O. nubilalis dispersal and survival were measured 48–72 h after hatching on a Cry1Ab maize plant surrounded by two non-Bt maize plants. Video tracking indicated the presence of Cry1Ab tissue increased the total distance moved (m), time moving (%), and time away from the diet (%) for O. nubilalis while decreasing meander (degrees/cm). However, resistant larvae showed reduced movement and increased meander (≈localized searching) relative to susceptible or hybrid larvae on diet incorporating Cry1Ab tissue. Conversely, when placed onto Cry1Ab maize plants, resistant larvae were more likely than susceptible O. nubilalis to disperse onto adjacent non-Bt plants. The difference in on-plant dispersal seems to reflect greater survival after toxin exposure for resistant larvae rather than increased activity. These results suggest that simplified ‘Petri dish’ tests may not be predictive of larval movement among non-Bt and insect-resistant Bt maize plants. Because models of O. nubilalis resistance evolution incorporate various movement and survival parameters, improved data for on-plant behavior and survival of Bt- resistant , -susceptible, and hybrid larvae should help preserve the efficacy of transgenic insect-resistant maize.  相似文献   

10.
Various studies have been conducted to assess the damage caused by secondary lepidopteran pests to transgenic Bt maize expressing Cry1Ab. However, to date little is known on the effects of transgenic maize on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), a polyphagous herbivore which is considered a pest in Mediterranean maize growing areas. Here we present results on the effects of Bt maize (Bt‐11) and Bt spray (Dipel) on the various life stage parameters of this herbivore. We further assess the expression of Cry1Ab in different leaves and leaf parts in maize at a given plant growth stage, and determine whether the feeding damage of 3rd instar S. littoralis is influenced by Bt toxin expression. Contrary to previous literature reporting that S. littoralis is not sensitive to Bt Cry1Ab toxin, our results show that insects fed on either transgenic or Bt sprayed plants were negatively affected. Young S. littoralis larvae (1st and 2nd instars) were found to be the most sensitive to the Bt toxin. This was represented by a higher mortality and a slower developmental time of larvae maintained on transgenic or sprayed plants when compared to insects maintained on control plants. Moreover, Bt maize had a stronger and prolonged detrimental effect on insects when compared to Bt spray in maize. This was revealed by the fact that insects maintained on transgenic plants from 3rd instar to pupation took longer to reach adult emergence compared to insects that were maintained on sprayed plants. This was likely due to the continuous exposure of insects to the toxin when kept on transgenic maize. ELISA results showed a variation in the amount of Bt toxin among different leaf sections in transgenic maize at a given plant growth stage. These differences in Bt toxin were primarily found in the youngest leaf of growing plants. Although the lowest amounts of Bt toxin were detected in the growing leaf section of young leaves, this difference did not appear to influence the feeding behavior of 3rd instar S. littoralis.  相似文献   

11.
Inheritance traits of a Cry1Ab-resistant strain of the sugarcane borer, Diatraea saccharalis (F.) were analyzed using various genetic crosses. Reciprocal parental crosses between Cry1Ab-susceptible and Cry1Ab-resistant populations, F1 by F1 crosses, and backcrosses of F1 with the Cry1Ab-resistant population were successfully completed. Larval mortality of the parental and cross-populations were assayed on Cry1Ab diet and Bacillus thuringiensis (Bt)-corn leaf tissue. Maternal effects and sex linkage were examined by comparing the larval mortality between the two F1 populations. Dominance levels of resistance were measured by comparing the larval mortality of the Cry1Ab-resistant, -susceptible, and -heterozygous populations. Number of genes associated with the resistance was evaluated by fitting the observed mortality of F2 and backcross populations with a Mendelian monogenic inheritance model. Cry1Ab resistance in D. saccharalis was likely inherited as a single or a few tightly linked autosomal genes. The resistance was incompletely recessive on Bt corn leaf tissue, while the effective dominance levels (DML) of resistance increased as Cry1Ab concentrations decreased with Cry1Ab-treated diet. DML estimated based on larval mortality on intact Bt corn plants reported in a previous study ranged from 0.08 to 0.26. This variability in DML levels of Cry1Ab resistance in D. saccharalis suggests that Bt corn hybrids must express a sufficient dose of Bt proteins to make the resistance genes functionally recessive. Thus, Bt resistant heterozygous individuals can be killed as desired in the “high/dose refuge” resistance management strategy for Bt corn.  相似文献   

12.
A major concern regarding the deployment of insect resistant transgenic plants is their potential impact on non-target organisms, in particular on beneficial arthropods such as predators. To assess the risks that transgenic plants pose to predators, various experimental testing systems can be used. When using tritrophic studies, it is important to verify the actual exposure of the predator, i.e., the presence of biologically active toxin in the herbivorous arthropod (prey). We therefore investigated the uptake of Cry1Ab toxin by larvae of the green lacewing (Chrysoperla carnea (Stephens); Neuroptera: Chrysopidae) after consuming two Bt maize-fed herbivores (Tetranychus urticae Koch; Acarina: Tetranychidae and Spodoptera littoralis (Boisduval); Lepidoptera: Noctuidae) by means of an immunological test (ELISA) and the activity of the Cry1Ab toxin following ingestion by the herbivores. Moreover, we compared the activity of Cry1Ab toxin produced by Bt maize to that of purified toxin obtained from transformed Escherichia coli, which is recommended to be used in toxicity studies. The activity of the toxin was assessed by performing feeding bioassays with larvae of the European corn borer (Ostrinia nubilalis (Hübner); Lepidoptera: Crambidae), the target pest of Cry1Ab expressing maize. ELISA confirmed the ingestion of Bt toxin by C. carnea larvae when fed with either of the two prey species and feeding bioassays using the target pest showed that the biological activity of the Cry1Ab toxin is maintained after ingestion by both herbivore species. These findings are discussed in the context of previous risk assessment studies with C. carnea. The purified Cry1Ab protein was more toxic to O. nubilalis compared to the plant-derived Cry1Ab toxin when applied at equal concentrations according to ELISA measurements. Possible reasons for these findings are discussed.  相似文献   

13.
The transgenic maize (Zea mays L.) event MON 88017 produces the Bacillus thuringiensis Berliner (Bt) toxin Cry3Bb1 to provide protection from western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding. In response to reports of reduced performance of Cry3Bb1‐expressing maize at two locations in Illinois, we conducted a two‐year experiment at these sites to characterize suspected resistance, as well as to evaluate root injury and adult emergence. Single‐plant bioassays were performed on larvae from each population that was suspected to be resistant. Results indicate that these populations had reduced mortality on Cry3Bb1‐expressing maize relative to susceptible control populations. No evidence of cross‐resistance between Cry3Bb1 and Cry34/35Ab1 was documented for the Cry3Bb1‐resistant populations. Field studies were conducted that included treatments with commercially available rootworm Bt hybrids and their corresponding non‐Bt near‐isolines. When compared with their near‐isolines, larval root injury and adult emergence were typically reduced for hybrids expressing Cry34/35Ab1 either alone or in a pyramid. In many instances, larval root injury and adult emergence were not significantly different for hybrids expressing mCry3A or Cry3Bb1 alone when compared with their non‐Bt near‐isolines. These findings suggest that Cry34/35Ab1‐expressing Bt maize may represent a valuable option for maize growers where Cry3Bb1 resistance is either confirmed or suspected. Consistent trends in adult size (head capsule width and dry mass) for individuals recovered from emergence cages were not detected during either year of this experiment. Because of the global importance of transgenic crops for managing insect pests, these results suggest that improved decision‐making for insect resistance management is needed to ensure the durability of Bt maize.  相似文献   

14.
Crops producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn borer, Ostrinia nubilalis Hübner, is a significant pest of maize and is widely managed with Bt maize in the Midwest of the United States. When Bt crops are grown in conjunction with non‐Bt refuges, fitness costs of Bt resistance can delay the evolution of resistance. Importantly, fitness costs often vary with ecological factors, including host‐plant genotype and diapause. In this study, we examined fitness costs associated with Cry1F resistance in O. nubilalis when insects were reared on three maize lines. Fitness costs were tested in two experiments. One experiment assessed the fitness costs when Cry1F‐resistant and Cry1F‐susceptible insects were reared on plants as larvae and experienced diapause. The second experiment tested resistant, susceptible and F1 heterozygotes that were reared on plants but did not experience diapause. Despite some evidence of greater adult longevity for Cry1F‐resistant insects, these insects produced fewer fertile eggs than Cry1F‐susceptible insects, and this occurred independent of diapause. Reduced fecundity was not detected among heterozygous individuals, which indicated that this fitness cost was recessive. Additionally, maize lines did not affect the magnitude of this fitness cost. The lower fitness of Cry1F‐resistant O. nubilalis may contribute to the maintenance of Cry1F susceptibility in field populations more than a decade after Cry1F maize was commercialized.  相似文献   

15.
Dietary exposure studies are initial steps in environmental risk assessments of genetically engineered plants on non‐target organisms. These studies are conducted in the laboratory where surrogate species are exposed to purified and biologically active insecticidal compounds at higher concentrations than those expected to occur in transgenic crops foliage. Thus, dietary exposure (early tier) tests provide robust data needed to make general conclusions about the susceptibility of the surrogate species to the test substance. For this, we developed suitable artificial diet and used it to establish a dietary exposure test for assessing the toxicity of midgut‐active insecticidal compounds to the larvae of the Asian ladybird beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Using boric acid as a model compound, we validated the bioassay established for H. axyridis larvae. An artificial diet containing boric acid which negatively affected survival, development and adult weights was offered to larvae and indicated that the bioassay was able to detect toxic effects of insecticidal substances incorporated in diets. Using this dietary exposure test, environmental risk assessment of Cry1Ac, Cry2Ab, Cry1Ca, Cry1F and the non‐Cry protein Vip3Aa was evaluated by analysing pupation rates, adult emergence rates, 7‐day larval weights, and freshly emerged male and female weights among the toxin treatments and a pure artificial diet. These life‐table parameters did not vary among artificial diets containing 200 μg/g Bt proteins or pure artificial diet. In contrast, boric acid adversely affected all life‐table parameters. Thus on these bases, we concluded H. axyridis larvae are not sensitive to these Bt proteins expressed in genetically engineered crops.  相似文献   

16.
Using an F1 screen, 352 feral individuals of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), were examined for the presence of Bacillus thuringiensis (Bt)‐resistance alleles. These insects represented four geographical populations collected in central and northeastern Louisiana, USA, and one field population from the Gulf Coast area of Texas, USA, during 2006. The F1 screen used various crosses between field‐collected insects and a laboratory strain of Cry1Ab‐resistant D. saccharalis, including both reciprocal crosses and group mating. F1 neonates of the crosses were screened for Bt resistance on Bt maize leaf tissue. One field‐collected individual of D. saccharalis was shown to have a Bt‐resistance allele. Based on Bayesian analysis procedures, the Bt‐resistance allele frequency in the five populations of D. saccharalis was 0.0028 with a 95% confidence interval of 0.0003–0.0079. The successful identification of a resistance allele in a field collection of insects suggests that the F1 screening technique could be an effective tool for detecting and monitoring rare Bt‐resistance alleles in field populations of D. saccharalis.  相似文献   

17.
The cultivation of Cry1Ab‐expressing genetically modified MON810 (Bt maize) has led to public concern in Europe, regarding its impact on nontarget arthropods (NTAs). We have assessed the potential effects of DKC 6451 YG (MON810) maize on canopy NTAs in a farm‐scale study performed in Central Spain during 3 years. The study focused on hemipteran herbivores (leafhoppers and planthoppers) and hymenopteran parasitic wasps (mymarids) collected by yellow sticky traps, which accounted for 72% of the total number of insects studied. The dynamics and abundance of these groups varied among years, but no significant differences were found between Bt and non‐Bt maize, indicating that Bt maize had no negative effect on these taxa. Nonetheless, the Cry1Ab toxin was detected in 2 different arthropods collected from Bt maize foliage, the cicadellids Zyginidia scutellaris and Empoasca spp. A retrospective power analysis on the arthropod abundance data for our field trials has determined that Z. scutellaris and the family Mymaridae have high capacity to detect differences between the Bt maize and its isogenic counterpart. The use of these canopy NTAs as surrogates for assessing environmental impacts of Bt maize is discussed.  相似文献   

18.
Aim: To select a toxin combination for the management of maize stem borer (Chilo partellus) and to understand possible mechanism of synergism among Bacillus thuringiensis Cry1A toxins tested. Methods and Results: Three Cry1A toxins were over expressed in Escherichia coli strain JM105 and used for diet overlay insect bioassay against C. partellus neonate larvae, both alone and in combinations. Probit analysis revealed that the three Cry1A toxins tested have synergistic effect against C. partellus larvae. In vitro binding analysis of fluorescein isothiocyanate (FITC)‐labelled Cry1A toxins to midgut brush border membrane vesicle (BBMV) shows that increase in toxicity is directly correlated to an increase in binding of toxin mix. Conclusions: A high Cry1Ac to Cry1Ab ratio leads to an increase in efficacy of these toxins towards C. partellus larvae and this increase in toxicity comes from an increase in toxin binding. Significance and Impact of the Study: Use of Cry1Ab and Cry1Ac combination could be an effective approach to control C. partellus. Furthermore, we show it first time that possible reason behind increase in toxicity of synergistic Cry1A proteins is an increase in toxin binding.  相似文献   

19.
As a part of a risk assessment procedure, the impact of Bt maize expressing Cry1Ab toxin on the thrips Frankliniella tenuicornis (Uzel) (Thysanoptera: Thripidae) was investigated, and the potential risks for predators feeding on thrips on Bt maize were evaluated. The effects of Bt maize on F. tenuicornis were assessed by measuring life‐table parameters when reared on Bt and non‐Bt maize. The content of Cry1Ab toxin in different stages of F. tenuicornis reared on Bt maize and the persistence of the toxin in adults where determined in order to evaluate the possible exposure of predators when feeding on thrips. In addition, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) was used as a model predator to assess how the behaviour of prey and predator may influence the exposure of a natural enemy to the Bt toxin. Life‐table parameter results showed that F. tenuicornis was not affected when it was reared on Bt maize. This indicates that the potential for prey quality‐mediated effects on predators is low. Bt content was highest in thrips larvae and adults, and negligible in the non‐feeding prepupal and pupal stages. The persistence of the Cry1Ab toxin in adult F. tenuicornis was short, resulting in a decrease of 97% within the first 24 h. Predation success by young C. carnea larvae varied among the thrips stages, indicating that exposure of predators to Bt toxin can additionally depend on the prey stage. When combining the current knowledge of the susceptibility of major thrips predators with our findings showing no potential for prey quality‐mediated effects, relatively low toxin content in thrips as well as short persistence, it can be concluded that the risks for predators when feeding on thrips in or next to Bt maize fields are negligible.  相似文献   

20.
In the United States of America, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is commonly managed with transgenic corn (Zea mays L.) expressing insecticidal proteins from the bacteria Bacillus thuringiensis Berliner (Bt). Colonies of this pest have been selected in the laboratory on each commercially available transformation event and several resistant field populations have also been identified; some field populations are also resistant. In this study, progeny of a western corn rootworm population collected from a Minnesota corn field planted to SmartStax® corn were evaluated for resistance to corn hybrids expressing Cry3Bb1 (event MON88017) or Cry34/35Ab1 (event DAS‐59122‐7) and to the individual constituent proteins in diet‐overlay bioassays. Results from these assays suggest that this population is resistant to Cry3Bb1 and is incompletely resistant to Cry34/35Ab1. In diet toxicity assays, larvae of the Minnesota (MN) population had resistance ratios of 4.71 and >13.22 for Cry34/35Ab1 and Cry3Bb1 proteins, respectively, compared with the control colonies. In all on‐plant assays, the relative survival of the MN population on the DAS‐59122‐7 and MON88017 hybrids was significantly greater than the control colonies. Larvae of the MN population had inhibited development when reared on DAS‐59122‐7 compared with larvae reared on the non‐Bt hybrid, indicating resistance was incomplete. Overall, these results document resistance to Cry3Bb1 and an incomplete resistance to Cry34/35Ab1 in a population of WCR from a SmartStax® performance problem field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号